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ABSTRACT: The network of communicating mobile vehicles is a subclass of wireless networked control
systems (WNCS) characterized by wireless communications and mobile nodes. The integration of the wireless
network into control loop, given the stochastic aspects of wireless communication and mobility of its commu-
nicating entities, can lead to problems that affect system performances. In other words, the system quality of
control QoC depends on the wireless network quality of service QoS state. A diagnosis method is essential
to monitor, diagnose and maintain the system in an operational state. The present paper proposes a modular
multi-layer Bayesian network model for diagnosis taking into account the network failures. Results regarding
the system performance are presented to illustrate the relevance of the developed Bayesian Network BN to
decisions making in order to lead the system to its final goal.

1 INTRODUCTION

Networked systems have emerged in many fields and
in a large number of distributed applications. They
are distributed systems where actuators, sensors and
controllers are connected through a communication
network which is crucial to ensure proper operation.
Reducing the installation costs and the simplicity of
maintenance and diagnosis of networked control sys-
tems prove the advantage of using these systems (Si-
mon et al. 2013). Networked mobile robots, as wire-
less networked control systems WNCS, have found
applications in transport field, domestic help, military,
space, etc. They perform human tasks and they also
take over human missions in hostile places, for in-
stance robots that entered to the melted Fukushima
reactor (Nagatani et al. 2013). The networked robots
receive orders from a controller in order to accom-
plish their tasks and then they send back information
about their state and other observations. For example,
for the case of robot Philae, sent to the Tchouri comet
to discover the evolution of solar system, researchers
need to have a sufficient duration of communications,
if it is possible, to receive a feedback from the robot
and send him the orders to be executed. However, it is
difficult to ensure that the data is transmitted correctly
and completely because of the stochastic behavior of
wireless network and the mobility of the communi-
cating devices. The integration of wireless network
into the control loop introduce problems that affect
the system performance and its stability. In fact, the
network state in term of quality of service QoS af-

fects the system quality of control QoC. This influ-
ence is due to delay (Simon et al. 2013), (Ghostine
et al. 2011), (Tipsuwan and Chow 2003), packets loss
(Mechraoui et al. 2009), (Lian et al. 2002), (Berbra
et al. 2008), jitter (Moyne and Tilbury 2007), through-
put (Zhang et al. 2013), (Hespanha et al. 2007) of the
network and the connectivity degradation (Mechraoui
et al. 2011). So, it has been crucial to understand
the impact of network failures on the system state
and to consider them simultaneously with the control
problems which characterize the co-design approach
(Mechraoui et al. 2011). A diagnosis method is essen-
tial to identify and localize faults and to make the right
decision to improve the system performance. Because
of the stochastic behavior of wireless networks, prob-
ability theory is used. So, a Bayesian network BN is
proposed to model the dependencies between failures
and quantify their likelihood. Bayesian methods pro-
vide a formalism for reasoning under conditions of
uncertainty (Pearl 2014). Many Bayesian models have
been developed to perform diagnosis (Bottone et al.
2008), (Cheng et al. 2013), (Schumann et al. 2012).
In this paper, the Bayesian model is inspired from the
multi-layer model of Przytula & Choi (2007). The
proposed BN is used to identify the cause of QoC
degradation of a networked mobile robot , whether it
comes from the network as a system component sus-
ceptible to malfunctions, or the controller or the in-
ternal state of the robot. It is used also to make the
decisions to avoid QoS and QoC degradation. Simon
et al. (2013) and Mechraoui et al. (2011) propose, in
the context of the co-design approach, the reconfigu-



ration of the network to improve the QoC state or the
adaptation of control in the case of QoS degradation.
In the present work, a simulated networked mobile
robot moving to a target by avoiding obstacles and
controlled by a fixed station is considered. It is used
to show the effectiveness of the proposed BN to diag-
nose and to make decisions to improve system perfor-
mance. The paper is organized as follows. Section 2
is devoted to review basic theories of BNs. Section 3
describes the developed BN for the diagnosis of net-
worked mobile robot. Diagnosis scenario is then pre-
sented to illustrate the relevance of BN. Finally, con-
clusions and perspectives are given in section 5.

2 BACKGROUND

2.1 Bayesian network BN

BNs, also called beliefs networks, are probabilistic
graphical model representing dependencies between
events with their likelihood. They are the results of
research work of Judea Pearl in the 80s (Pearl 2014).
BNs have been used in many applications such as
decisions making problem in autonomous vehicles,
risk modeling and especially diagnosis which is the
objective of this work. One of the advantage of this
model is to gather and merge different types of data
(Naı̈m et al. 2007). BNs are directed acyclic graphs
in which the nodes represent variables (discrete or
continuous) and the arcs represent direct causal influ-
ences between the connected variables. These influ-
ences, which represent the dependencies between the
variables, are expressed by forward conditional prob-
abilities. Finally, a BN is defined as follows:

• a directed acyclic graph G=(V,E) where V is the
set of nodes and E is the set of directed edges;

• a probability space (Ω,Z,P);

• a set of random variables associated to the graph
nodes such as

P (V1, V2, ..., Vn) =
n∏

i=1

P (Vi|C(Vi)) (1)

where C(Vi) is the set of Vi parents.

An important concept in BNs is d-separation which
helps to reduce probabilities calculations. If two vari-
ables are d-separated to a set of random variables Y,
then they are conditionally independent on Y in all
probability distributions of the BN. Another charac-
teristic of BNs is their ability to update beliefs via
new evidence propagation in the network. The infer-
ence in BNs consists in updating the probabilities of
unobserved variables after observations of a certain
number of other variables values. Many algorithms
are used to calculate the posterior probabilities such
as the junction tree algorithm developed by Jensen.
The exact inference in belief network is NP-hard.

2.2 Distributed Bayesian Network

Distributed BNs have been introduced in many works
(Sayed and Lohse 2013), (Xiang and Lesser 2000),
(Bloemeke and Valtorta 2002), (Langevin 2010),
(Hwang and Cho 2006), (Hwang and Cho 2009) to
shorten inference time, to reduce load on the calcu-
lations server and to infer information from different
environments. In fact, the information coming from
remote and smart devices should be preprocessed and
inferred locally (Frank et al. 2014). The local infer-
ence results coming from different modules are then
gathered for final inference. Three types of distributed
BN have been studied. Multi Sectioned Bayesian Net-
works MSBN (Xiang and Lesser 2000) is a knowl-
edge representation formalism that divides a large BN
into sub-networks to enable multi-agent probabilistic
reasoning. It is used to model a domain using a set
of Bayesian subnet that are each assigned to a sub-
set of the domain. The d-separation is used to section
the global BN and all subnets are organized in a hy-
per tree structure. Besides, there is only one proba-
bility distribution for the set of all random variables
of all local BNs. The constraints of MSBN limit the
autonomy of the agents that must be tightly coupled.
Regarding Agent Encapsulated Bayesian Networks
(Bloemeke and Valtorta 2002), (Langevin 2010), each
agent implements its internal knowledge as a local BN
which has its own probability distribution. It uses its
local BN for its own reasoning. These type of BNs
modeling deals with problems where the information
and the actors are distributed. The agents are orga-
nized in a publisher-subscriber hierarchy and commu-
nicate by passing messages through shared variables.
The subscriber updates its beliefs based on its own
observations and on the publisher beliefs because the
publishing agent are more knowledgeable about the
variables they produce, i.e. the subscribing agent re-
places its current view of the shared variables with
the publishers one. Another distributed Bayesian ap-
proach is developed by Hwang and Cho (2006, 2009).
The BNs, in their approach, are modularized accord-
ing to their separated sub-domains. The inference
consists of two stages considering the co-causality of
the modularized BN. Every Bayesian module infers in
first given the available hard evidence. The first stage
output of Bayesian modules that are connected as par-
ents is introduced as soft evidence in the second stage
by virtual linking.
In this work, Modular BN based on two-stage infer-
ence of Hwang and Cho is proposed to achieve the
objective of diagnosis. A detailed description is intro-
duced in section 3.

2.3 Bayesian network for diagnosis

System diagnosis is the identification of failures in or-
der to make decisions to return the system to its nor-
mal state. It consists in determining whether a com-



ponent is failing or not i.e. localizing the origin of the
failures from observations. A failure is defined as a
deviation, outside an acceptable range, of an observed
variable. The diagnosis task is divided into 3 subtasks
(Patton and Chen 1999):

• failure detection which consists in observing sys-
tem malfunction;

• failure localization to determine the failing com-
ponent;

• failure identification which lies in the determina-
tion of the failure form and its amplitude.

BNs for diagnosis have been used in many fields. As
probabilistic models, they evaluate the state of sys-
tems that have random dynamic and represent the de-
pendencies between failures. They model the causal
links that relate errors to symptoms based on human
experts and engineering knowledge about the system.
The inference algorithm is used to infer error causes
from observed symptoms. Bottone et al. (2008) pro-
posed a Bayesian model for satellite diagnosis. Their
system consists of 4 types of component susceptible
to failures. The model is composed of 2 main nodes
types: a measurable node which corresponds to the
state of a measurable parameter and a non measur-
able node defined as failure node which represents
a component failure or a system failure. The failure
node had 2 states: fail state for component failure and
no fail state for operational component. The diagno-
sis procedure in this model determine the maximum
likelihood of non measurable nodes given the state
of measurable nodes and consequently the cause of
system dysfunction. Cheng et al. (2013) developed a
dynamic BN for the maintenance of Automatic Train
Protection Control Unit ATPCU and for the diagno-
sis of the cause of train stop. In their model, a mon-
itor node supervise the system and when it detects a
failure, it pass the information to maintenance node.
Consequently, the maintenance probability increases
until a defined value that triggers the maintenance
operation to upgrade the ATPCU state. A stop node
gives the state of the train. If the train is stopped,
the ATPCU is in degraded mode. A system condition
node describes the conditions and the environment in
which the system is operating. Another BN is used
in NASA as Software Health Management for the di-
agnosis of software and hardware failures. Schumann
et al. (2012) developed a modular, hierarchical and
reusable Bayesian model which consists of discrete
nodes. The command node C presents, as an observ-
able node and an input to the BN, a ground truth, a
command, an action or a specific operating mode. The
sensor node S, which is also an observable node and
an input to the BN, gives measures about the software
and hardware monitoring. A non observable node
which is the Health node H is the result of diagnosis
of the component state. The state of this node is thus

Figure 1: Multi-layer Bayesian network for diagnosis

the output of the model. The developed model was
applied to the diagnosis of an autonomous robot and
an aircraft control system. Another Bayesian model
for diagnosis, from which the proposed Bayesian net-
work is inspired, is the multilayer model of Przytula
and Choi (2007) as shown in figure 1. The first layer
is the usage layer where observable nodes present the
actual system usage or its operating mode. The layer
component gathers nodes describing components or
their failure modes whose states are the result of di-
agnosis. The subsystems layer can be added to repre-
sent the state of a subsystem corresponding to a subset
of components. Finally, the health observations layer
contains observable nodes to monitor the components
states. Such a structure reduces the number of needed
parameters to define the BN. The objective is to di-
agnose the components state from the health observa-
tions and system usage. The previous Bayesian mod-
els, mainly the last one, have been studied in this work
to develop a consistent BN for diagnosis of networked
mobile robot which is detailed in the next section.

3 CONSTRUCTING THE BN MODEL

The global system consists of a robot equipped with
actuators and sensors and communicating to a remote
station where the controller is implemented. The mo-
bile robot has limitations such as insufficient memory
capacity, lower CPU power and limited battery life-
time. The defaults that have an impact on the system
QoC have been studied. In this work, the QoC mea-
sures the capacity of the controller to bring the robot
to its steady position via wireless network. The QoC
is affected by the state of the network, as a system
component, and more specifically, its QoS. Besides,
the robot state has an impact on the QoC because in
the case of actuators degradation, the robot won’t be
able to execute the station orders. The global system
is divided into 3 sub-systems which are the network
sub-system, the operative sub-system (robot actuators
and sensors) and the control sub-system. For each
sub-system, a BN is modeled to represent the depen-
dencies between failures of each sub-domain. Conse-
quently, a modular BN for diagnosis is constructed in
order to identify the QoC degradation cause whether
it is network failure, or a robot failure or a controller
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Figure 2: Operative Bayesian module

failure. Each BN module is structured in a multi-
layer model like the Przytula and Choi (2007) model
to provide more accurate and broad coverage con-
text specially the components level, the intermediate
one, which represents relationships between compo-
nent failures. The first layer represents the usage of
the system and the conditions in which it is running.
There is also another intermediate layer which is the
subsystem layer representing the state of each sub-
system of the global one. Finally, observations layer
is used to monitor the state of components or compo-
nents failures. The operative Bayesian module is im-
plemented on the robot while the other two modules
are on the station side.

3.1 Operative Module

The robot is equipped with sensors and motors (actu-
ators) which represent the operative subsystem of the
WNCS. For this subsystem, a subsystem node is de-
fined as robot state to indicate the state of this part
of the system as shown in figure 2. The components
(components node) of this subsystem are the left and
right motor and the obstacles sensors of the robot. For
each component node, an observation node measures
and monitors its health state. The sensors are consid-
ered failing if they are not able to detect the presence
of obstacles or the transmitted values are constant or
incorrect. For the actuators, a motor failure is moni-
tored by observing the reference error of the angular
velocity. This velocity error must decrease over time
and does not exceed a threshold, otherwise, the motor
(left or right) is failing. A usage node battery level is
used to describe the robot battery usage, it represents
the conditions in which the robot components are op-
erating.

3.2 Network module

The network is considered as a WNCS component
which can be failing like the other system compo-
nents. When the network cannot ensure the required
QoS, it is considered failing. The network state is rep-
resented by the node QoS which is a subsystem node

as shown in figure 3. The network parameters that
have an impact on the QoS are packets loss rate, delay,
jitter and throughput. Failures which are associated
to this observable parameters are defined to describe
the degradation of the QoS state. There are 3 types of
failure mode in the network when some communicat-
ing device are mobile: channel failure, transmission
failure and connectivity failure. For the communica-
tion channel failure which limits the network avail-
ability, a component node channel state is defined be-
cause when the channel is saturated, there is no guar-
antee that the message will be transmitted. To moni-
tor the channel state, an observation node throughput
measures the rate of transmitted packets in the net-
work. Regarding the connectivity failure, when the
mobile robot moves away from the station coverage
area, it loses its connectivity to the station so the mes-
sages are dropped. To observe the state of connectiv-
ity node, the received signal strength indicator RSSI
is used to measure the quality of the received signal.
The nodes deadline respect and data loss are devoted
to transmission failure description. The jitter and de-
lay measurement monitors the reception on time of
the transmitted packets and the packet loss observes
the rate of dropped packet in the network. A set of
nodes in the usage layer define the use conditions of
the network. Number of communicating nodes define
the number of mobile communicating entities in the
network. If this number increases, the collision prob-
ability increases so the throughput decreases, the de-
lay and packet loss rate increase. The node network
load represents the network limited resources offered
to the application. If the network is overloaded, its
performances degrades, the delay and packet loss in-
crease and the channel is saturated. The closed loop
sampling period has also an impact on the network
state because if its value is under a certain threshold,
the network will be overloaded and packets will con-
sequently be dropped (Simon et al. 2013). The con-
nectivity state depends on the environment in which
the robot is moving, where there are obstacles (obsta-
cle node)and a risk of signal fading or absorption. It
depends also on the distance between the station and
the robot to define the coverage area where the con-
nection persists.

3.3 Control module

The QoC node, which represents the control sub-
system, indicates the performance and the state of the
control application, i.e. it indicates whether the robot
is controlled via wireless network or not. The QoC is
influenced by the robot state (state of operative sub-
system), the QoS state (state of the network subsys-
tem) and the state of the controller as shown in fig-
ure 4. If the robot actuators don’t receive on time the
control data or they are not able to execute the control
laws, the robot cannot be well controlled therefore the
QoC state degrades. Observations node are defined to
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Figure 3: Network Bayesian Module

monitor the QoC state. The stability node controls the
system stability along the trajectory using Lyapunov
theory. The position error node monitors the distance
between the target and the robot (navigation mission)
which must decrease over time. The distance robot-
obstacle node monitors the distance between the robot
and an obstacle (if it exists in the robot trajectory) be-
cause the robot must reach the target position while
avoiding obstacles. The controller node, which is a
component node, has an impact on the QoC state.
If the controller has limited calculations capacity or
its CPU is overloaded, the QoC degrades. Two usage
nodes are defined for the controller to precise its type
and its CPU load. The embedded controller (imple-
mented on the robot) has degraded performance while
the remote controller (station) is efficient.

3.4 Diagnosis reasoning

The Bayesian modules are used to perform networked
mobile robot diagnosis in order to maintain it in a
good state and lead it to its target. In this model, the
control subnet shares with the network and operative
subnets the QoS node and the robot state node respec-
tively. In the first inference stage, hard evidence are
applied in 3 modules. Secondly, the result of the in-
ference in the control subnet is transferred to the other
two subnets as soft evidence on the Qos node and
robot state node. In the next section, diagnosis sce-
narios are described to prove the relevance of these
method using a simulated networked robot controlled
by a remote station.
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Figure 4: Control Bayesian Module

4 DIAGNOSIS SCENARIO

A diagnosis scenario is presented below to verify
the efficiency of the developed approach to decisions
making. Based on the QoC state in the one hand and
on the QoS state on the other hand, the remote station
orders the robot to switch to its embedded controller
if it is necessary. Algorithm 1 is used as a strategy
to control the robot in distance using the Bayesian
diagnosis results after entering observations on the
BN. Truetime toolbox (2.0 version) (Cervin et al.
2010) is used to co-simulate (network and control co-
simulation) the networked robot controlled by a re-



Algorithm 1 Decision Making Algorithm
P1 = P (QoC = good|observations)
P2 = P (QoC = degraded|observations)
P3 = P (QoC = bad|observations)
P ′
1 = P (QoS = good|observations)

P ′
2 = P (QoS = degraded|observations)

P ′
3 = P (QoS = bad|observations)

if [P1 > max(P2, P3)] || [P2 > max(P1, P3)]
order=0
else
if P ′

3 > max(P ′
2, P

′
1)

order=1
end if
end if

mote station whose position is (1,1) and BNT toolbox
(Murphy et al. 2001) is used to implement the BN.
The robot starts from its initial position (x0, y0)=(0,0)
to the target one (xd, yd)= (15,1) as shown in the fig-
ure 5 where it moves in the station coverage zone and
in good network conditions. The robot reaches its tar-
get after 60s when the linear velocity becomes zero.
A network fault occurs, the network delay is greater
than the sampling period of the control loop which is
equal to 0.4s, the application performance is degraded
and the QoC state becomes bad because of the degra-
dation of the QoS. No actions are taken in the case
of figure 6 which shows that the robot cannot be sta-
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Figure 5: Robot navigation in good network conditions
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Figure 6: Robot navigation in degraded network conditions

ble on its steady position (15,1). Adopting a co-design
approach action, the algorithm 4 is executed based on
the BN results to switch to embedded controller in
case of QoC degradation caused by the QoS bad state.
The robot takes an order from the station and reaches
the target position based on its embedded controller
as shown in figure 7.
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Figure 7: Robot navigation with switching to embedded con-
troller



5 CONCLUSIONS

In this article, a diagnosis method for wireless net-
worked mobile robot based on modular BN is pro-
posed in order to maintain the controlled system op-
erational and lead it to its target. This approach takes
into consideration both QoS and QoC states to solve
a co-design problem. The developed method is then
tested on a simulated networked mobile robot. Prob-
abilities given by the BN, describing the actual situ-
ation, generate an order to maintain the communica-
tion between the robot and the station or to make con-
trollers switching decision. This strategy gives first
satisfying result in term of application performance
because the robot reaches its target after switching
to embedded controller. In this work, decisions have
been made based on QoS and QoC states. In fur-
ther work, the intermediate layer of each BN will be
used to make more efficient decisions based on each
type of network failure, on the controller state or on
each robot component state. The developed Bayesian
method will be implemented on a real mobile robot.
The prognostic aspect will be also integrated in this
work to avoid QoC and QoS degradation before its
occurrence.
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