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Dark matter is compliant with the general relativity  
Stéphane Le Corre 

 

Abstract: 

A recent publication demonstrates that statistically the gravitational potential 𝑔𝑜𝑏𝑠 deduced from the observed rotation 

curves of the galaxies and the gravitational potential 𝑔𝑏𝑎𝑟 deduced from the observed distribution of the baryonic mass is 

strongly correlated. The gravitational potential 𝑔𝑏𝑎𝑟 verifies the Poisson equation. This result implies that it is strongly likely 

that the observed baryonic mass must be sufficient to explain the observed rotation curves (i.e. without new exotic matter). 

Their study also gives accurate values for this gravitational potential and a curve that demonstrates the correlation 

between 𝑔𝑜𝑏𝑠 and 𝑔𝑏𝑎𝑟. Here, we demonstrate that the equations of the general relativity allow explaining the dark matter 

in agreement with the results of this publication. In particular, one of their observations gives an empirical relation for weak 

accelerations. We are going to retrieve this relation in the frame of the general relativity. Furthermore, we will retrieve the 

observed value and the characteristics of this correlation’s curve. These observations constrain drastically the possible 

gravitational potential in the frame of the general relativity to explain dark matter. In fact, the gravitational potential 

presented here and obtained from the relativity general is certainly the unique possible solution without modifying dynamic 

laws and without dark matter. This solution has already been studied with several unexpected predictions that have recently 

been verified. 

 

Introduction 

A recent publication [1] demonstrates: 

 statistically the gravitational potential, 𝑔𝑜𝑏𝑠, deduced 

from the observed rotation curves of the galaxies and 

the gravitational potential, 𝑔𝑏𝑎𝑟, deduced from the 

observed distribution of the baryonic mass is strongly 

correlated,  

 the fact that this potential 𝑔𝑏𝑎𝑟 is a solution of the 

Poisson equation,  

 the value of the gravitational potential,  

 the relation of the potential in the weak 

accelerations 𝑔𝑜𝑏𝑠 ∝ √𝑔𝑏𝑎𝑟 , 

 the characteristics of the correlation’s curve 

(deviation from the line of unity for values smaller than 

around 𝑔𝑏𝑎𝑟~10−10). 

 

This result implies that it is strongly likely that the 

observed baryonic mass must be sufficient to explain the 

observed rotation curves (i.e. without new exotic matter). 

Because the equations of the general relativity verify the 

Poisson equation, it is convenient to try to find a solution 

to the dark matter in the frame of the general relativity 

(i.e. without modifying the dynamics laws and without 

dark matter). We are going to see that it is possible. We 

are going to see that the empirical relation 𝑔𝑜𝑏𝑠 ∝ √𝑔𝑏𝑎𝑟 

can be explained in the frame of the general relativity. 

Furthermore, we will retrieve the observed value.  

Our study will focus first on the equations of linearized 

general relativity, in the area of weak field (at the end of 

the galaxies) where the dark matter dominates. 

Gravitation in linearized general relativity 

From general relativity, one deduces the linearized 

general relativity in the approximation of a quasi-flat 

Minkowski space (𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈   ;   |ℎ𝜇𝜈| ≪ 1). With 

the following Lorentz gauge, it gives the following field 

equations [3] (with =
1

𝑐2

𝜕2

𝜕𝑡2
− ∆): 

 𝜕𝜇ℎ̅𝜇𝜈 = 0   ;    ℎ̅𝜇𝜈 = −2
8𝜋𝐺

𝑐4 𝑇𝜇𝜈      (𝐼) 

 With: 

ℎ̅𝜇𝜈 = ℎ𝜇𝜈 −
1

2
𝜂𝜇𝜈ℎ  ;  ℎ ≡ ℎ𝜎

𝜎    ;  ℎ𝜈
𝜇

= 𝜂𝜇𝜎ℎ𝜎𝜈  ;  ℎ̅

= −ℎ     (𝐼𝐼) 

The general solution of these equations is: 

ℎ̅𝜇𝜈(𝑐𝑡, 𝑥) = −
4𝐺

𝑐4 ∫
𝑇𝜇𝜈(𝑐𝑡 − |𝑥 − �⃗�|, �⃗�)

|𝑥 − �⃗�|
𝑑3�⃗� 

In the approximation of a source with low speed, one has: 

𝑇00 = 𝜌𝑐2  ;   𝑇0𝑖 = 𝑐𝜌𝑢𝑖   ;   𝑇𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗 

And for a stationary solution, one has: 

ℎ̅𝜇𝜈(�⃗�) = −
4𝐺

𝑐4 ∫
𝑇𝜇𝜈(�⃗�)

|𝑥 − �⃗�|
𝑑3�⃗� 

At this step, by proximity with electromagnetism, one 

traditionally defines a scalar potential 𝜑 and a vector 

potential 𝐻𝑖. There are in the literature several 

definitions [4] for the vector potential 𝐻𝑖. In our study, we 

are going to define:  

ℎ̅00 =
4𝜑

𝑐2    ;    ℎ̅0𝑖 =
4𝐻𝑖

𝑐
  ;   ℎ̅𝑖𝑗 = 0 

With gravitational scalar potential 𝜑 and gravitational 

vector potential 𝐻𝑖: 

𝜑(𝑥) ≡ −𝐺 ∫
𝜌(�⃗�)

|𝑥 − �⃗�|
𝑑3�⃗� 



𝐻𝑖(𝑥) ≡ −
𝐺

𝑐2 ∫
𝜌(�⃗�)𝑢𝑖(�⃗�)

|𝑥 − �⃗�|
𝑑3�⃗�

= −𝐾−1 ∫
𝜌(�⃗�)𝑢𝑖(�⃗�)

|𝑥 − �⃗�|
𝑑3�⃗� 

With 𝐾 a new constant defined by: 

𝐺𝐾 = 𝑐2 

This definition gives 𝐾−1~7.4 × 10−28 very small 

compare to 𝐺. 

The field equations (𝐼) can be then written (Poisson 

equations): 

∆𝜑 = 4𝜋𝐺𝜌  ;   ∆𝐻𝑖 =
4𝜋𝐺

𝑐2 𝜌𝑢𝑖 = 4𝜋𝐾−1𝜌𝑢𝑖     (𝐼𝐼𝐼) 

With the following definitions of 𝑔 (gravity field) and �⃗⃗� 

(gravitic field), those relations can be obtained from 

following equations: 

𝑔 = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜑   ;   �⃗⃗� = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ ⃗ �⃗⃗⃗� 

 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ ⃗𝑔 = 0  ;   𝑑𝑖𝑣 �⃗⃗� = 0  ;   

𝑑𝑖𝑣 𝑔 = −4𝜋𝐺𝜌  ;  𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ ⃗�⃗⃗� = −4𝜋𝐾−1jp⃗⃗ ⃗ 

With relations (𝐼𝐼), one has: 

ℎ00 = ℎ11 = ℎ22 = ℎ33 =
2𝜑

𝑐2    ;    ℎ0𝑖 =
4𝐻𝑖

𝑐
  ;   ℎ𝑖𝑗 = 0 

The equations of geodesics in the linear approximation 

give: 

𝑑2𝑥𝑖

𝑑𝑡2 ~ −
1

2
𝑐2𝛿𝑖𝑗𝜕𝑗ℎ00 − 𝑐𝛿𝑖𝑘(𝜕𝑘ℎ0𝑗 − 𝜕𝑗ℎ0𝑘)𝑣𝑗 

It then leads to the movement equations: 

𝑑2𝑥

𝑑𝑡2 ~ − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜑 + 4𝑣 ∧ (𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ ⃗�⃗⃗⃗�) = 𝑔 + 4𝑣 ∧ �⃗⃗� 

This is this relation that we are going to use to explain the 

observed results of [1]. 

 

Remarks: Of course, one retrieves all these relations 

starting with the parameterized post-Newtonian 

formalism. From [5] one has: 

𝑔0𝑖 = −
1

2
(4𝛾 + 4 + 𝛼1)𝑉𝑖   ;  𝑉𝑖(�⃗�)

=
𝐺

𝑐2 ∫
𝜌(�⃗�)𝑢𝑖(�⃗�)

|𝑥 − �⃗�|
𝑑3�⃗� 

The gravitomagnetic field and its acceleration 

contribution are: 

𝐵𝑔
⃗⃗⃗⃗⃗ = ∇⃗⃗⃗ ∧ (𝑔0𝑖𝑒𝑖⃗⃗⃗⃗ )  ;  𝑎𝑔⃗⃗⃗⃗⃗ = 𝑣 ∧ 𝐵𝑔

⃗⃗⃗⃗⃗ 

And in the case of general relativity (that is our case): 

𝛾 = 1 ;  𝛼1 = 0 

It then gives: 

𝑔0𝑖 = −4𝑉𝑖   ;  𝐵𝑔
⃗⃗⃗⃗⃗ = ∇⃗⃗⃗ ∧ (−4𝑉𝑖𝑒𝑖⃗⃗⃗⃗ ) 

And with our definition: 

𝐻𝑖 = −𝛿𝑖𝑗𝐻𝑗 =
𝐺

𝑐2 ∫
𝜌(�⃗�)𝛿𝑖𝑗𝑢𝑗(�⃗�)

|𝑥 − �⃗�|
𝑑3�⃗� = 𝑉𝑖(𝑥) 

One then has: 

𝑔0𝑖 = −4𝐻𝑖   ;  𝐵𝑔
⃗⃗⃗⃗⃗ = ∇⃗⃗⃗ ∧ (−4𝐻𝑖𝑒𝑖⃗⃗⃗⃗ )

= ∇⃗⃗⃗ ∧ (4𝛿𝑖𝑗𝐻𝑗𝑒𝑖⃗⃗⃗⃗ ) = 4∇⃗⃗⃗ ∧ �⃗⃗⃗� 

𝐵𝑔
⃗⃗⃗⃗⃗ = 4𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ ⃗ �⃗⃗⃗� 

With the following definition of gravitic field: 

�⃗⃗� =
𝐵𝑔
⃗⃗⃗⃗⃗

4
 

One then retrieves our previous relations: 

�⃗⃗� = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ ⃗ �⃗⃗⃗�  ;   𝑎𝑔⃗⃗⃗⃗⃗ = 𝑣 ∧ 𝐵𝑔
⃗⃗⃗⃗⃗ = 4𝑣 ∧ �⃗⃗� 

The interest of our notation is that the field equations 

are strictly equivalent to Maxwell idealization. Only 

the movement equations are different with the factor 

“4”. But of course, all the results of our study could be 

obtained in the traditional notation of 

gravitomagnetism with the relation �⃗⃗� =
𝐵𝑔⃗⃗⃗⃗⃗⃗

4
.  

 

What the linearized general relativity predicts 

 

The traditional computation of rotation speeds of galaxies 
consists in obtaining the force equilibrium from the three 
following components: the disk, the bugle and the halo of 
dark matter. More precisely, one has [6]: 

𝑣2(𝑟)

𝑟
= (

𝜕𝜑(𝑟)

𝜕𝑟
)  𝑤𝑖𝑡ℎ  𝜑 = 𝜑𝑑𝑖𝑠𝑘 + 𝜑𝑏𝑢𝑙𝑔𝑒 + 𝜑ℎ𝑎𝑙𝑜 

Or: 

𝑣2(𝑟)

𝑟
= (

𝜕𝜑𝑑𝑖𝑠𝑘(𝑟)

𝜕𝑟
) + (

𝜕𝜑𝑏𝑢𝑙𝑔𝑒(𝑟)

𝜕𝑟
) + (

𝜕𝜑ℎ𝑎𝑙𝑜(𝑟)

𝜕𝑟
)  

=
𝑣𝑑𝑖𝑠𝑘

2 (𝑟)

𝑟
+

𝑣𝑏𝑢𝑙𝑔𝑒
2 (𝑟)

𝑟
+

𝑣ℎ𝑎𝑙𝑜
2 (𝑟)

𝑟
 

According to the linearized general relativity, the 
gravitational force is composed of the gravity fields 

(represented by 
𝜕𝜑𝑑𝑖𝑠𝑘(𝑟)

𝜕𝑟
 and 

𝜕𝜑𝑏𝑢𝑙𝑔𝑒(𝑟)

𝜕𝑟
 in the previous 

equation) and by the gravitic field that we assume to be 

able to explain dark matter (represented by 
𝜕𝜑ℎ𝑎𝑙𝑜(𝑟)

𝜕𝑟
). 

Consequently, here, 
𝜕𝜑ℎ𝑎𝑙𝑜(𝑟)

𝜕𝑟
 gathered the gravitic force 

of all the components (disk, bulge). This force due to the 

gravitic field �⃗⃗� takes the following form ‖𝐹𝑘
⃗⃗⃗⃗⃗‖ = 𝑚𝑝4‖𝑣 ∧

�⃗⃗�‖ = 𝑚𝑝
𝜕𝜑ℎ𝑎𝑙𝑜(𝑟)

𝜕𝑟
. To simplify our computation, we 

idealize a situation where we have the approximation 𝑣 ⊥

�⃗⃗�. We can demonstrate that this perpendicularity is finally 
the more natural situation, meaning that this situation is 
very general [2]. 
 
This situation gives the following equation: 

𝑣2(𝑟)

𝑟
= (

𝜕𝜑𝑑𝑖𝑠𝑘(𝑟)

𝜕𝑟
) + (

𝜕𝜑𝑏𝑢𝑙𝑔𝑒(𝑟)

𝜕𝑟
) + 4𝑘(𝑟)𝑣(𝑟)

=
𝑣𝑑𝑖𝑠𝑘

2 (𝑟)

𝑟
+

𝑣𝑏𝑢𝑙𝑔𝑒
2 (𝑟)

𝑟
+ 4𝑘(𝑟)𝑣(𝑟) 

Far from the center of the galaxies, when the gravitational 

field becomes negligible, the contribution of (
𝜕𝜑𝑑𝑖𝑠𝑘(𝑟)

𝜕𝑟
) +

(
𝜕𝜑𝑏𝑢𝑙𝑔𝑒(𝑟)

𝜕𝑟
) is negligible. It is the area where dark matter 

dominates. Far from the center of the galaxies, the 
equation becomes: 

𝑣2(𝑟)

𝑟
=

𝑣ℎ𝑎𝑙𝑜
2 (𝑟)

𝑟
= 4𝑘(𝑟)𝑣(𝑟)    (𝐼𝑉) 

 



What the observation reveals and implies in the 

frame of general relativity 

If we get back to the results of [1], they give the following 

equation: 

𝑔𝑜𝑏𝑠 =
𝑣2(𝑟)

𝑟
=

𝑔𝑏𝑎𝑟

1 − 𝑒−√𝑔𝑏𝑎𝑟 𝑔†⁄
 

Let’s see what happens where the dark matter 

dominates, i.e. at the end of the galaxies. This area is 

characterized by: 

 very large value of 𝑟 ≫ 15𝑀𝑝𝑐,  

 negligible gravity fields,  

 low accelerations.  

In this area, the results of [1]  imply that we have: 

𝑔𝑜𝑏𝑠 ∝ √𝑔𝑏𝑎𝑟 

By definition, 𝑔𝑏𝑎𝑟 =
𝑣𝑏𝑎𝑟

2 (𝑟)

𝑟
, it then gives for the low 

accelerations: 

𝑔𝑜𝑏𝑠 ∝
𝑣𝑏𝑎𝑟(𝑟)

√𝑟
 

Furthermore, for very large value of 𝑟 ≫ 15𝑀𝑝𝑐, the 

curve √𝑟 is extremely flat. It evolves very slowly and can 

be considered as constant with a very good 

approximation. It means that in this area the empirical 

relation can be written: 

𝑔𝑜𝑏𝑠 ∝ 𝑣𝑏𝑎𝑟(𝑟) 

If we make the assumption that dark matter doesn’t exist, 

at the ends of the galaxies the speed 𝑣𝑏𝑎𝑟(𝑟) is in fact the 

speed of the ordinary mass 𝑣(𝑟). One has then: 

𝑔𝑜𝑏𝑠 ∝ 𝑣(𝑟)    (𝑉) 

The previous relation (𝐼𝑉) from the general relativity 

gives at the ends of the galaxies (where the effects of the 

bulge and disk fields are negligible): 

𝑔𝑜𝑏𝑠 =
𝑣2(𝑟)

𝑟
= 4𝑘(𝑟)𝑣(𝑟) 

If we compare this relation with the empirical 

relation (𝑉), the only way to conciliate them is to suppose 

that the gravitic field 𝑘(𝑟) at the ends of the galaxies is 

approximately constant. In other words, without dark 

matter and without modifying dynamic laws, to be in 

agreement with the observations, the general relativity 

implies the existence of an approximatively uniform 

gravitic field 𝑘(𝑟)~𝑘0.  

By this way, the general relativity verifies and explains 

the observations of [1], as we are going to see it now. 

 

What about this uniform gravitic field 𝒌𝟎 

This solution has been studied in [2]. The uniform gravitic 

field 𝑘0 would embed the galaxies and would come from 

the neighboring clusters of the galaxies. This solution 

gives the value 𝑘0 ~ 10−16.5. It leads to 𝑔𝑜𝑏𝑠~10−10.5 (at 

the ends of the galaxies with 𝑣 ~ 250 𝑘𝑚. 𝑠−1). This value 

is in agreement with the results of [1].  

One can also note that, as demonstrated in [2], a uniform 

gravitic field 𝑘0 verifies the Poisson equation. One can 

even note that the only way, in the frame of the general 

relativity, to modify the gravitational potential defined by 

the Poisson equation without modifying the distribution 

of the baryonic mass (constraints imposed by the results 

of [1]) is to add a uniform gravitic field. In fact, one can 

retrieve this situation in the accelerators of particles, with 

the electromagnetism (the linearized general relativity is 

similar to the Maxwell’s idealization as seen at the 

beginning). The particles verify the Maxwell’s equations 

(and then the Poisson equation) and follows circular 

trajectories with a uniform magnetic field. The source 

comes from structures of higher scale (the magnets). 

The fact that this gravitic field is uniform also means that 

it cannot come from the galaxy (or it should decrease with 

the distance to the center). This result is in agreement 

with the simulations [7]. Indeed these simulations 

demonstrate that the own gravitic field of the galaxy is 

negligible and cannot explain the dark matter. In this 

theoretical frame, only an external field can play a role to 

explain the dark matter. 

We are now going to see the astonishing accuracy of this 

solution. These results imply that we can write 𝑘 = 𝑘1 +

𝑘0 [2] with 𝑘1the own gravitic field of the galaxy and 𝑘0 a 

uniform external gravitic field. As indicated in [2], inside 

the galaxy, for 𝑟 < 15𝑀𝑝𝑐, one has 𝑘1 ≫ 𝑘0 and then 

𝑘~𝑘1 and for 𝑟 > 15𝑀𝑝𝑐, one has 𝑘1 ≪ 𝑘0 and 

then 𝑘~𝑘0. It then implies that for 𝑟 < 15𝑀𝑝𝑐 the own 

gravitic field of the galaxy acts, i.e. that 𝑔𝑏𝑎𝑟 depend on 

the baryonic mass of the galaxy and for 𝑟 > 15𝑀𝑝𝑐 the 

own gravitic field is progressively replaced by an external 

gravitic field, i.e. that 𝑔𝑏𝑎𝑟 doesn’t depend little by little 

on the own baryonic mass of the galaxy. It means that the 

solution of the general relativity implies a progressive 

change of nature of the correlation between 𝑔𝑜𝑏𝑠 

and 𝑔𝑏𝑎𝑟 along the two areas. Concretely, for this latter 

area, [2] gives 10−16.62 < 𝑘0 < 10−16.3 and for the 

interval of rotation’s speeds (at the ends of the galaxies 

where 𝑘0 dominates) 50𝑘𝑚. 𝑠−1 < 𝑣 < 300𝑘𝑚. 𝑠−1. In 

term of 𝑔𝑏𝑎𝑟 = 4𝑘0𝑣, it leads to the interval 10−11.32 <

𝑔𝑏𝑎𝑟 < 10−10.2. The solution [2] expects then a different 

behavior in the correlation of 𝑔𝑜𝑏𝑠 and 𝑔𝑏𝑎𝑟 in the 

interval 10−11.32 < 𝑔𝑏𝑎𝑟 < 10−10.2. The correlation’s 

curve in [1] shows such a behavior. Indeed, 

near 𝑔𝑏𝑎𝑟~10−10, the correlation’s curve deviate from 

the line of unity. And one can focus on the remarkable 

agreement between the theoretical expectation and the 

experimental observations. The observed interval in [1] 

which deviates from the line of unity gives 10−11.7 <



𝑔𝑏𝑎𝑟 < 10−10 (obtained from 153 galaxies). The 

theoretical interval is obtained from only 16 galaxies. 

Conclusion 

With the constraints of the observations of [1] and with 

the results of simulations [7] the general relativity can 

explain the dark matter but only by a uniform gravitic 

field, external to the own gravitic field. This solution has 

been studied in [2]. It shows that this uniform gravitic field 

should come from the neighboring clusters of galaxies. 

The agreement between the solution allowed by the 

general relativity (without exotic matter and without 

modification of the dynamic’s laws) and the observation 

is total:  

 The correlation between baryonic mass distribution 

and rotation’s speed of the galaxies (because this 

solution doesn’t need dark matter),  

 the value of the gravitational potential,  

 the fact that this potential is a solution of the Poisson 

equation (because it is a native solution of the general 

relativity),  

 the relation of the potential in the weak 

accelerations 𝑔𝑜𝑏𝑠 ∝ √𝑔𝑏𝑎𝑟  (demonstrated by the 

general relativity), 

 the characteristics of the correlation’s curve 

(deviation from the line of unity for values smaller than 

around 𝑔𝑏𝑎𝑟~10−10). 

Furthermore, this solution also implies several 

unexpected predictions that are recently verified: 

1) The satellite dwarf galaxies are distributed according to 

plans 

2) For nearby galaxies, the plans of satellite dwarf galaxies 

must have the same orientation 

3) The plans must be aligned on the equatorial axis of the 

cluster they belong 

4) The clusters of neighboring galaxies must have a strong 

tendency to align 

5) A calculation of order of magnitude provides that these 

alignments can extend over distances of tens of Mpc at 

least 

6) Statistically, the spin vectors of galaxies must be 

oriented in the same half-space (that of the cluster 

rotation vector) 

The article [8] confirms the predictions 1, 2 and 3. The 

article [9] confirms the predictions 4, 5 and 6. One also 

could mention the observation (totally unlikely with the 

current assumptions) of 4 quasars perfectly aligned [10] 

or older papers [11] and [12] that reveal the alignment of 

quasars. 

It also implies another predictions not yet verified, in 

particular, this solution implies a discrepancy in the 

measurement of the expected Earth’s Lense-Thirring 

effect (for experiments such as “Gravity Probe B” or 

“GINGER”) of a value between around 0.3 

milliarcsecond/year and 0.6 milliarcsecond/year [13], 

value inferior than the precision of the last experiments 

of measure of the Earth frame-dragging precession (39 

mas/y) and of the geodetic effect (6606 mas/y). In this 

theoretical frame, these experiments would be the more 

direct way to measure the dark matter. One can also note 

that this solution can be adapted to explain the dark 

energy [14] and the result on the Hubble constant in [15] 

is in agreement with a prediction of this solution. 
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