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Dark matter is compliant with the general relativity  
Stéphane Le Corre 
 

Abstract: 

A recent publication demonstrates that statistically the gravitational potential 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 deduced from the observed rotation 
curves of the galaxies and the gravitational potential 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 deduced from the observed distribution of the baryonic mass is 
strongly correlated. The gravitational potential 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 verifies the Poisson equation. This result implies that it is strongly likely 
that the observed baryonic mass must be sufficient to explain the observed rotation curves (i.e. without new exotic matter). 
Their study also gives accurate values for this gravitational potential and a curve that demonstrates the correlation 
between 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏. Here, we demonstrate that the equations of the general relativity allow explaining the dark matter 
in agreement with the results of this publication. In particular, one of their observations gives an empirical relation for weak 
accelerations. We are going to retrieve this relation in the frame of the general relativity. Furthermore, we will retrieve the 
observed value and the characteristics of this correlation’s curve. These observations constrain drastically the possible 
gravitational potential in the frame of the general relativity to explain dark matter. In fact, the gravitational potential 
presented here and obtained from the relativity general is certainly the unique possible solution without modifying dynamic 
laws and without dark matter. This solution has already been studied with several unexpected predictions that have recently 
been verified. 

 

Introduction 

A recent publication [1] demonstrates that: 

• statistically the gravitational potential, 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜, deduced 
from the observed rotation curves of the galaxies and 
the gravitational potential, 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏, deduced from the 
observed distribution of the baryonic mass is strongly 
correlated,  
• this potential 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 is a solution of the Poisson 
equation,  
• the value of the gravitational potential is 
around 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏~10−10.5,  
• the relation of the potential in the weak accelerations 
is 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 ∝ �𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 , 

• the correlation’s curve deviates from the line of unity 
for values smaller than around 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏~10−10. 

 

This result implies that it is strongly likely that the 
observed baryonic mass must be sufficient to explain the 
observed rotation curves (i.e. without new exotic matter). 
Because the equations of the general relativity verify the 
Poisson equation, it is convenient to try to find a solution 
to the dark matter in the frame of the general relativity 
(i.e. without modifying the dynamics laws and without 
dark matter). We are going to see that it is possible. We 
are going to see that the empirical relation 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 ∝ �𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 
can be explained in the frame of the general relativity. 
Furthermore, we will retrieve the observed value.  

Our study will focus first on the equations of linearized 
general relativity, in the area of weak field (at the end of 
the galaxies) where the dark matter dominates. 

Gravitation in linearized general relativity 

From general relativity, one deduces the linearized 
general relativity in the approximation of a quasi-flat 
Minkowski space (𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 + ℎ𝜇𝜇𝜇𝜇   ;  |ℎ𝜇𝜇𝜇𝜇| ≪ 1). With 
the following Lorentz gauge, it gives the following field 

equations [3] (with = 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝜕𝜕2
− ∆): 

 𝜕𝜕𝜇𝜇ℎ�𝜇𝜇𝜇𝜇 = 0   ;    ℎ�𝜇𝜇𝜇𝜇 = −2
8𝜋𝜋𝜋𝜋
𝑐𝑐4 𝑇𝑇𝜇𝜇𝜇𝜇      (𝐼𝐼) 

 With: 

ℎ�𝜇𝜇𝜇𝜇 = ℎ𝜇𝜇𝜇𝜇 −
1
2𝜂𝜂

𝜇𝜇𝜇𝜇ℎ  ;  ℎ ≡ ℎ𝜎𝜎𝜎𝜎    ;  ℎ𝜈𝜈
𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇ℎ𝜎𝜎𝜎𝜎  ; ℎ�

= −ℎ     (𝐼𝐼𝐼𝐼) 
The general solution of these equations is: 

ℎ�𝜇𝜇𝜇𝜇(𝑐𝑐𝑐𝑐,𝑥𝑥) = −
4𝐺𝐺
𝑐𝑐4 �

𝑇𝑇𝜇𝜇𝜇𝜇(𝑐𝑐𝑐𝑐 − |𝑥𝑥 − 𝑦⃗𝑦|, 𝑦⃗𝑦)
|𝑥𝑥 − 𝑦⃗𝑦| 𝑑𝑑3𝑦⃗𝑦 

In the approximation of a source with low speed, one has: 
𝑇𝑇00 = 𝜌𝜌𝑐𝑐2  ;  𝑇𝑇0𝑖𝑖 = 𝑐𝑐𝜌𝜌𝑢𝑢𝑖𝑖   ;  𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 

And for a stationary solution, one has: 

ℎ�𝜇𝜇𝜇𝜇(𝑥⃗𝑥) = −
4𝐺𝐺
𝑐𝑐4 �

𝑇𝑇𝜇𝜇𝜇𝜇(𝑦⃗𝑦)
|𝑥𝑥 − 𝑦⃗𝑦|𝑑𝑑

3𝑦⃗𝑦 

At this step, by proximity with electromagnetism, one 
traditionally defines a scalar potential 𝜑𝜑 and a vector 
potential 𝐻𝐻𝑖𝑖. There are in the literature several 
definitions [4] for the vector potential 𝐻𝐻𝑖𝑖. In our study, we 
are going to define:  

ℎ�00 =
4𝜑𝜑
𝑐𝑐2    ;   ℎ�0𝑖𝑖 =

4𝐻𝐻𝑖𝑖

𝑐𝑐   ;   ℎ�𝑖𝑖𝑖𝑖 = 0 

With gravitational scalar potential 𝜑𝜑 and gravitational 
vector potential 𝐻𝐻𝑖𝑖: 

𝜑𝜑(𝑥𝑥) ≡ −𝐺𝐺�
𝜌𝜌(𝑦⃗𝑦)

|𝑥𝑥 − 𝑦⃗𝑦|𝑑𝑑
3𝑦⃗𝑦 



𝐻𝐻𝑖𝑖(𝑥𝑥) ≡ −
𝐺𝐺
𝑐𝑐2 �

𝜌𝜌(𝑦⃗𝑦)𝑢𝑢𝑖𝑖(𝑦⃗𝑦)
|𝑥𝑥 − 𝑦⃗𝑦| 𝑑𝑑3𝑦⃗𝑦

= −𝐾𝐾−1�
𝜌𝜌(𝑦⃗𝑦)𝑢𝑢𝑖𝑖(𝑦⃗𝑦)

|𝑥𝑥 − 𝑦⃗𝑦| 𝑑𝑑3𝑦⃗𝑦 

With 𝐾𝐾 a new constant defined by: 
𝐺𝐺𝐺𝐺 = 𝑐𝑐2 

This definition gives 𝐾𝐾−1~7.4 × 10−28 very small 
compare to 𝐺𝐺. 

The field equations (𝐼𝐼) can be then written (Poisson 
equations): 

∆𝜑𝜑 = 4𝜋𝜋𝜋𝜋𝜌𝜌  ;   ∆𝐻𝐻𝑖𝑖 =
4𝜋𝜋𝜋𝜋
𝑐𝑐2 𝜌𝜌𝑢𝑢𝑖𝑖 = 4𝜋𝜋𝐾𝐾−1𝜌𝜌𝑢𝑢𝑖𝑖     (𝐼𝐼𝐼𝐼𝐼𝐼) 

With the following definitions of 𝑔⃗𝑔 (gravity field) and 𝑘𝑘�⃗  
(gravitic field), those relations can be obtained from 
following equations: 

𝑔⃗𝑔 = −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗ 𝜑𝜑   ;   𝑘𝑘�⃗ = 𝑟𝑟𝑟𝑟𝑟𝑟������⃗  𝐻𝐻��⃗  
 𝑟𝑟𝑟𝑟𝑟𝑟������⃗ 𝑔⃗𝑔 = 0  ;   𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘�⃗ = 0  ;   

𝑑𝑑𝑑𝑑𝑑𝑑 𝑔⃗𝑔 = −4𝜋𝜋𝐺𝐺𝜌𝜌  ;  𝑟𝑟𝑟𝑟𝑟𝑟������⃗ 𝑘𝑘�⃗ = −4𝜋𝜋𝐾𝐾−1ȷp��⃗  

With relations (𝐼𝐼𝐼𝐼), one has: 

ℎ00 = ℎ11 = ℎ22 = ℎ33 =
2𝜑𝜑
𝑐𝑐2    ;    ℎ0𝑖𝑖 =

4𝐻𝐻𝑖𝑖

𝑐𝑐   ;   ℎ𝑖𝑖𝑖𝑖 = 0 

The equations of geodesics in the linear approximation 
give: 

𝑑𝑑2𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑2 ~ −
1
2 𝑐𝑐

2𝛿𝛿𝑖𝑖𝑖𝑖𝜕𝜕𝑗𝑗ℎ00 − 𝑐𝑐𝛿𝛿𝑖𝑖𝑖𝑖�𝜕𝜕𝑘𝑘ℎ0𝑗𝑗 − 𝜕𝜕𝑗𝑗ℎ0𝑘𝑘�𝑣𝑣𝑗𝑗 

It then leads to the movement equations: 
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2 ~ − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔����������⃗ 𝜑𝜑 + 4𝑣𝑣 ∧ �𝑟𝑟𝑟𝑟𝑟𝑟������⃗ 𝐻𝐻��⃗ � = 𝑔⃗𝑔 + 4𝑣𝑣 ∧ 𝑘𝑘�⃗  

This is this relation that we are going to use to explain the 
observed results of [1]. 
 
Remarks: Of course, one retrieves all these relations 
starting with the parameterized post-Newtonian 
formalism. From [5] one has: 

𝑔𝑔0𝑖𝑖 = −
1
2

(4𝛾𝛾 + 4 + 𝛼𝛼1)𝑉𝑉𝑖𝑖   ; 𝑉𝑉𝑖𝑖(𝑥⃗𝑥)

=
𝐺𝐺
𝑐𝑐2 �

𝜌𝜌(𝑦⃗𝑦)𝑢𝑢𝑖𝑖(𝑦⃗𝑦)
|𝑥𝑥 − 𝑦⃗𝑦| 𝑑𝑑3𝑦⃗𝑦 

The gravitomagnetic field and its acceleration 
contribution are: 

𝐵𝐵𝑔𝑔����⃗ = ∇��⃗ ∧ �𝑔𝑔0𝑖𝑖𝑒𝑒𝚤𝚤���⃗ �  ;  𝑎𝑎𝑔𝑔����⃗ = 𝑣𝑣 ∧ 𝐵𝐵𝑔𝑔����⃗  
And in the case of general relativity (that is our case): 

𝛾𝛾 = 1 ;  𝛼𝛼1 = 0 
It then gives: 

𝑔𝑔0𝑖𝑖 = −4𝑉𝑉𝑖𝑖   ;  𝐵𝐵𝑔𝑔����⃗ = ∇��⃗ ∧ �−4𝑉𝑉𝑖𝑖𝑒𝑒𝚤𝚤���⃗ � 
And with our definition: 

𝐻𝐻𝑖𝑖 = −𝛿𝛿𝑖𝑖𝑖𝑖𝐻𝐻𝑗𝑗 =
𝐺𝐺
𝑐𝑐2 �

𝜌𝜌(𝑦⃗𝑦)𝛿𝛿𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗(𝑦⃗𝑦)
|𝑥𝑥 − 𝑦⃗𝑦| 𝑑𝑑3𝑦⃗𝑦 = 𝑉𝑉𝑖𝑖(𝑥𝑥) 

One then has: 
𝑔𝑔0𝑖𝑖 = −4𝐻𝐻𝑖𝑖   ;  𝐵𝐵𝑔𝑔����⃗ = ∇��⃗ ∧ �−4𝐻𝐻𝑖𝑖𝑒𝑒𝚤𝚤���⃗ �

= ∇��⃗ ∧ �4𝛿𝛿𝑖𝑖𝑖𝑖𝐻𝐻𝑗𝑗𝑒𝑒𝚤𝚤���⃗ � = 4∇��⃗ ∧ 𝐻𝐻��⃗  
𝐵𝐵𝑔𝑔����⃗ = 4𝑟𝑟𝑟𝑟𝑟𝑟������⃗  𝐻𝐻��⃗  

With the following definition of gravitic field: 

𝑘𝑘�⃗ =
𝐵𝐵𝑔𝑔����⃗
4  

One then retrieves our previous relations: 
𝑘𝑘�⃗ = 𝑟𝑟𝑟𝑟𝑟𝑟������⃗  𝐻𝐻��⃗   ;  𝑎𝑎𝑔𝑔����⃗ = 𝑣𝑣 ∧ 𝐵𝐵𝑔𝑔����⃗ = 4𝑣𝑣 ∧ 𝑘𝑘�⃗  

The interest of our notation is that the field equations 
are strictly equivalent to Maxwell idealization. Only 
the movement equations are different with the factor 
“4”. But of course, all the results of our study could be 
obtained in the traditional notation of 

gravitomagnetism with the relation 𝑘𝑘�⃗ = 𝐵𝐵𝑔𝑔�����⃗

4
.  

 
What the linearized general relativity predicts 

 
The traditional computation of rotation speeds of galaxies 
consists in obtaining the force equilibrium from the three 
following components: the disk, the bugle and the halo of 
dark matter. More precisely, one has [6]: 

𝑣𝑣2(𝑟𝑟)
𝑟𝑟 = �

𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝜕𝜕 �  𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝜑𝜑 = 𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜑𝜑ℎ𝑎𝑎𝑎𝑎𝑎𝑎 

Or: 
𝑣𝑣2(𝑟𝑟)
𝑟𝑟 = �

𝜕𝜕𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)
𝜕𝜕𝜕𝜕 �+ �

𝜕𝜕𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟)
𝜕𝜕𝜕𝜕 �+ �

𝜕𝜕𝜑𝜑ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟)
𝜕𝜕𝜕𝜕 �  

=
𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 (𝑟𝑟)

𝑟𝑟 +
𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 (𝑟𝑟)

𝑟𝑟 +
𝑣𝑣ℎ𝑎𝑎𝑎𝑎𝑎𝑎2 (𝑟𝑟)

𝑟𝑟  

According to the linearized general relativity, the 
gravitational force is composed of the gravity fields 

(represented by 𝜕𝜕𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)
𝜕𝜕𝜕𝜕

 and 𝜕𝜕𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟)
𝜕𝜕𝜕𝜕

 in the previous 
equation) and by the gravitic field that we assume to be 
able to explain dark matter (represented by 𝜕𝜕𝜑𝜑ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟)

𝜕𝜕𝜕𝜕
). 

Consequently, here, 𝜕𝜕𝜑𝜑ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟)
𝜕𝜕𝜕𝜕

 gathered the gravitic force 
of all the components (disk, bulge). This force due to the 
gravitic field 𝑘𝑘�⃗  takes the following form �𝐹𝐹𝑘𝑘����⃗ � = 𝑚𝑚𝑝𝑝4�𝑣𝑣 ∧
𝑘𝑘�⃗ � = 𝑚𝑚𝑝𝑝

𝜕𝜕𝜑𝜑ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟)
𝜕𝜕𝜕𝜕

. To simplify our computation, we 
idealize a situation where we have the approximation 𝑣𝑣 ⊥
𝑘𝑘�⃗ . We can demonstrate that this perpendicularity is finally 
the more natural situation, meaning that this situation is 
very general [2]. 
 
This situation gives the following equation: 

𝑣𝑣2(𝑟𝑟)
𝑟𝑟 = �

𝜕𝜕𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)
𝜕𝜕𝜕𝜕 �+ �

𝜕𝜕𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟)
𝜕𝜕𝜕𝜕 �+ 4𝑘𝑘(𝑟𝑟)𝑣𝑣(𝑟𝑟)

=
𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 (𝑟𝑟)

𝑟𝑟
+
𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 (𝑟𝑟)

𝑟𝑟 + 4𝑘𝑘(𝑟𝑟)𝑣𝑣(𝑟𝑟) 

Far from the center of the galaxies, when the gravitational 
field becomes negligible, the contribution of �𝜕𝜕𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)

𝜕𝜕𝜕𝜕
�+

�𝜕𝜕𝜑𝜑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟)
𝜕𝜕𝜕𝜕

� is negligible. It is the area where dark matter 
dominates. Far from the center of the galaxies, the 
equation becomes: 

𝑣𝑣2(𝑟𝑟)
𝑟𝑟 =

𝑣𝑣ℎ𝑎𝑎𝑎𝑎𝑎𝑎2 (𝑟𝑟)
𝑟𝑟 = 4𝑘𝑘(𝑟𝑟)𝑣𝑣(𝑟𝑟)    (𝐼𝐼𝐼𝐼) 

 



What the observation reveals and implies in the 
frame of general relativity 

If we get back to the results of [1], they give the following 
equation: 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑣𝑣2(𝑟𝑟)
𝑟𝑟 =

𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏
1 − 𝑒𝑒−�𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 𝑔𝑔†⁄

 

Let’s see what happens where the dark matter 
dominates, i.e. at the end of the galaxies. This area is 
characterized by: 

• very large value of 𝑟𝑟 ≫ 15𝑘𝑘𝑝𝑝𝑝𝑝,  
• negligible gravity fields,  
• low accelerations.  

In this area, the results of [1] imply that we have: 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 ∝ �𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 

By definition, 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏
2 (𝑟𝑟)
𝑟𝑟

, it then gives for the low 
accelerations: 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 ∝
𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟)
√𝑟𝑟

 

Furthermore, for very large value of 𝑟𝑟 ≫ 15𝑘𝑘𝑝𝑝𝑝𝑝, the 
curve √𝑟𝑟 is extremely flat. It evolves very slowly and can 
be considered as constant with a very good 
approximation. It means that in this area the empirical 
relation can be written: 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 ∝ 𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟) 

If we make the assumption that dark matter doesn’t exist, 
at the ends of the galaxies the speed 𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏(𝑟𝑟) is in fact the 
speed of the ordinary mass 𝑣𝑣(𝑟𝑟). One has then: 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 ∝ 𝑣𝑣(𝑟𝑟)    (𝑉𝑉) 

The previous relation (𝐼𝐼𝐼𝐼) from the general relativity 
gives at the ends of the galaxies (where the effects of the 
bulge and disk fields are negligible): 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑣𝑣2(𝑟𝑟)
𝑟𝑟 = 4𝑘𝑘(𝑟𝑟)𝑣𝑣(𝑟𝑟) 

If we compare this relation with the empirical 
relation (𝑉𝑉), the only way to conciliate them is to suppose 
that the gravitic field 𝑘𝑘(𝑟𝑟) at the ends of the galaxies is 
approximately constant. In other words, without dark 
matter and without modifying dynamic laws, to be in 
agreement with the observations, the general relativity 
implies the existence of an approximatively uniform 
gravitic field 𝑘𝑘(𝑟𝑟)~𝑘𝑘0.  

By this way, the general relativity verifies and explains 
the observations of [1], as we are going to see it now. 

 

What about this uniform gravitic field 𝒌𝒌𝟎𝟎 

This solution has been studied in [2]. The uniform gravitic 
field 𝑘𝑘0 would embed the galaxies and would come from 
the neighboring clusters of the galaxies. This solution 
gives the value 𝑘𝑘0 ~ 10−16.5. It leads to 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜~10−10.5 (at 
the ends of the galaxies with 𝑣𝑣 ~ 250 𝑘𝑘𝑘𝑘. 𝑠𝑠−1). This value 
is in agreement with the results of [1].  
One can also note that, as demonstrated in [2], a uniform 
gravitic field 𝑘𝑘0 verifies the Poisson equation. One can 
even note that the only way, in the frame of the general 
relativity, to modify the gravitational potential defined by 
the Poisson equation without modifying the distribution 
of the baryonic mass (constraints imposed by the results 
of [1]) is to add a uniform gravitic field. In fact, one can 
retrieve this situation in the accelerators of particles, with 
the electromagnetism (the linearized general relativity is 
similar to the Maxwell’s idealization as seen at the 
beginning). The particles verify the Maxwell’s equations 
(and then the Poisson equation) and follows circular 
trajectories with a uniform magnetic field. The source 
comes from structures of higher scale (the magnets). 
The fact that this gravitic field is uniform also means that 
it cannot come from the galaxy (or it should decrease with 
the distance to the center). This result is in agreement 
with the simulations [7]. Indeed these simulations 
demonstrate that the own gravitic field of the galaxy is 
negligible and cannot explain the dark matter. In this 
theoretical frame, only an external field can play a role to 
explain the dark matter. 
We are now going to see the astonishing accuracy of this 
solution. These results imply that we can write 𝑘𝑘 = 𝑘𝑘1 +
𝑘𝑘0 [2] with 𝑘𝑘1the own gravitic field of the galaxy and 𝑘𝑘0 a 
uniform external gravitic field. As indicated in [2], inside 
the galaxy, for 𝑟𝑟 < 15𝑘𝑘𝑝𝑝𝑝𝑝, one has 𝑘𝑘1 ≫ 𝑘𝑘0 and then 
𝑘𝑘~𝑘𝑘1 and for 𝑟𝑟 > 15𝑘𝑘𝑝𝑝𝑝𝑝, one has 𝑘𝑘1 ≪ 𝑘𝑘0 and 
then 𝑘𝑘~𝑘𝑘0. It then implies that for 𝑟𝑟 < 15𝑘𝑘𝑝𝑝𝑝𝑝 the own 
gravitic field of the galaxy acts, i.e. that 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 depend on 
the baryonic mass of the galaxy and for 𝑟𝑟 > 15𝑘𝑘𝑝𝑝𝑝𝑝 the 
own gravitic field is progressively replaced by an external 
gravitic field, i.e. that 𝑔𝑔𝑏𝑏𝑎𝑎𝑎𝑎 doesn’t depend little by little 
on the own baryonic mass of the galaxy. It means that the 
solution of the general relativity implies a progressive 
change of nature of the correlation between 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 
and 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 along the two areas. Concretely, for this latter 
area, [2] gives 10−16.62 < 𝑘𝑘0 < 10−16.3 and for the 
interval of rotation’s speeds (at the ends of the galaxies 
where 𝑘𝑘0 dominates) 50𝑘𝑘𝑘𝑘. 𝑠𝑠−1 < 𝑣𝑣 < 300𝑘𝑘𝑘𝑘. 𝑠𝑠−1. In 
term of 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 = 4𝑘𝑘0𝑣𝑣, it leads to the interval 10−11.32 <
𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 < 10−10.2. The solution [2] expects then a different 
behavior in the correlation of 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 in the 
interval 10−11.32 < 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 < 10−10.2. The correlation’s 
curve in [1] shows such a behavior. Indeed, 
near 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏~10−10, the correlation’s curve deviates from 
the line of unity. And one can focus on the remarkable 
agreement between the theoretical expectation and the 
experimental observations. The observed interval in [1] 
which deviates from the line of unity gives 10−11.7 <



𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏 < 10−10 (obtained from 153 galaxies). The 
theoretical interval is obtained from only 16 galaxies. 

Conclusion 

With the constraints of the observations of [1] and with 
the results of simulations [7] the general relativity can 
explain the dark matter but only by a uniform gravitic 
field, external to the own gravitic field. This solution has 
been studied in [2]. It shows that this uniform gravitic field 
should come from the neighboring clusters of galaxies. 
The agreement between the solution allowed by the 
general relativity (without exotic matter and without 
modification of the dynamic’s laws) and the observation 
is total:  
• The correlation between baryonic mass distribution 
and rotation’s speed of the galaxies (because this 
solution doesn’t need dark matter),  
• the value of the gravitational potential,  
• the fact that this potential is a solution of the Poisson 
equation (because it is a native solution of the general 
relativity),  
• the relation of the potential in the weak 
accelerations 𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 ∝ �𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏  (demonstrated by the 
general relativity), 
• the characteristics of the correlation’s curve 
(deviation from the line of unity for values smaller than 
around 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏~10−10). 

Furthermore, this solution also implies several 
unexpected predictions that are recently verified: 
1) The satellite dwarf galaxies are distributed according to 
plans 
2) For nearby galaxies, the plans of satellite dwarf galaxies 
must have the same orientation 
3) The plans must be aligned on the equatorial axis of the 
cluster they belong 
4) The clusters of neighboring galaxies must have a strong 
tendency to align 
5) A calculation of order of magnitude provides that these 
alignments can extend over distances of tens of Mpc at 
least 
6) Statistically, the spin vectors of galaxies must be 
oriented in the same half-space (that of the cluster 
rotation vector) 
The article [8] confirms the predictions 1, 2 and 3. The 
article [9] confirms the predictions 4, 5 and 6. One also 
could mention the observation (totally unlikely with the 
current assumptions) of 4 quasars perfectly aligned [10] 
or older papers [11] and [12] that reveal the alignment of 
quasars. 

It also implies another predictions not yet verified, in 
particular, this solution implies a discrepancy in the 
measurement of the expected Earth’s Lense-Thirring 
effect (for experiments such as “Gravity Probe B” or 
“GINGER”) of a value between around 0.3 
milliarcsecond/year and 0.6 milliarcsecond/year [13], 

value inferior than the precision of the last experiments 
of measure of the Earth frame-dragging precession (39 
mas/y) and of the geodetic effect (6606 mas/y). In this 
theoretical frame, these experiments would be the more 
direct way to measure the dark matter. One can also note 
that this solution can be adapted to explain the dark 
energy [14] and the result on the Hubble constant in [15] 
is in agreement with a prediction of this solution. 

References 

[1] S. S. McGaugh, F. Lelli and J. M. Schombert, 
arXiv:1609.05917, Phys. Rev. D 
[2] S. Le Corre, arXiv:1503.07440v4 
[3] M. Hobson et al. “Relativité générale”, ISBN 978-2-
8041-0126-8, 2009 December 
[4] B. Mashhoon, arXiv:gr-qc/0311030v2 
[5] M. W. Clifford, Living Rev. Relativity 17 (2014), 4 
[6] S. M. Kent, Astronomical Journal (ISSN 0004-6256), 
vol. 91, June 1986, p. 1301-1327 
[7] J. Adamek, D. Daverio, R. Durrer and M. Kunz, Nature 
Physics 12, 346–349 (2016) 
[8] R. Brent Tully et al., The Astrophysical Journal Letters, 
Volume 802, Number 2  
[9] A. R. Taylor and P. Jagannathan, MNRAS (June 11, 
2016) 459 (1): L36-L40. 
[10] J. F. Hennawi et al., Science 15 May 2015 Vol. 348 no. 
6236 pp. 779-783 
[11] D. Hutsemekers, Astronomy and Astrophysics, v.332, 
p.410-428 (1998) 
[12] D. Hutsemekers et al., Astron.Astrophys. 441 (2005) 
915-930 astro-ph/0507274 
[13] S. Le Corre, HAL: <hal-01276745> 
[14] S. Le Corre, HAL: <ensl-01122689> 
[15] A. G. Riess et al., The Astrophysical Journal, Volume 
826, Number 1 
 

https://hal.archives-ouvertes.fr/hal-01276745

	Dark matter is compliant with the general relativity
	Introduction
	Gravitation in linearized general relativity
	What the linearized general relativity predicts
	What the observation reveals and implies in the frame of general relativity
	What about this uniform gravitic field ,𝒌-𝟎.
	Conclusion
	References

