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Abstract—The soaring electricity demand due to Electric
Vehicles (EVs) increases the urgency of the evolution from the
power grid to the so-called smart grid, to manage demand peaks
with minimal infrastructure costs.

In this paper, we propose an approach close to Vehicle-to-
Grid, where EVs can give back some energy from their batteries
during peak times. But we also use EVs as energy transporters,
by taking their energy where it is consumed. A typical example
is a shopping mall with energy needs, benefiting from customers
coming and going to alleviate its grid-based consumption, while
EV owners make profits by reselling energy bought at off-peak
periods.

Based on a simple model for EV mobility, energy storage, and
electricity pricing, we quantify the reduction in energy costs for
the EV-supported system, and investigate the conditions for this
scenario to be viable.

I. INTRODUCTION

One of the main challenges of the Smart Grid is to manage
the enormous increase in electricity needs brought by the
arrival and rapid adoption of EVs. But EVs also create oppor-
tunities for the grid, as they create a network of mobile energy
containers; hence several propositions to use this energy during
peak periods–the so-called Vehicle-to-Grid (V2G)–have been
issued and studied [1], [2].

V2G can be implemented in residential areas to reduce the
load of transformers [3], [4], to provide ancillary services for
the grid [5] or to enhance its capability to face the penetration
of renewable energy [6]. Research is quite abundant concern-
ing these possibilities whereas their implementation requires
broader cooperation between the grid operator and EV owners.
Here, we consider an energy consumer who cannot avoid usage
during the peak hours, but fortunately situated in a transit area
where EVs stop by frequently.

The literature about managing aggregated EVs is quite
abundant, but most works [7]–[10] emphasize on charging
EVs only, rather than discharging as we suggest here. In [7],
the charging power of the EVs parked is locally optimized,
considering their sojourn time. This requires EV owners to
inform the controller of their predicted departure time, an
assumption also made in [9]. Here we do not rely on such
knowledge, since the departure time may be hard to predict
by EV owners, who may also be reluctant to disclose it and/or
willing to strategically declare it to maximize their benefit.
We therefore stick to the simplest case where the facility

does not know when EVs will be leaving; that knowledge
could nevertheless yield further improvements, which can be
studied in future work. Among the approaches that do not
require users reporting their departure time, queuing theory
can be used to model the dynamics of clients [10], whereas
the goal is to serve the most EVs with limited energy for
a network of fast charging stations. [8] also applies queuing
theory to estimate the waiting time of EVs in a parking lot,
and highlight the importance of the number of chargers in the
parking lot. Interestingly, measurements shown in that paper
illustrate a very good match between the power needs of the
facility (a shopping center in the paper) and the arrivals of
EVs, motivating further our approach of using EVs–some of
which would be willing to sell energy–to reduce the grid-based
consumption of the facility.

In this paper, we consider that EV owners sell part of their
stored energy directly to an entity with power needs. This has
the advantage of avoiding benefit losses due to intermediaries,
but also of avoiding energy losses due to transportation.
Finally, this comes at no cost in terms of grid management.
An illustrative use case is that of a shopping center with
energy needs during the day, a time when electricity prices
peak but also customers come and go, and we intend to
benefit from EVs in the parking lot by installing dischargers
for those willing to sell their energy to the shopping center,
as illustrated in Figure 1, where the first and second EV are
discharging while the third one is not, due to the exhaustion
of its surplus energy. When the power discharged from those
EVs does not cover its needs, the facility can buy the rest
from the power grid. Although our proposition seems opposite
to the current practice of putting charging (not discharging)
stations in parking lots: we rather think that our approach is
complementary; the EV charging stations can either be seen
as part of the consumption of the center, or as a separate
(since managed from the grid) system. In this paper we
consider constant power needs of the center, fitting more with
the latter interpretation, but future work can also consider
demand variations due to EV charging. More generally, we
are interested in a facility where EVs come and go during the
day, and with some electricity needs during that period (e.g.,
a shopping center, a bank, an administrative center... but also
a factory that would be located near a shopping center). The
facility can buy energy from the grid, at the (relatively high)
on-peak price, or from the EVs that are present.
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Fig. 1. System implementation: EVs can sell their surplus energy (bought
off-peak) to make profit and reduce the facility grid dependency during peaks.

In this paper, we take into account the costs involved with
setting such a system, and perform a quantitative analysis of
its economic interest. The main exogenous variables are the
on-peak and off-peak electricity prices, the mobility of EV
owners (arrival rate and sojourn time), the facility needs, and
the energy EVs can sell; the decision variables include the
number of discharging slots to install and the management
of slots occupied by an EV with no more energy to sell. We
propose two management schemes to discharge available EVs.
For both we carry out an analytical study and show numerical
results. Both schemes reduce energy costs for the facility (from
5% to 15%); the difference lying in the tradeoff between less
management required (scheme 1) and less discharging stations
needed (scheme 2).

The paper is organized as follows. Section II describes our
model and the general objectives, while Section III details two
management schemes and is emphasized on optimizing the
decision variables. Section IV shows the performance of our
approaches and the impact of certain parameters. Section V
concludes the paper and suggests directions for future work.

II. MODEL DESCRIPTION

This section describes the assumptions we make regarding
grid electricity prices, electricity needs for the consuming
facility (hereafter simply called the facility), and EVs mobility
and supply, in order to compute the overall electricity cost for
the facility.

Table I summarizes the notations of the model, and specifies
the values we consider for the numerical analysis of Sec-
tion IV.

A. Time-of-use electricity pricing

We assume in this paper that the grid charges for electricity
usage depending on the time of consumption. More specifi-
cally, our model considers only two electricity prices: a low
price during off-peak periods (typically, at night) and a high
price during on-peak periods (during the day). There may
be several other prices (e.g., during the day), in which case
our model also applies, by just ignoring the other day-time

1We define “small” in Section III-C

TABLE I
MODEL VARIABLES

Var. Value Meaning and unit
Pf 200 Facility power needs (kW)
λ 10 to 30 EV arrival rate (hour−1)

1/µ 1 Average parking duration (hour)
η 88% Battery recharging efficiency

1/θ 4 to 20 Average surplus energy per EV (kWh)
ε 0.01 Discharging inefficiency (kW−1)
β 1.1 EV owners resell relative benefit
g 0.25 On-peak grid electricity price (e/kWh)
v 0.1 Off-peak grid electricity price (e/kWh)
Ad 0.2 Cost per discharger (e/hour)
U 0.1 EV unplugging cost in Scheme 2 (e)
v0 vβ/η EV reselling price (e/kWh)
k Number of dischargers in Scheme 1
k′ Number of dischargers in Scheme 2
P0 To optimize Discharging power per EV (kW)
P ∗0 Optimal value of P0 for small1 k
P ∗ P ∗0 (1−εP ∗0 ) Obtained power from a discharging EV (kW)
pEV v0/(1−εP0) EV electricity price seen by facility (e/kWh)
mt Current number of parked EVs
nt Current number of discharging EVs
C1 Total cost bore by facility, Scheme 1 (e/kWh)
C2 Total cost bore by facility, Scheme 2 (e/kWh)
ρ EV traffic intensity λ/µ (Erlang)

B(.) Loss probability of Scheme 1
B′(.) Loss probability of Scheme 2

prices: what matters is just the current electricity price, and the
price paid by EV owners to recharge. However, to optimally
decide the number of discharging slots and the management,
we would need a specific model of price variations over time,
hence the simple choice here of a single day-time price.

Let us denote by g (in monetary units per kWh) the on-peak
and by v < g the off-peak price. Note that the latter is the
price at which EVs can charge their batteries.

B. Electricity demand of the facility

We consider a simple model where the facility needs a
constant power, denoted by Pf (in kW), during its activity
periods. Without loss of generality we assume that those
periods are included within peak-price periods, since during
off-peak periods the facility can simply buy energy from the
grid.

C. Potential supply from EVs

It is unrealistic to assume that EV owners perfectly predict
the energy needs of their EVs for the next day, and charge
their batteries accordingly. Instead, we think it is reasonable
to consider that most EVs carry some surplus energy; when
the owners realize during the day that they will not use all of
the stored energy, they may choose to sell it to the facility.
Because of the variety of battery models and of users distance
left to cover within the day, the amount of energy that EVs
can provide should be modeled as a random variable. To keep
the analysis tractable we consider an exponential distribution,
and denote its parameter by θ, so the average surplus energy
per EV is 1

θ kWh.



D. EV mobility

We assume that EVs arrive to the parking lot according to a
Poisson process with parameter λ. This process assumption is
reasonable, as the result of the uncoordinated behavior of many
potential users. We also model the parking duration of each
EV as independent random variables, exponentially distributed
with mean 1/µ.

E. Costs faced by the facility

The facility undergoes several different costs related to its
energy consumption, we list them below.
• Grid electricity price. As evoked previously, the facility

can buy energy from the grid at a (high) on-peak price g
(per kWh)

• EV electricity price. The price paid to EVs should at least
compensate the owners’ expenses to charge (at the night
price v). Moreover, we assume that the facility provides
10% of the that expense as an incentive to attract EV
owners to joint the discharging program, i.e. they are
payed 110% of the recharging cost, thus a relative benefit
β = 110%. According to [11] the battery recharging
efficiency is over 88%, so conservatively we set η = 88%.
Discharging efficiency varies between 80% and 95%
according to [12]. We model this loss through a Joule
heating loss proportional to the square of the discharging
power, hence equaling εP 2

0 for some loss factor ε. So only
the power P = P0(1 − εP0) is retrieved by the facility
if the transfer power is P0. In order to fit our setting to
the loss values, we set ε so that at low discharging power
(P0 = 5kW ), 1 − εP0 = 0.95. Thus ε = 0.01 in our
model. We consider that pEV

pEV :=
vβ

η(1− εP0)
=

v0
1− εP0

. (1)

is the actual unit price seen by the facility (the EV
actually sees v0).

• Discharging slots costs. Each discharging slot (dis-
charger) is assumed to cost the facility an amount Ad
per time unit, hence a trade-off with installing slots to
retrieve more energy from EVs.

• Management costs. In addition to those costs, there may
be some extra costs in some management solutions,
namely, a cost for replacing an EV having sold all of its
surplus energy with another one as described thereafter.

F. Management options

The main idea of our proposition is to reduce the electricity
costs by discharging EVs through k dischargers. We will
distinguish two possibilities:
• in the “no unplugging” one, no action is carried out when

an EV has sold all its energy surplus–that EV occupies
the discharger until its departure from the parking lot–;

• the “unplugging” option allows to free a discharger when
needed, at a fixed cost U , when a new EV enters the
system while all dischargers are occupied and at least
one by an EV with no more energy to sell.

In the following section, for both management options
we calculate the optimal number of dischargers to install to
minimize the facility costs, and we compare those costs to the
case without the EV discharging option.

III. ANALYSIS AND COST MINIMIZATION

In this section, we consider the decision variables of the
facility with regard to the discharging system–namely, the
discharging power to use and the number of dischargers
to install–and analyze their optimal (i.e., cost-minimizing)
values for both management schemes. We start with a detailed
reasoning under the no-unplugging scheme, followed by a
brief discussion of the unplugging scheme.

A. Stochastic analysis

From the EV mobility model of Section II, the number of
EVs parked and plugged to a discharger (which we denote by
mt) is a continuous-time Markov chain, whose evolution is
that of an M/M/k/k queue, with steady-state distribution

Psteady-state(mt = m) =
ρm/m!∑k
i=0 ρ

i/i!
(2)

where ρ := λ/µ. The loss probability B(k) is then given by
the Erlang B formula:

B(k) = Psteady-state(mt = k) =
ρk/k!∑k
i=0 ρ

i/i!
. (3)

Since the sellable surplus energy of each EV is limited, it
may not keep discharging before it departs. Therefore not all
the mt parked EVs are discharging: only nt (nt ≤ mt) of them
are, then the process (nt,mt) is a continuous-time Markov
chain whose transition diagram is depicted in Figure 2, in
which P0 is decided by the facility.

B. Cost function of the facility

We observe n EVs discharging simultaneously with prob-
ability Psteady-state(nt = n) (referring to Section III-A and
Figure 2). In that case, the cost imposed on the facility is

Cost(k, n) = nP0v0 + (Pf − n P︸︷︷︸
=P0(1−εP0)

)g + kAd (4)

In this paper, we assume that the facility is sensitive to its
average total cost, i.e., to the time average of the instantaneous
cost in (4), that we denote by C1 and depends on the number
of discharging slots:

C1(k) =

k∑
n=0

Cost(k, n)Psteady-state(nt = n) (5)

C. Optimal discharging power with small k

To avoid fast degradation of users’ batteries, we try to keep
the discharging power per EV at a constant level P0 regardless
of how many of them are discharging simultaneously. But this
may lead to over-supplying, when the number of discharging
EVs gets large. So we start by assuming k ≤ Pf

P0(1−εP0)
, i.e.,

even when all the k dischargers are withdrawing electricity,
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Fig. 2. Continuous-Time Markov Chains describing the
evolution of the number of plugged EVs mt (top) and of
(nt,mt)=(nb discharging EVs,nb plugged EVs) (bottom).

their output together won’t exceed the facility needs. For
notation simplicity, the number k of charging slots will be
called small if k ≤ Pf

P0(1−εP0)
. For larger values of k, we will

allow P0 to vary with nt.
Since we chose P0 independent of n, the average discharg-

ing duration per EV is 1
µ+θP0

, hence from Little’s law the aver-
age number of discharging EVs N̄(P0, k) is (1−B(k)) λ

µ+θP0
.

Consequently, the average cost then equals

C1(k) = N̄(P0, k)P0v0 + (Pf − N̄(P0, k)P )g + kAd.

Differentiating, we obtain the cost-minimizing discharging
power P ∗0 as

P ∗0 :=
µ

θ

(√
1 +

θ

εµ
(1− v0

g
)− 1

)
, (6)

from which the facility actually extracts

P ∗ := P ∗0 (1− εP ∗0 ) (7)

per discharging EV. Expression (6) indicates that the discharg-
ing power per EV is independent of the power demand of the
facility, which is a desirable property: that optimal discharging
power would not change even if the facility demand varies over
time, as long as n ≤ Pf

P∗ .

D. Setting the discharging power

Recall that the optimal discharging power above is only
valid under the assumption k ≤ Pf

P∗ . For larger values of k (to
let in more EVs, and possibly reduce costs further), we keep
that power when less than Pf

P∗ cars are discharging. When more
than Pf

P∗ discharging cars are discharging, we reduce evenly
the power obtained from each EV to exactly cover the whole
demand Pf . Formally, the discharging power from the EV
point of view when there are n discharging EVs is then

P0(n) =

 P ∗0 = µ
θ (
√

1 + θ
εµ (1− v0

g )− 1) if n ≤ Pf
P∗ .

1−
√

1−4εPf/n
2ε otherwise.

(8)
From the facility point of view, the energy extracted from

each discharging EV depends on the number nt of discharging
EVs, and is summarized as

min

(
P ∗,

Pf
nt

)
,

with P ∗ given in (7).

E. Dimensioning the system in the no-unplugging scheme
(Scheme 1)

Given the decision variables, we can compute the average
cost per hour given in (5). Due to the complexity of the
Markov chain in Figure 2, we do not solve Psteady-state(nt = n)
analytically, but rather perform an exhaustive search on k
to choose the optimal number of discharging slots to install.
Numerical results are shown in the next section.

F. Unplugging depleted vehicles when new ones arrive
(Scheme 2)

In the previous scheme, we do not intervene while EVs
are parked: this requires less management but also lowers
the usage of the dischargers since they can be occupied by
depleted EVs and prevent new EVs from entering the system.
We therefore introduce an unplugging and replacing procedure
in this scheme: when a new EV arrives and all dischargers
are occupied, we remove one of the depleted EVs (if any) to
make room for that new one, whose surplus energy is alway
positive under our assumptions. When compared to the “no
unplugging” scheme, this procedure allows new EVs to enter
the system as soon as not all dischargers are occupied by
discharging EVs (instead of discharging or depleted EVs).
In Figure 2, this corresponds to adding the dashed transitions.
Actually in that case, the number of discharging EVs is simpler
to study, since it is described by a one-dimensional Markov
chain, whose transition diagram is given in Figure 3. When
the number k′ of discharging stations is low (k′ ≤ Pf

P∗ ), this
corresponds to an M/M/k′/k′ queue with stationary distribution

P′steady-state(nt = n) =
ρ′n/n!∑k′

i=0 ρ
′i/i!

with ρ′ := λ/(µ + θP ∗0 ). In particular, the loss probability
(rejection probability for an arriving EV) in that case is
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Fig. 3. Transition diagram for the number of discharging EVs in the unplugging scheme (Scheme 2)

B′(k′) := P′steady-state(nt = k′). For larger values of k′, the
steady-state distribution can easily be computed numerically.

Since removing depleted vehicles puts additional man-
agement cost to the facility, we now quantify this cost to
investigate its impact on the final performance of this scheme.
We assume that this cost is linear of the workload, i.e., of
the average number of EVs to unplug per time unit. When
there are k′ spots, this workload W (k′) equals the throughput
increase from using Scheme 2 instead of Scheme 1, that equals

W (k′) = λ(B(k′)−B′(k′)). (9)

Multiplying this workload by a constant unplugging cost per
EV, denoted by U , gives the additional cost of unplugging
depleted EVs that stand in the way of arriving ones. Adding
up all costs, the instantaneous cost of Scheme 2 is

Cost′(k′, n) = nP0v0 + (Pf − n P︸︷︷︸
=P0(1−εP0)

)g + k′Ad +W (k′)U,

(10)
and the average cost is then

C2(k′) =

k′∑
n=0

Cost′(k′, n)P′steady-state(nt = n). (11)

Since the partial derivatives of C2 on P0 have the same form
as that of C1, we keep using the discharging power P0 given
in (8). As for Scheme 1, the number k′ of discharging slots
(dischargers) will be computed numerically so as to minimize
the average cost C2(k′).

IV. NUMERICAL RESULTS

This section shows the performance of our proposed
schemes in terms of the energy cost they save for the facility,
namely gPf−C1(P0,k)

gPf
for the no-unplugging scheme (Scheme

1) and gPf−C2(P0,k
′)

gPf
for the scheme with unplugging (Scheme

2). Note that this relative saving is always nonnegative, since
the number of dischargers is optimized to minimize cost; hence
in the worst case no dischargers are installer and savings are
null.

Free unplugging, as a special case of Scheme 2, is also
plotted, to give an idea of the impact of the unplugging cost.
The parameter values used for this numerical analysis are
shown in Table I. For the value of the off-peak price we use
the night price, and for that of the on-peak price we take the
peak price for enterprise users, both offered by the French
utility company EDF2. .

2http://entreprises.edf.com/fichiers/fckeditor/Commun/Entreprises/pdf/
2014/BAREME TARIF VERT 01 11 2014.pdf

A. How many dischargers to install?
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Fig. 5. Optimal number of dischargers versus average surplus energy 1/θ

Figures 4 and 5 show the optimal number of discharging
stations to install for each scheme: interestingly, Scheme 2
needs much fewer dischargers than Scheme 1. And as the
“free unplugging” benchmark shows, the unplugging cost has
a direct effect on the optimal number of dischargers, conform
to intuition (the higher the cost, the more dischargers to avoid
unplugging situations). These optimal numbers of dischargers
are applied in the following two subsections, which compare
the performance of the two schemes.

B. The difference between rush hour and vacant hour

It is not surprising to find that the more EVs come in a unit
time (i.e., the larger λ is), the more saving they bring to the
facility, as illustrated in Figure 6. The average surplus on-board
energy 1/θ is fixed at 10kWh, and the average time interval
between two EVs’ coming decreases from 6min to 1.5min.
The gap between “Scheme 1” and “Scheme 2” increases since
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higher coming rate results in more dischargers occupied by
depleted EVs upon new arrivals, which is also causing the
increase of the gap between curve “Scheme 2” and that of
“Free unplugging”.

C. Effect of the surplus energy in EVs
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Another key parameter is the available energy onboard
parked EVs, whose average is denoted by 1/θ in our model.
According to a survey [13], more than 90% of daily travel
is less than 100 miles, which consumes 34kWh of energy
for a Tesla Model S whose battery capacity is 85 kWh, or
15kWh for a compact car whose battery capacity is typically
21kWh [14]. So we range the average surplus energy from
4kWh to 20kWh, hence the probability of having an EV with
more than 50kWh of sellable energy is between 0.0018% and
0.13%, which is very rare. So our system doesn’t require
unrealistically large battery size, even less than 10kWh of
average surplus energy per EV can significantly reduce the
facility electricity bill for the parameters we consider.

V. CONCLUSION

In this paper we propose to use the surplus energy in EVs
gathered in a parking lot to support the energy needs of a
facility: the mobility of EVs during the day brings energy
on a quite regular basis, to an extend that possibly largely
exceeds what could be stored in a unique (even large) battery

that would be controlled by the facility. Leveraging the storage
capabilities of EV batteries, our scheme benefits both
• EV owners, who can sell during peak times some energy

bought during off-peak period and make some profit;
• and the facility, which can benefit from energy at lower-

than-peak price, without installing large storage solutions.
We propose and evaluate two management schemes to dis-
charge those EVs, namely without and with the possibility of
removing depleted ones. Our numerical results suggest that we
can save around 10% on the energy bill, and we don’t need
large amounts of surplus energy in each EV to realize that.
Hence this approach is viable in our opinion, and could help
reduce demand peaks that are observed in nowadays grids.

Possible extensions of our work include considering an
elastic EV supply, by relating the proportion of users who
agree to discharge their batteries to the incentive β provided by
the facility, and then searching for the optimal incentives. Also,
selecting upon arrivals EVs with sufficient sellable energy
could significantly reduce the unplugging workload.
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