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Mapping reads against a genome sequence is an interesting and useful problem in Computational Molecular

Biology and Bioinformatics. In this paper, we focus on the problem of indexing a sequence for mapping

reads with a single mismatch. We first focus on a simpler problem where the length of the pattern is given

beforehand during the data structure construction. This version of the problem is interesting in its own right

in the context of the Next Generation Sequencing (NGS). In the sequel we show how to solve the more general

problem. In both cases, our algorithm can construct an efficient data structure in O(n log1+ε n) time and

space and can answer subsequent queries in O(m log log n+K) time. Here, n is the length of the sequence,

m is the length of the read, 0< ε< 1 and K is the optimal output size.

Key words: algorithms, genome sequence, indexing, mapping reads, mismatch, pattern matching.

1. Introduction

In the classical string matching problem we are given a text of length n and a pattern of length

m and we need to answer the query whether the pattern exists in the text (existence query)

as a factor or substring and further to provide the start (or equivalently end) positions of the

corresponding occurrences (occurrence query). Using the famous KMP algorithm, due to Knuth,

Morris and Pratt [36], the classical string matching problem can be solved in optimal O(n+m)
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time. For a review on KMP algorithm as well as various other (exact) string matching algorithms

the readers are referred to [11].

In many application settings, a number of patterns are searched in a particular text which

gives rise to the indexing version of the problem. In this version, the text is given beforehand

for preprocessing with a goal to construct an index data structure. Subsequently, a number of

patterns are queried against the text. Clearly, this indexing variant can also be solved using

KMP algorithm; however, if we have k patterns (each of length m), the running time will be

O(k(n+m)). Since all the queries are done against a single text, it is only natural to construct

an index data structure for it once, preferably in O(n) time and then answer the subsequent

queries in O(m) time each, which gives a total of O(km+ n) running time. And, indeed there

exist efficient data structures (e.g., suffix trees [19, 43, 54, 55] and suffix arrays [2, 34, 37]) that

can be constructed in O(n) time and are capable of answering an existence query in O(m) time

and an occurrence query in O(m+ |Occ|) time, where Occ is the set of output.

The string matching problem has tremendous applications in different branches of science

including, but not limited to, Computational Molecular Biology, Bioinformatics, Computer

Vision, Information retrieval, Computational Musicology, Data Mining, Network Security etc.

However, in many, if not most, practical settings, instead of the exact matching some approximate

matching schemes become more relevant and useful. The requirement of such approximate

matching schemes is more prominent in Computational Molecular Biology and Bioinformatics as

discussed below. Notably, in the context of Computational Biology, the string matching problem

is essential for mapping reads (i.e., patterns) to a reference biological sequence (i.e., a text).

While an increasing number of the biology labs are using dedicated high-throughput

equipments to produce many DNA sequences on a daily basis, the need for automatic annotation

and content analysis is greater everyday. Unfortunately, even with the tremendous advancements

of the current state of the art technology, the quality of the automatically obtained sequences

is sometimes questionable due to the intrinsic limitations of the equipments (for instance, [44]

evaluated the substitution error rate of the control genome PhiX174 to be in the range 0.11% -

0.28% excluding uncalled bases: all positions were affected by substitution errors). Moreover, the

re-sequencing methods are affected by the natural polymorphism that can be observed between

individual samples (e.g., a Single Nucleotide Polymorphism, that is an isolated mutation, can

either stop the translation of a mRNA into a protein sequence, or create a binding site for a

protein complex that will prevent the complete formation of the functional protein [10, 38]).

Analysing such uncertain sequences is therefore much more complicated than the traditional

pattern matching problem. This gives the computer scientists, in particular the stringology

researchers, the challenge to solve the string matching problem where in the given text or pattern

some positions may be uncertain in some sense. To capture this phenomenon of uncertainty, the

idea of mismatches and of gaps was introduced. Additionally, a popular and useful framework

of don’t care pattern matching was introduced under this approximate matching scheme, where
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a pattern and/or text may contain don’t care characters that match with any character in the

underlying alphabet.

The use of don’t care paradigm to capture the approximate pattern matching scenario

mentioned above is not new. It was introduced and solved efficiently using convolutional methods

in [23]. Slightly tighter solutions have been presented in [12, 14, 32, 33]. There exist some solutions

avoiding the convolution method as well [8, 47, 49]. A number of solutions exists in the literature

that consider the problem of text indexing with don’t cares [13, 39, 52, 53]. Notably, in the

literature, the don’t cares are also referred to as wildcards. Some work has also been done on a

generalised model of the don’t care paradigm known as the degenerate or indeterminate string

model in the literature [28, 29, 50, 51]; in this model, some positions of a string may contain

more than one letters and don’t care is essentially modelled as a position that contains all the

letters of the alphabet.

Another popular approximate model in the literature is where some k≥ 0 mismatches are

allowed while doing the pattern matching. There exists a number of results on this problem [3,

6, 7, 18, 25, 26, 40]. However, from indexing point of view the results are only few (see for instance

[5, 13, 15]. Notably, the k mismatch model can be represented/captured in the don’t care model

by assuming k don’t care characters at all possible permutations of the positions in the pattern

(and/or the text).

In this paper, we focus on the indexed version of the pattern matching problem with restricted

number of mismatches and/or gaps. In particular, we are interested in the pattern matching

problem when at most one mismatch or gap is allowed. Here gap refers to consecutive mismatches.

To the best of our knowledge the only work that deals with this problem directly is the work of

Amir et al. [5]. We will give a brief review of the work of [5] and compare their results with ours

in a subsequent section.

The contribution of this current paper is twofold. First we attack a restricted version of the

problem in hand where we assume that the size of the pattern is fixed, i.e., we are given the

size of the pattern to be queried against our data structure beforehand. As discussed below,

this particular version of the problem has strong motivation from Computational Biology and

Bioinformatics, especially in the context of the Next Generation Sequencing. In the sequel we

consider the general version of the problem where this restriction is lifted. The solution we

propose makes use of suffix arrays and range search data structures borrowed from Computational

Geometry literature. In particular, in order to present an efficient data structure for our problem,

we utilise a reduction from our problem at hand to the range search problem in geometry. As

will be further discussed in later sections, similar reduction has also been employed in [5] to solve

this particular problem and in different other papers (e.g., [17, 30, 31, 41]) to solve some other

interesting problems. Note however that the reduction itself is not enough to get a good solution.

As will be clear later, we need to do some non-trivial work based on some useful observations

and lemmas to achieve an efficient running time for the queries.

Page 4 of 25

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

4

The motivation of our work comes both from the field of Stringology as well as from that

of Computational Biology and Bioinformatics. Firstly, a solution to the approximate pattern

matching with a single mismatch would be useful as a theoretical advancement in the context of

the general variant where k mismatches are considered. Secondly, approximate pattern matching

problem with at most a single mismatch is a useful problem on its own right. This is specially true

in Computational Molecular Biology, where with the advent of new state of the art technologies,

the chance of experimental mistakes has become much lower than it was before. Also, the

existence of single mismatches, called SNPs, occurring at consecutive positions is rare (see [45,

Table 1] for experimental results carried out on 10 individual human genomes from the 1000

Genome Project). Thirdly, because of the recent high throughput sequencing technologies we are

particularly interested to provide a fast solution to the restricted version of the problem where the

pattern size is fixed. In the so-called Next Generation Sequencing (NGS) technologies, millions

of short reads are generated. Usually, the first region of these reads, called the seeds, contains

almost no sequencing error. The seed region is followed by a region having very small possibilities

of error and hence from mapping point of view, only a single mismatch or a gap (i.e., consecutive

mismatches) are expected. Now, in some NGS platforms, the generated sequences, which are

usually several millions in number, are of the same size; this size depends on the technologies

used (e.g., Illumina etc.). When sequencing platforms generate variable-length reads, they can

be reduced to prefix seeds of fixed length. As a result, the fixed pattern length version of the

problem is of particular interest in this specific scenario.

The rest of the paper is organised as follows. After the definitions and problem setting in

Section 2, we give in Section 3 the general idea of the solution. It serves as a guideline for

the development of algorithms. Section 4 solves a simpler problem, while Section 5 describes a

solution for the complete problem. We put some relevant discussion and conclusion in Sections 6

and 7.

2. Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. A string T of length n

is denoted by T [1 . . n] = T1T2 . . . Tn, where Ti ∈Σ for 1≤ i≤ n. The length of T is denoted by

|T |= n. The string
←−
T denotes the reverse of the string T , i.e.,

←−
T = TnTn−1 . . . T1.

A string w is a factor of T if T = uwv for u, v ∈Σ∗; in this case, the string w occurs at position

|u|+ 1 in T . The factor w is denoted by T [|u|+ 1 . . |u|+ |w|]. A k-factor is a factor of length k.

A prefix (or suffix) of T is a factor T [x . . y] such that x= 1 (y= n), 1≤ y≤ n (1≤ x≤ n). We

define the ith prefix to be the prefix ending at position i, i.e. T [1 . . i], 1≤ i≤ n. Dually, the ith

suffix is the suffix starting at position i, i.e. T [i . . n], 1≤ i≤ n.

The Hamming distance between two strings of equal length is the number of positions at

which the corresponding letters are different. More formally, the Hamming distance between u

and v is δ(u, v) = |{i | ui 6= vi, 1≤ i≤ |u|= |v|}|. Given two equal length strings u, v ∈Σ∗, u is
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said to match v (or equivalently v is said to match u) with at most k mismatches if δ(u, v)≤ k.

Essentially, the exact match is characterised by a zero Hamming distance.

Given a text T of length n and a pattern P of length m such that m≤ n, P is said to

occur in T at position i (i.e., exact match) if and only if P = T [i . . i+m− 1]). The position i

is said to be an occurrence of P in T . We denote by OccTP the set of occurrences of P in T .

As an extension, P is said to occur in T at position i with at most k mismatches if and only

if δ(P, T [i . . i+m− 1])≤ k. We use OccTP |≤k to denote the set of positions where P matches T

with at most k mismatches. Similarly, we use OccTP |=k to denote the set of positions where P

matches T with exactly k mismatches. Clearly, our interest is in calculating OccTP |≤1.

In traditional full-text indexing problems one of the basic data structures used is the suffix

array data structure. Others are suffix trees and suffix automata. In our indexing problem we

make use of the suffix array data structure. A complete description of a suffix array is beyond

the scope of this paper, and can be found in any textbook on stringology (e.g., [16, 27, 46]). Here

we give a very concise definition of a suffix array. The suffix array SAT [1 . . n] of a text T is an

array of integers j ∈ [1 . . n] such that SAT [i] = j if, and only if, T [j . . n] is the i-th suffix of T in

(ascending) lexicographic order. Suffix arrays were first introduced in [42], where an O(n log n)

construction algorithm and O(m+ log n+ |OccTP |) query time were presented. Later, linear time

construction algorithms for space efficient suffix arrays were presented [34, 35, 37, 48]. The query

time is also improved to optimal O(m+ |OccTP |) in [1] with the help of another array essentially

storing the lengths of longest common prefixes between lexicographically consecutive suffixes.

We recall that, the result of a query for a pattern P on a suffix array SAT of T , is given in the

form of an interval [s . . e] such that OccTP = {SAT [s],SAT [s+ 1], . . . ,SAT [e]}. In this case, the

interval [s . . e] is denoted by Int
T
P .

We remark that the query time of suffix array (and similar other data structures) always

contains a hidden O(log Σ) factor. However, since in most of the cases the size of the underlying

alphabet Σ is a constant, the trend in the literature is to omit the O(log Σ) factor from the

running times. Indeed, this is all the more applicable in our case because we are focused on

biological sequences where usually the underlying alphabet size is a small constant (e.g., 4 for

DNA/RNA sequences and 20 for protein/amino acid sequences). Finally, we note that there are

several linear time suffix array construction methods that works with integer alphabet as well

(e.g., [35, 37]).

3. The Underlying Idea for a Solution

In this section, we discuss how we can efficiently compute OccTP |≤1, given T and P . In other

words, we will in fact discuss a solution of our problem albeit not from the indexing point of

view. In the sequel we will be using the underlying idea to construct the index data structures

of our interest. Notably, the same idea was employed by Amir et al. in [5] to provide an indexing
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Algorithm 1 Computing OccTP |≤1

1: Set OccTP |≤1 = ∅
2: for j ∈ [1 . .m] do
3: Compute OccTP[1..j−1]
4: Compute OccTP[j+1..m]

5: for i∈OccTP[j+1..m] do
6: i= i− j
7: end for
8: Set OccTP |

j
≤1 =OccTP[1..j−1]

⋂
OccTP[j+1..m]

9: Set OccTP |≤1 =OccTP |≤1
⋃
OccTP |

j
≤1

10: end for
11: return OccTP |≤1

solution for the problem. We will discuss the problems of the solution in [5] and highlight the

differences between their solution and the solution presented in this paper in a later section.

Suppose we know the position of the mismatch and assume that the position is j. In other

words, we suppose that the mismatch is only allowed with Pj . Let us call P|j =P[1 . . j − 1] ∗

P[j + 1 . .m] the pattern with a ∗ in position j, and let us use OccTP |
j
≤1 to denote the corresponding

set of occurrences over T . Then, we may proceed as follows. We compute OccTP[1..j−1] and

OccTP[j+1..m]. Then, clearly, our desired set of occurrences OccTP |
j
≤1 can be computed as follows:

OccTP |
j
≤1 = {i | i∈OccTP[1..j−1] and (i+ j)∈OccTP[j+1..m]}.

Now to lift the restriction we can simply run a loop on all possible values of j. This simple

idea works perfectly and the steps are formally presented in Algorithm 1. An example of such

algorithm is reported in Table 1 and Table 2. However, transforming this idea to handle the

indexing version is a non-trivial task.

4. The Index Data Structure

In this section, we focus on constructing an index data structure for our problem. We however

first consider a restricted variant of the original problem. In particular, for the time being, we

assume that we are given the pattern-length m which we use during the index data structure

construction. In other words, the index constructed will be m-specific, i.e., it will be able to handle

patterns of length m only. Recall from Section 1 that this particular variant of the problem is of

particular interest especially in the context of Next Generation Sequencing. The general version

of the problem will be handled in a later section.

We basically extend the idea of Algorithm 1. We maintain two suffix array data structures

SAT and SA←−
T

. We use SAT to find the occurrences of P[1 . . j − 1]. We can find the occurrences
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of P[j + 1 . .m] using SAT as well. But we need to take a different approach because we have to

“align” the occurrences of P[1 . . j − 1] (line 5) with the occurrences of P[j + 1 . .m] so that we

can compute OccTP |
j
≤1 by intersecting (line 8) them just as is done in Algorithm 1. However it

is not as straightforward as Algorithm 1 because our aim is to maintain an index rather than

finding a match for a particular pattern. We use the following trick, which has been applied to

solve this and different other problems in the literature before (see for example [5, 17, 31]).

Our approach is as follows. We use the suffix array of the reverse string of T , i.e. SA←−
T

, to find

the occurrences of
←−−−−−−−−−
P[j + 1 . .m]. By doing so, in fact, we get the end positions of the occurrences

of
←−−−−−−−−−
P[j + 1 . .m] in T . However we still have to do a bit more “shifting” for the intersection to

work because from SAT , we get the start positions of the occurrences of P[1 . . j − 1]. This is

where the information of a fixed pattern-length, i.e. m, comes handy. To achieve the “shifting”

effect automatically, we appropriately arrange the entries of SA←−
T

as follows. For all 1≤ i≤ n,

j 1 2 3 4

P|j *gat c*at cg*t cga*

P[1 . . j − 1] − c cg cga

OccTP[1..j−1] {1 . . 19} {1, 3, 8, 12, 16} {1, 12, 16} {12, 16} line 3

P[j + 1 . .m] gat at t −

OccTP[j+1..m] {5, 13} {6, 10, 14} {4, 7, 11, 15} {1 . . 19} line 4

OccTP[j+1..m] {4, 12} {4, 8, 12} {1, 4, 8, 12} {−3 . . 17} line 5

OccTP |
j
≤1 {4, 12} {8, 12} {1, 12} {12, 16} line 8

OccTP |≤1 {4, 12} {4, 8, 12} {1, 4, 8, 12} {1,4,8,12,16} line 9

Table 1. An example of the steps of Algorithm 1 for the text T [1 . . 19] = cgctgatcaatcgatcgag and the pattern
P[1 . . 4] = cgat. The output set OccTP |≤1 is reported in bold font and a dash is used in place of the empty word.

i 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Ti c g c t g a t c a a t c g a t c g a g

P = cgat − − − −

P|1 = *gat ∗ − − −

P|2 = c*at − ∗ − −

P|3 = cg*t − − ∗ −

P|4 = cga* − − − ∗

Table 2. A graphical representation of matching of the pattern P[1 . . 4] = cgat and its one error variants P|j ,
1≤ j ≤ |P|, over the text T [1 . . 19] = cgctgatcaatcgatcgag. A dash stands for a match and a star stands for a
mismatching letter. P|j matches in position 12 are not reported.
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if originally SA←−
T
[i] = j, we assign SA

′
←−
T
[i] = n− (j − 1)− (m− 1) = n− j −m+ 2. It is easy to

see that this will effectively transform the position of each of the occurrences of P[j + 1 . .m]

to the appropriate position that will facilitate the intersection. How will be clarified later, the

candidate starting positions of an occurrence of a pattern of length m over a text of length n are

those in the range [1 . . n−m+ 1]. Obviously, any solution working for a generic range [1 . . n] is

applicable as well to a subrange [1 . . n−m+ 1].

Now, it remains to show how we can perform the intersection (line 8) efficiently in the context

of indexing. Clearly we now have two arrays, namely, SAT [1 . . n] and SA←−
T
[1 . . n]. And we also

have two intervals, namely, Int
T
P[1..j−1] and Int

←−
T
←−−−−−−−
P[j+1..m]

. And, now our problem is to find the

intersection of the positions within these two intervals. This problem is a known problem in

geometry and is called the Range Set Intersection Problem.

PROBLEM 1. [Problem RSI] Let V [1 . . n] and W [1 . . n] be two permutations of [1 . . n].

Preprocess V and W to answer the following form of queries.

Query: Find the intersection of the elements of V [i . . j] and W [k . . ℓ], 1≤ i≤ j ≤ n, 1≤ k≤ ℓ≤ n.

In order to solve the above problem we reduce it to the well-studied Range Search Problem

on a Grid.

PROBLEM 2. [Problem RSG] Let A be a set of n points on the grid [0 . . U ]× [0 . . U ].

Preprocess A to answer the following form of queries.

Query: Given a query rectangle q≡ (a, b)× (c, d) find the set of points of A contained in q.

We can see that Problem RSI is just a different formulation of the Problem RSG. This can

be realised as follows. We set U = n. Since V and W in Problem RSI are permutations of [1 . . n],

every number in [1 . . n] appears precisely once in each of them. We define the coordinates of

every number i∈ [1 . . n] to be (x, y), where V [x] =W [y] = i. Thus we get at most n points on the

grid [1 . . n]× [1 . . n], i.e., the array A of Problem RSG. The query rectangle q is deduced from

the two intervals [i . . j] and [k . . ℓ] as follows: q≡ (i, k)× (j, ℓ). It is easy to verify that the above

reduction is correct and hence we can solve Problem RSI using the solution of Problem RSG.

So, this completes our description for constructing the index data structure for our problem.

Algorithm 2 formally states the steps to build our data structure while Table 3 and Table 4 show

an example.

4.1. Analysis

Let us analyse the running time of Algorithm 2, i.e., the data structure construction. The

computational effort spent for lines 1, 2 and the for loop at line 3 is O(n). In line 7, we construct

the set A of points in the grid [1 . . n]× [1 . . n] on which we will apply the range search. This step

can also be done in O(n) as follows. We construct SA
−1
T such that SA

−1
T [SAT [i]] = i. Similarly,

we can construct SA
′−1
←−
T

. Then, it is easy to construct A in O(n). A detail is that in our case
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Algorithm 2 Building the index data structure for the fixed-length pattern case

1: Build a suffix array SAT of T .

2: Build a suffix array SA←−
T

of
←−
T .

3: for i= 1 to n do
4: Set j = SA←−

T
[i]

5: Set SA
′
←−
T
[i] = n− j −m+ 2

6: end for
7: for i= 1 to n do
8: if there exists (x, y) such that SAT [x] = SA

′
←−
T
[y] = i then

9: A[i] = (x, y)
10: end if
11: end for
12: Preprocess A for Range Search on the grid [1 . . n]× [1 . . n].

there may exist i, 1≤ i≤ n, such that SA
′−1
←−
T

[j] 6= i for all 1≤ j ≤ n. This is because SA
′−1
←−
T

is

a permutation of [−m+ 2 . . n−m+ 1] instead of [1 . . n]. Now, it is easy to observe that any

i∈ SA′−1←−
T

such that i > n or i < 1 is irrelevant in the context of our search. So we ignore any such

i∈ SA′−1←−
T

while creating the set A. After A is constructed we perform line 12. Notice that from

now on the shifted array SA
′
←−
T

as well as the inverted arrays SA−1 and SA′−1 are to be dismissed

since they are not involved in the query process.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ti c g c t g a t c a a t c g a t c g a g

SAT 9 18 6 14 10 8 16 12 1 3 19 17 5 13 2 7 15 11 4 line 1
←−
T i g a g c t a g c t a a c t a g t c g c

SA←−
T

10 11 6 2 14 19 17 8 4 12 1 18 7 3 15 9 5 13 16 line 2

SA
′
←−
T

7 6 11 15 3 -2 0 9 13 5 16 -1 10 14 2 8 12 4 1 line 3

i 1 2 3 4 5 6 7 8

A[i] (9, 19) (15, 15) (10, 5) (19, 18) (13, 10) (3, 2) (16, 1) (6, 16) line 7

i 9 10 11 12 13 14 15 16

A[i] (1, 8) (5, 13) (18, 3) (8, 17) (14, 9) (4, 14) (17, 4) (7, 11) line 7

Table 3. An example of the values computed by Algorithm 2 for the text T [1 . . 19] = cgctgatcaatcgatcgag.
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19 1

18 4

17 12

16 8

15 2

14 14

13 10

12

11 16

10 5

9 13

8 9

7

6

5 3

4 15

3 11

2 6

1 7

A[i] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 4. A graphical representation of the index for Range Search Query built by Agorithm 2 in line 12 for the
array A[i] = (x, y), 1≤ i≤ 16, of Table 3.

There has been significant research work on Problem RSG. For example, we can use the data

structure of Alstrup et al. [4]. This data structure can answer the query of Problem RSG in

O(log log n+ k) time where k is the number of points contained in the query rectangle q. The

data structure can be constructed in O(n log1+ε n) time and space, for any constant 0< ε< 1.

So, line 12 runs in O(n log1+ε n) time and space, for any constant 0< ε< 1. Therefore, the overall

time and space complexity of the index remains O(n log1+ε n).

4.2.Query processing

Now, let us focus on the query processing. Again, for the sake of ease, let us suppose that

we know the position of the mismatch and assume that the position is j. Then the query can

be answered as follows. We first compute Int
T
P[1..j−1] ≡ [sℓ|

j . . eℓ|
j ] using SAT . Then we compute

Int
←−
T
←−−−−−−−
P[j+1..m]

≡ [sr|
j . . er|

j ] using the original (i.e., the unshifted) SA←−
T

. Now, we find all the points

in A that are inside the rectangle qj ≡ (sℓ|
j , sr|

j)× (eℓ|
j , er|

j). Let B|j is the set of those points.

Then it is easy to verify that OccTP |
j
≤1 =B|j .
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Algorithm 3 Processing occurrence query with a single mismatch

1: B = ∅
2: for j = 1 to m do
3: Compute Int

T
P[1..j−1] ≡ [sℓ|

j . . eℓ|
j ] using SAT .

4: Compute Int
←−
T
←−−−−−−−
P[j+1..m]

≡ [sr|
j . . er|

j ] using SA←−
T

.

5: Set B|j = {(x, y) | (x, y)∈A and (x, y) is contained in q≡ (sℓ|
j , sr|

j)× (eℓ|
j , er|

j)}
6: B =B

⋃
B|j

7: end for
8: return OccTP |≤1 =B

Now, we can easily lift the restriction that j is the position of the mismatch. We simply,

compute OccTP |
j
≤1, i.e., B|j for all values of j and compute OccTP |≤1 =

⋃m
j=1B|

j . The steps are

formally presented in the form of Algorithm 3. Table 5 and Table 6 show an example of such

algorithm.

The running time of the query processing is deduced as follows. Line 3 and line 4 can be done

in O(m) time. And line 5, i.e., the range search query, can be done in O(log log n+K) time, where

K is the number of points in the query rectangle. Then, the algorithm mostly consists of a loop.

So, a straightforward analysis of Algorithm 3 leads to a running time of O(m2 +m log log n+K).

Here, we assume that K is the size of the output returned by the algorithm. We will focus on

K shortly. However, we can do far better than O(m2 +m log log n+K) as follows. Note that we

can compute Int
T
P[1..j−1] incrementally as we increment j from 1 to m. This means we can get all

the intervals from SAT , namely, [sℓ|
j . . eℓ|

j ], 1≤ j <m spending O(m) time in total. Similarly,

we can get all the intervals from SA←−
T

, namely [sr|
j . . er|

j ], 1≤ j ≤m, spending O(m) time in

total. Hence, we can compute all the intervals first and store them with a little book-keeping to

implement line 5 for all j, 1≤ j ≤m, afterwards. This will give a much better running time of

O(m log log n+K).

Let us notice that the pattern matching part of our solution, namely, lines 3 and 4, where the

intervals are provided by suffix arrays, is alphabet dependent while the geometrical part, that is

the rectangle query in line 5, is not. Hence, in case of large (integer) alphabet the query time is

dominated by the pattern matching time and the resulting query time is O(m log n+K).

4.3.Discussion on K

Finally, a discussion on the value of K is in order. Since we are computing the occurrences with

at least 1 mismatch, the occurrences of exact matches will also be reported. And in our algorithm

when we compute OccTP |
j
≤1 for a particular value of j, it will also contain the exact occurrences.

In other words, for all values of j, we have OccTP ⊆OccTP |
j
≤1. So, every exact occurrence will be

reported m times. To make the value of K optimal we need to employ some further tricks. First

we need the following easy lemma.
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Lemma 1. Suppose we are given a suffix array SAT [1 . . n] of a text T [1 . . n] and a pattern

P[1 . .m]. Suppose Int
T
P[1..j−1] ≡ [s|j . . e|j ] and Int

T
P ≡ [s . . e]. If 1≤ j ≤m, we must have s|j ≤

s≤ e≤ e|j.

Clearly, Lemma 1 tells us that the range identifying the occurrences of a pattern must be

contained in or equal to the range identifying the occurrences of a prefix of that pattern. How

do we use the lemma to ensure a optimal value of K? We modify our query algorithm as follows.

We only need to modify the part that uses SAT and do some more work while we compute Bj .

At the beginning (before the loop at line 2 of Algorithm 3), we compute Int
T
P ≡ [s . . e] using

SAT . Now, suppose that we have computed Int
T
P[1..j−1] ≡ [sℓ|

j . . eℓ|
j ] using SAT . By Lemma 1,

T
[i
..
n
]

a
a
t
c
g
a
t
c
g
a
g

a
g

a
t
c
a
a
t
c
g
a
t
c
g
a
g

a
t
c
g
a
g

a
t
c
g
a
t
c
g
a
g

c
a
a
t
c
g
a
t
c
g
a
g

c
g
a
g

c
g
a
t
c
g
a
g

c
g
c
t
g
a
t
c
a
a
t
c
g
a
t
c
g
a
g

c
t
g
a
t
c
a
a
t
c
g
a
t
c
g
a
g

g g
a
g

g
a
t
c
a
a
t
c
g
a
t
c
g
a
g

g
a
t
c
g
a
g

g
c
t
g
a
t
c
a
a
t
c
g
a
t
c
g
a
g

t
c
a
a
t
c
g
a
t
c
g
a
g

t
c
g
a
g

t
c
g
a
t
c
g
a
g

t
g
a
t
c
a
a
t
c
g
a
t
c
g
a
g

SAT 9 18 6 14 10 8 16 12 1 3 19 17 5 13 2 7 15 11 4

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I
n
t
T P
[1
..
j
−
1
]

Int
T
cga

Int
T
cg

Int
T
c

Int
T
−

j 1 2 3 4

P[1 . . j − 1] − c cg cga

Int
T
P[1..j−1] [1 . . 19] [6 . . 10] [7 . . 9] [7 . . 8]

P[j + 1 . .m] gat at t −

Int
←−
T
←−−−−−−
P[1..j−1]

[17 . . 18] [16 . . 18] [16 . . 19] [1 . . 19]

qj (1, 17)× (19, 18) (6, 16)× (10, 18) (7, 16)× (9, 19) (7, 1)× (8, 19)

Table 5. Graphical representation of intervals Int
T
P[1..j−1], 1≤ j ≤ |P|, in the suffix array SAT of the pattern

P =cgat over the text T =cgctgatcaatcgatcgag and corresponding qj rectancles.
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19 1
18 4
17 12 q1
16 8 q3 q2
15 2
14 14
13 10
12
11 16
10 5
9 13
8 9
7
6
5 3
4 15
3 11
2 6
1 q4 7

A[i] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 6. Graphical representation of the Range Search Query index built over the text T =cgctgatcaatcgatcgag

and used by Agorithm 3 on Line 5 in order to find B|j values, 1≤ j ≤ |P|, where q1 ≡ (1, 17)× (19, 18), q2 ≡
(6, 16)× (10, 18), q3 ≡ (7, 16)× (9, 19), and q4 ≡ (7, 1)× (8, 19), as reported in Table 5. We have B|1 = {4, 12},
B|2 = {8, 12}, B|3 = {1, 12}, and B|4 = {12, 16}.

we know that sℓ|
j ≤ s≤ e≤ eℓ|

j . So, we divide the range into (at most) two ranges [sℓ|
j . . s− 1]

and [e+ 1 . . eℓ|
j ]. Then the computation of Bj is modified as follows:

B|j = {(x, y) | (x, y)∈A and (x, y) is contained in q1 or in q2,

q1 ≡ (sℓ|
j , sr|

j)× (s− 1, er|
j), q2 ≡ (e+ 1, sr|

j)× (eℓ|
j , er|

j)}

In other words, what we are doing is that the interval of each of the prefixes P[1 . . j − 1], 1≤

j ≤m, of P is divided into at most two sub-intervals so as to remove the exact occurrences of P.

Hence, we finally need to include the exact occurrences of P before returning the set. In other

words, instead of returning B =
⋃j

i=1B|
j we need to return B

⋃
OccPT . Clearly, now the output

size K will be optimal.

Finally, what will be the query time of the augmented query algorithm? Clearly, now for

each of the prefixes P[1 . . j − 1], 1≤ j ≤m, we would have at most two ranges (against one

range of P[j + 1 . .m], 1≤ j ≤m). So, we need to make at most 2m range search queries in total

keeping the total query time asymptotically the same as before. The results of this section can

be summarized in the following theorem.
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Theorem 1. Given a sequence T [1 . . n] over a constant alphabet and an integer m, we can

construct a data structure in O(n log1+ε n) time and space that, given a pattern P of length m

as a query, can compute OccTP |≤1 in O(m log log n+K) time, where K= |OccTP |≤1|.

4.4. Exactly one mismatch

In some practical application, especially in Bioinformatics, the occurrences with exactly one

mismatch is sought. In other words, in such cases, the exact occurrences are to be excluded,

i.e., we are to compute OccTP |=1 instead of OccTP |≤1. Clearly this can be achieved without any

change in the query time. In this case, we simply need to return B =
⋃m

i=1B|
j in the end in our

augmented algorithm (without including OccPT ).

5. General Case

In this section we relax the assumption that the pattern length m is given as part of the input. So,

we cannot take advantage of using m during the data structure construction as we did in line 3

of Algorithm 2. For this case, we use the same idea but the shifting need be done in a different

way so that we do not require the knowledge of m. This in the sequel requires a different query

processing algorithm as will be discussed shortly. Below, we first discuss the index construction

and then focus on to the query processing algorithm.

5.1. Index Construction

As has been mentioned previously, we will use the same basic idea and hence will depend on

Algorithm 1. Let us suppose that we know the position of the mismatch and assume that the

position is j. Similar to the previous approach we will maintain two suffix arrays SAT and SA←−
T

.

However, we now reverse the role of the two suffix arrays as follows. We use SAT to find the

occurrences of P[j + 1 . .m] (rather than P[1 . . j − 1] as we did previously). We use the suffix

array of the reverse string of T , i.e. SA←−
T

, to find the occurrences of
←−−−−−−−−
P[1 . . j − 1]. By doing so,

in fact, we get the end positions of the occurrences of P[1 . . j − 1] in T . Now, note that we have

the end positions of P[1 . . j − 1] in T and the start positions of P[j + 1 . .m] in T . So, to get the

desired alignment all we need to do is to consider the mismatch position and relabel accordingly.

Since now the alignment is done at the start position of P[j + 1 . .m] (instead of the start position

of P[1 . . j − 1]), we do not need the knowledge of m. It is easy to verify that, now, each i∈ SA←−
T

needs to be relabelled as (n+ 1)− i+ 1 + 1= n− i+ 3 to get the desired alignment. The rest

of the steps are identical to Algorithm 2. Clearly, the running time of the index construction

remains the same as before.
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5.2.Query Processing

The query processing algorithm is built on the same principle as before. Let us suppose that

we know the position of the mismatch and assume that the position is j. Then the query can be

answered as follows. We first compute Int
T
P[j+1..m] ≡ [sr|

j . . er|
j ] using SAT . Then we compute

Int
←−
T
←−−−−−−
P[1..j−1]

≡ [sℓ|
j . . eℓ|

j ] using SA←−
T

. Now, we find all the points in A that are inside the rectangle

q≡ (sℓ|
j , sr|

j)× (eℓ|
j , er|

j).

Let B|j is the set of those points. Now, note that we have done the alignment at the start

position of P[j + 1 . .m]. So, we need to undo this shift to get the actual start position of the

desired occurrence of the pattern P . So we compute, B′|j = {(SAT [x]− 1− (j − 1)) | (x, y)∈

B|j}. It is easy to verify that OccTP |
j
≤1 =B′|j .

Now, we can easily lift the restriction that j is the position of the mismatch. We simply,

compute OccTP |
j
≤1, i.e., B|j and B′|j for all values of j and compute OccTP |≤1 =

⋃m−1
j=1 B′|j .

5.3. Analysis of the Query Processing Algorithm

The analyses of the two algorithms, namely, the query processing algorithm presented in

Section 4.2 and that presented in the previous section (Section 5.2) are similar but with a distinct

difference that makes the running time of the latter worse. For the query processing of the fixed

m case, we computed Int
T
P[1..j−1] incrementally as we increment j from 1 to m and got all

the intervals from SAT , namely, [sℓ|
j . . eℓ|

j ], 1≤ j ≤m, spending O(m) time in total. Similarly

we computed all the intervals from SA←−
T

, namely, [sr|
j . . er|

j ], 1≤ j ≤m, spending O(m) time

in total. For the general case unfortunately, we cannot apply the above trick readily. This is

because, now, we need to compute Int
T
P[j+1..m] incrementally as we increment j from 1 to m.

This means that, unlike the previous case, where we were looking for intervals for prefixes of

increasing sizes, now we have to compute intervals for suffixes of decreasing sizes. The same

applies for the computation of intervals for
←−−−−−−−−
P[1 . . j − 1], 1≤ j ≤m, using SA←−

T
. As a result the

query time becomes O(m2 +m log log n+K).

5.4. Improved Query Time

Clearly the bottleneck is the computation of the appropriate intervals for P[j + 1 . .m] and
←−−−−−−−−
P[1 . . j − 1] for different values of j. To achieve the same query time of O(m log log n+K) we

need to be able to compute the intervals for the suffixes of decreasing sizes incrementally as

we did for the prefixes of increasing sizes. This would ensure a O(m) running time for the

computation of the appropriate intervals and thereby keeping the desired running time intact.

To achieve this improvement we resort to the famous backward search technique of Ferragina and

Manzini [20, 21, 22] using their data structure popularly known as the FM-index. In particular,

we use the following result which is the heart of the Backward Search Algorithm (BSA) of [20]

using an FM-index.
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Lemma 2. [Ferragina, Manzini [20]] Assume [s . . e] = Int
T
P is already computed. Then for any

character c, the interval [s′ . . e′] = Int
T
cP can be computed in O(1) time.

It is clear that with Lemma 2 at our disposal, we can compute the appropriate intervals for

suffixes of decreasing sizes of a pattern P spending O(|P|) time in total. So, using BSA of [20,

21, 22] we are now able to compute the appropriate intervals for P[j + 1 . .m] and
←−−−−−−−−
P[1 . . j − 1]

for different values of j spending a total time of O(m). Therefore, the query time improves to

O(m log log n+K), where K is the output size.

5.5.Data Structure Construction with FM-Index

In the previous section we have used BSA (Lemma 2) to achieve the desired running time

for the query. However, this means that we would need to include the FM-index in our index

data structure. We do actually delegate the pattern matching part of our solution, that is the

part in charge of computing the intervals of all the prefixes and the suffixes of a given pattern in

the suffix arrays of the text and reverse text, to two FM-indexes: one for the text and another

one for the reverse text. Notice that, since FM-index is a self-index, it does not need to access

to the original text at query time. This leads to a practical decreasing of the space occupancy

of the proposed solution due to the sublinear space occupancy of the FM-index for compressible

texts. However, the space complexity of our solution remains dominated by the range search data

structure.

A further analysis of the data structure construction time is in order. In what follows, we refer

to the version of the FM-index presented in [22]. The FM-index and hence the BSA, make clever

use of the so-called Rank query. Suppose we have a string X, c∈Σ and f is an integer. Then,

RankX(c, f) is defined to be the number of occurrences of c (i.e., rank) in the prefix X[1 . . f ].

FM-index uses a wavelet tree [24] to facilitate constant time Rank queries. It also requires an

auxiliary array C such that C[c] stores the total number of occurrences of all c′ ≤ c, where ‘≤’

here means lexicographically smaller than or equal to. Finally, FM-index and BSA utilise the

famous Burrows-Wheeler transformation (BWT) technique [9]. A complete description of BWT

is out of the scope of and not required for our discussion. We just give a brief definition of

BWT in relation to suffix array as follows. The BWT encoding of the string T is another string

BT as defined below. Assume that the ith element of the suffix array of T is SAT [i]. Then

BT [i] = T [SAT [i]− 1] where T [0] = T [n]. The computation of BT can be done in O(n) time.

FM-index needs to preprocess BT for constant-time rank queries. Since wavelet trees can be

constructed in linear time, this can also be achieved in O(n) time. The auxiliary array C can also

be prepared in O(n) time. So overall the data structure construction time remains dominated by

the range search data structure construction.
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5.6.Optimality of K

The problem with the optimality of K as discussed in Section 4.3 applies for the current

algorithm as well. Unfortunately, The method employed in Section 4.3 to make K optimal cannot

be used now. The technique employed in Section 4.3 was based on Lemma 1, which basically

states that the interval provided by a suffix array for a pattern always lies within the interval

of any of its prefixes. But this relation does not hold for suffixes. Therefore, to compute K we

cannot use Lemma 1. Nevertheless, we apply another technique to achieve our goal as described

below. We need the following lemma.

Lemma 3. Suppose we are given a suffix array SAT [1 . . n] of a text T [1 . . n] and a pattern

P[1 . .m]. Suppose Int
T
P[j+1..m] ≡ [s1 . . e1] and Int

T
P[j..m] ≡ [s0 . . e0], where 1≤ j <m. Then the

followings hold true:

1. The size of the interval Int
T
P[j+1..m] is greater than or equal to the size of the interval

Int
T
P[j..m], i.e., e1 − s1 + 1≥ e0 − s0 + 1.

2. We have SAT [s0] + 1 = SAT [p] for some s1 ≤ p≤ e1.

3. Suppose, SAT [s0] + 1 = SAT [p]. Then, SAT [s0 + i] + 1 = SAT [p+ i] for all 1≤ i≤ e1 − s1.

Now let us discuss how we can obtain the optimal K as follows. The basic idea is similar as

before. We want to divide an interval into at most two subintervals such that the subinterval

responsible for the exact occurrences of the complete pattern can be excluded when we do

the intersection. Now, suppose we have computed Int
T
P[j+1..m] and Int

T
P[j..m]. By Lemmas 3(2)

and 3(3) we know that the occurrences of P[j + 1 . .m] in some sense ‘contain’ the occurrences

of [j . .m]. This is because P[j . .m] =PjP[j + 1 . .m].

Now, let us go back to our computation assuming that we know the position of the mismatch

and assume that the position is j. So, we need to do the intersection between Int
T
P[j+1..m] ≡

[sr|
j . . er|

j ] (computed using SAT ) and Int
T
P[1..j−1] ≡ [sℓ|

j . . eℓ|
j ] (computed using SA←−

T
). Note

carefully that, here Pj corresponds to the mismatch position. So, if from the interval IntTP[j+1..m]

we can remove the positions which follows the occurrence of Pj in T we are done. Assuming

that we have Int
T
P[j..m] at our hand, we can easily identify those positions using Lemma 3 as

follows. Following the hypothesis of Lemma 3, let us assume that Int
T
P[j+1..m] ≡ [s1 . . e1] and

Int
T
P[j..m] ≡ [s0 . . e0]. By Lemma 3(2), we have an s1 ≤ p≤ e1 such that SAT [s|

j ] + 1 = SAT [p].

We identify this p. How can we identify p efficiently? To do this efficiently, we slightly augment

our index data structure by maintaining an auxiliary array Next[1 . . n] of length n as follows.

We store Next[i] = j if and only if SAT [i] + 1 = SAT [j]. Clearly this will facilitate O(1) time

identification of the index p. Also, note that the computation of Next[1 . . n] can be done in

linear time during the index data structure construction.

Once p is identified, we compute q= p+ e0 − s0. Now, we have two subintervals, namely,

[s1 . . p− 1] and [q + 1 . . e1]. It is not very difficult to realise that these two intervals, namely,
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[s1 . . p− 1] and [q + 1 . . e1] give us the positions where P[j + 1 . .m] occurs in T but is not

preceded by an occurrence of Pj ; this is exactly what we desired. So, now we finish off by

modifying the computation of Bj appropriately. To show the modification of the computation

of Bj we need to keep the notational convention followed so far. Note that the position of

P[j + 1 . .m] is to the right with respect to the fixed mismatch position j. So, to keep the

notational symmetry we will now rename s1 and e1 as sr|
j and er|

j respectively. Now the modified

computation of Bj is shown below.

B|j = {(x, y) | (x, y)∈A and (x, y) is contained in q1 or in q2,

q1 ≡ (sℓ|
j , sr|

j)× (eℓ|
j , p− 1), q2 ≡ (sℓ|

j , q + 1)× (eℓ|
j , er|

j)}

Finally, we need to include the exact occurrences of P before returning the final output set.

In other words, instead of returning B =
⋃j

i=1B|
j , we need to return B

⋃
OccPT . Clearly, now

the output size K will be optimal. By similar argument as presented in Section 4.3, the query

time remains asymptotically the same, i.e., O(m log log n+K). The results of this section can be

summarized in the following theorem.

Theorem 2. Given a sequence T of length n, we can construct a data structure in

O(n log1+ε n) time and space that, given a pattern P of length m as a query, can compute OccTP |≤1
in O(m log log n+K) time, where K= |OccTP |≤1|.

6. Discussion on the solution of [5]

As has been mentioned above, the underlying idea used in our solution approach is identical to

that of the solution proposed by Amir et al. [5]. In this section we present a detailed comparison

between the two solutions and identify the shortcomings of the solution of [5]. In what follows,

we will refer to the data structure of [5] as DS_AKLLLR (using the first letters of the authors’

surnames). And we will use DS_Fixed and DS_Gen to refer to our data structures for the fixed

m version and the general version, respectively. In both cases, we will use the names to refer to

the corresponding algorithms as well.

DS_AKLLLR consists of two suffix trees, one for T and one for
←−
T . The role of these two

suffix trees is exactly the same as the role of the two suffix arrays in our data structure DS_Fixed.

Recall that in DS_Gen the roles of the two suffix arrays (FM-indexes, to be precise) are in fact

reversed. The range search data structure used by DS_AKLLLR is similar but not identical to

the one used by DS_Fixed and DS_Gen, as will be clear shortly. So, overall, the data structure

construction is almost similar in both algorithms. The query algorithm however is drastically

different as discussed below.

DS_AKLLLR query algorithm requires that the suffix trees are constructed using the

Weiner construction [55]. According to Weiner’s algorithm, given the text T of length n, the
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suffix T [n . . n] is first considered, followed by T [n− 1 . . n], then T [n− 2 . . n] and so on. Now

similar to DS_Fixed, DS_AKLLLR needs to compute Int
T
P[1..j−1] ≡ [sℓ|

j . . eℓ|
j ] using ST T and

Int
T
P[j+1..m] ≡ [sr|

j . . er|
j ] using ST←−

T
. So with the suffix tree STT of T at its disposal, it proceeds

as follows. DS_AKLLLR ‘feeds’ the pattern P to the suffix tree in some sense. In particular, it

continues from ST T and builds a suffix tree of P1P2 . . .Pm#T , where # /∈Σ. While doing this

extended construction, DS_AKLLLR cleverly keeps track of the locus positions for each suffix

of P . And hence it can easily get the range Int
T
P[1..j−1] ≡ [sℓ|

j . . eℓ|
j ]. After the construction

ends, it does ‘undo’ this to keep the suffix tree ST T as before. Identical operation on ST←−
T

using
←−
T gives the range Int

T
P[j+1..m] ≡ [sr|

j . . er|
j ]. Subsequently, all is needed is the application

of an appropriate range search query on the range search data structure which is a part of

DS_AKLLLR.

Now, there are two important points that need be carefully noted as highlighted below.

• First, the discussion, in Section 4.3 and later again in Section 5.6, on the output size K

applies to DS_AKLLLR as well. To make K optimal DS_AKLLLR employs a different

technique than ours. In particular, it resorts to a higher dimensional range search query.

This is where the range search data structure used by DS_AKLLLR differs from the one

used by our data structure. We omit the details because this is not relevant. But the point

is that, this technique required the data structure of 3D range search and 3D query. This

makes both the data structure construction time and query time (slightly) inferior to that

of ours.

• Secondly, and more importantly, the claim that the computation of IntTP[1..j−1] (IntTP[j+1..m])

by ‘feeding’ P (
←−
P ) to ST T (ST←−

T
) runs asymptotically in O(m) time is somewhat flawed

as follows. The linear time of the Weiner construction of suffix tree (and in fact all other

linear time construction, e.g., [54]) depends on an amortised analysis. Hence, while we can

certainly say that the construction of a suffix tree for the string P#T can be done in

O(|P|+ |T |) time, given a suffix tree for T we cannot always claim that extending it for

P#T can be done in O(|P|) time.

7. Conclusion

In this paper we have focused on the the problem of indexing sequences for mapping reads with

a single mismatch. We have considered a simpler problem first, where the pattern length m is

given beforehand along with the text T of length n for preprocessing. So, in this version, the

patterns to be queried must be of the same length, m. This simpler problem is interesting in its

own right especially in the context of the Next Generation Sequencing (NGS). Subsequently, we

have discussed how to solve the more general problem, which can handle patterns of different

lengths. In both cases, our algorithm can construct an efficient data structure in O(n log1+ε n)
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time and space, which is able to answer subsequent queries in O(m log log n+K) time, where

0< ε< 1 and K is the optimal output size.
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