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Abstract

We define an atom tree of a graph as a generalization of a clique tree:
its nodes are the atoms obtained by clique minimal separator decompo-
sition, and its edges correspond to the clique minimal separators of the
graph.

Given a graph G, we compute an atom tree by using a clique tree of
a minimal triangulation H of G. Computing an atom tree with such a
clique tree as input can be done in O(min(nm,m + nf)), where f is the
number of fill edges added by the triangulation. When both a minimal
triangulation and the clique minimal separators of G are provided, we
compute an atom tree of G in O(m + f) time, which is in O(n2) time.

We give an O(nm) time algorithm, based on MCS, which combines in
a single pass the 3 steps involved in building an atom tree: computing
a minimal triangulation, constructing a clique tree, and constructing the
corresponding atom tree.

Finally, we present a process which uses a traversal of a clique tree
of a minimal triangulation to determine the clique minimal separators
and build the corresponding atom tree in O(n(n + t)) time, where t is
the number of 2-pairs of H (t is at most m − f , where m is the number
of edges of the complement graph); to complete this, we also give an
algorithm which computes a minimal triangulation in O(n(n + m)) time,
thus providing an approach to compute the decomposition in O(n(n+m))
time.

keywords: clique separator decomposition, minimal triangulation,
clique tree, atom tree, MCS.

1 Background and motivation

Clique separator decomposition was introduced by Tarjan [44] as a useful hole-
and C4- preserving decomposition, which enables a possible Divide-and-Conquer
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approach to several hard problems such as Minimum Fill-in, Maximum Clique,
Coloring, and Maximum Weighted Independent Set, as these problems can be
solved separately on each of the subgraphs resulting from the decomposition.
(A clique separator is a clique whose removal increases the number of connected
components of the graph.)

This decomposition consists in repeatedly finding a clique separator S of a
graph G and a partition of G − S into two subgraphs A and B such that no
vertex of A is adjacent to a vertex of B, and dividing the graph into the two
subgraphs A ∪ S and B ∪ S; this step is repeated until none of the subgraphs
obtained contains a clique separator. The resulting subgraphs are called atoms.

Tarjan [44] improved the complexity for finding a clique separator proposed
by Whitesides [46] from O(n3) per clique separator to O(nm) for all the clique
separators used in a decomposition. The breakthrough which enables Tarjan
to do this is the proof of the strong relationship between the clique separators
of a graph and minimal triangulation. (Minimal triangulation is the process of
embedding a graph into a chordal graph by the addition of an inclusion-minimal
set of fill edges.) He showed that no fill edge of a minimal triangulation can
have its extremities in two different components defined by a clique separator.

Tarjan’s algorithm was a two-step process: he first computed a minimal
triangulation in O(nm) time, then performed n graph searches to find the de-
composition in O(nm) time.

Tarjan [44] left open the question of refining the decomposition to obtain a
unique set of atoms. This was solved by Leimer [36], who showed that when
clique minimal separators are used, the set of atoms becomes unique, and is ex-
actly the set of maximal connected subgraphs with no clique separator. (Min-
imal separators are defined in Section 2.) Leimer showed that all the clique
minimal separators of a graph G are minimal separators of any minimal tri-
angulation H of G. This makes it easy to find the clique minimal separators,
since there are few minimal separators in a chordal graph. Leimer streamlined
the algorithm from [44] accordingly, but he used the same two-step approach as
Tarjan, and did not improve the time complexity for the decomposition.

Recently, clique separator decomposition has generated interest in several
fields. It has been used on special graph classes to solve the Maximum Weight
Stable Set Problem [20, 21], and for recognition purposes [19, 8]. It has also been
applied to treewidth [18] and to Bayesian networks to help compute a better
triangulation [39]. In the field of bioinformatics, the clique minimal separators
help yield evolutionary information [31], and the atoms of the decomposition
yield interesting gene clusters [32]. The reader is also referred to [13] for a survey
on this decomposition. Another related result is by Kratsch and Spinrad [34],
where they show that determining whether a graph on 4n + 2 vertices has a
clique separator is at least as hard as determining whether an n-vertex graph
has a simplicial vertex, even if a minimal elimination ordering is given as part
of the input.

In the past few years, minimal triangulation has also given rise to renewed
interest. Several papers provide new O(nm) time algorithms [3, 7, 10] (see also
the special issue on the subject [4], and the survey therein [27]). Efforts have
been invested into improving this O(nm) time bound for dense graphs: Kratsch
and Spinrad [33] offer an O(n2.69) time bound, improved by Heggernes, Telle
and Villanger [28] to O(nαlogn), where nα is the time required to do matrix
multiplication. Another approach is to compute a non-minimal triangulation
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and then remove any extraneous edges: Blair, Heggernes and Telle [16] present
an O(f(m+ f)) time algorithm, where f is the number of fill edges, and which
is efficient when f is small; Mezzini and Moscarini [38] give an O(m(δ2 + m))
time algorithm, where m is the number of edges of G and δ is the maximum
degree of G.

For special graph classes, several results have appeared, which improve on
the time bound for the general case for computing a minimal triangulation:
chordal bipartite graphs and hole-and-diamond-free graphs have been shown to
have an O(n2) time algorithm [8]; co-comparability graphs and AT-free claw-
free graphs have a linear time algorithm [37]; co-bipartite graphs, a subclass of
AT-free claw-free graphs, have an even better time, since only a subset of edges
needs to be traversed [14]; claw-free graphs with paths of bounded length can
be triangulated in linear time [15].

However, no improvement has been proposed to decrease the time to com-
pute clique minimal separator decomposition to match these advances in mini-
mal triangulation. In most of the above-mentioned algorithms, the clique mini-
mal separators of the graph are not found directly by the triangulation process,
so they have to be computed separately; but even when the minimal trian-
gulation and the clique minimal separators are given as input, computing the
decomposition still takes at least time proportional to nm, as up to n graph
searches still need to be performed in all known algorithms.

Our ultimate goal is to open an area for improvement on the time required to
obtain the decomposition once the minimal triangulation H of the input graph
G is computed. More specifically, we want to bypass the up to n graph searches
which will cost O(nm) time.

With this idea in mind, we introduce a tree structure, the atom tree, which
organizes the atoms of the clique minimal separator decomposition into a tree,
in much the same way as the clique tree organizes the maximal cliques of a
chordal graph. In fact, the atom tree is a tree whose nodes are the atoms and
whose edges correspond to the clique minimal separators of the graph, just as
the clique tree is a tree whose nodes are the maximal cliques and whose edges
correspond to the minimal separators of the chordal graph. (The atom trees of
a chordal graph are exactly its clique trees.) One of the strong points of this
atom tree is that it yields a visualization of the way the atoms of the graph
are structured, but in our view it is also a promising data structure which may
in the future yield improvements in the computation of the clique separator
decomposition once a clique tree of a minimal triangulation is provided.

In this paper, we introduce the concept of atom tree, and explore some of its
properties. We provide a simple algorithmic process which uses a clique tree of
a minimal triangulation H of the input graph G to compute an atom tree of G.
When the clique minimal separators of G are given in the input along with the
minimal triangulation, we compute an atom tree of G in O(m+ f) time, where
m + f is the number of edges of H. When the clique minimal separators are
not provided, our basic process costs O(min(nm,m+ nf)) time.

We can thus compute an atom tree in three steps. The first step computes
a minimal triangulation H of the input graph G; the second step constructs a
clique tree T of H; and the third step modifies T into the corresponding atom
tree. We devise a process which combines these three steps into a single O(nm)-
time algorithm, by merging several variants of MCS, as follows. Computing a
minimal triangulation H of G can be done with Algorithm MCS-M from [3],
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and yields an MCS ordering of the vertices of H; the algorithm from [17] uses
an MCS ordering of a chordal graph to compute a clique tree and to define the
minimal separators; we are thus able to merge these two algorithms, and to add a
loop which tests the minimal separators as they are found, in order to determine
which are clique minimal separators of G, and process them accordingly. The
algorithm is easy to implement.

We then investigate how we can make use of the tree structure of the clique
tree T of H to derive some improvements on the time complexity. We introduce
a process which traverses T and converts it into the corresponding atom tree of
G in O(n(n+ t)) time, where t is the number of 2-pairs of H. (A 2-pair is a pair
of non-adjacent vertices such that every chordless path from one vertex to the
other is of length 2, so t ≤ m); this approach can probably be improved upon
to yield a better time bound. We complement this result with an algorithm
to compute a minimal triangulation in O(n(n+m)) time, improving the result
from [38], which makes the complexity of computing an atom tree from the
input graph in O(n(n+m)) time.

The paper is organized as follows: in Section 2, we provide the necessary
graph notions; in Section 3, we define the notion of atom tree and prove proper-
ties which will enable us to compute it, then provide the corresponding generic
algorithm. In Section 4, we give our algorithm based on MCS to compute the
atom tree directly from the input graph. In Section 5, we present our process
to compute an atom tree from a minimal triangulation in O(n(n+ t)) time, and
we explain how to compute a minimal triangulation of a graph in O(n(n+m))
time, before concluding.

2 Preliminaries

Basics.
All graphs in this work are connected, undirected and finite. A graph is denoted
by G = (V,E), with |V | = n and |E| = m. G = (V,E) will denote the
complement of graph G = (V,E), with m = |E|. The neighborhood of a vertex
x in a graph G is NG(x), or N(x) if the context is clear; the closed neighborhood
of x is N [x] = N(x) ∪ {x}. The neighborhood of a subset X of V is N(X) =
(∪x∈XN(x)) −X. A 2-pair of a connected graph G is a pair {x, y} of vertices
of G such that every chordless path between x and y is of length 2. A clique is
a set of pairwise adjacent vertices (a single vertex is also a clique); we say that
we saturate a set X of vertices when we add all the edges necessary to turn X
into a clique. A vertex is simplicial if its neighborhood is a clique. A clique
module is a set X of vertices such that ∀x, y ∈ X,N [x] = N [y]. Graph G(X)
denotes the subgraph induced by the set X of vertices, but we will sometimes
just denote this by X. The reader is referred to [26] and [22] for classical graph
definitions and results.

Separators.
A set S of vertices of a connected graph G is a separator if G(V − S) is not
connected. A separator S is an xy-separator if x and y lie in two different
connected components of G(V − S). A separator S is a minimal xy-separator
if no proper subset of S is also an xy-separator. A separator S is said to be
minimal if there are two vertices x and y such that S is a minimal xy-separator.
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Equivalently, S is a minimal separator if and only if G(V − S) has at least two
connected components C1 and C2 such that NG(C1) = NG(C2) = S. A clique
minimal separator is a minimal separator which is a clique. There are less than
n clique minimal separators in a graph. A pair {x, y} of vertices is a 2-pair of
G if and only if N(x) ∩N(y) is a minimal xy-separator of G [1]. A moplex is a
clique module M whose neighborhood N(M) is a minimal separator.

Chordal graphs and minimal triangulations.
A graph is chordal (or triangulated) if it contains no chordless induced cycle
of length 4 or more. A chordal graph has at most n maximal cliques, and the
sum of their sizes is at most n + m. A graph is chordal if and only if all its
minimal separators are cliques [24]. A chordal graph has at most n minimal
separators [42].

A chordal graph is often represented by a clique tree:

Definition 2.1 Let H = (V,E) be a connected chordal graph. A clique tree of
H is a tree T = (VT , ET ) such that VT is the set of maximal cliques of H and
for any vertex x of H, the subgraph Tx of T induced by the set of nodes of T
containing x is a subtree of T .

Property 2.2 [17] Let H be a connected chordal graph, let T be a clique tree
of H, and let S be a set of vertices of H; then S is a minimal separator of H if
and only if there is an edge K1K2 of T such that S = K1 ∩K2.

Every chordal graph has at least one clique tree, which can be computed in
linear time with the nodes labeled by the maximal cliques and the edges labeled
by the minimal separators [17].

Given a non-chordal graph G = (V,E), the supergraph H = (V,E + F ) is a
triangulation of G if H is chordal. F is the set of fill edges, |F | is denoted by
f . The triangulation is minimal if for any proper subset of edges F ′ ⊂ F , the
graph (V,E + F ′) fails to be chordal.

Peos and meos.
An ordering of a graph G = (V,E) is a one-to-one mapping from {1, . . . , n} to
V . Given an ordering α of G, the graph G+

α = (V,E+Fα) is defined as follows:
initialize the current graph G′ with G and the set Fα with the empty set, then for
each i from 1 to n, add the set Fi of edges necessary to saturate the neighborhood
of α(i) in G′, add the edges of Fi to Fα and remove α(i) from G′. G+

α =
(V,E + Fα) is a triangulation of G. α is called a perfect elimination ordering
(peo) of G if Fα = ∅; in this case, α is a simplicial elimination ordering (at
each step, the eliminated vertex is simplicial in G′), and the graph is chordal: a
graph is chordal if and only if it has a peo [25]. α is called a minimal elimination
ordering (meo) of G if G+

α is a minimal triangulation of G. Given an ordering
α of a graph G = (V,E) and a vertex x of V, MadjG(x) denotes the set of
neighbors of x which have a number greater than that of x with respect to α
[17]. In a chordal graph H with a peo α, vertex x is called a minimal separator
generator when MadjH(x) is a minimal separator of H [12].

A moplex ordering of a chordal graph G is a partition {X1 . . . Xk} of V
into cliques such that for any i ∈ {1 . . . k − 1}, Xi is a moplex of graph Gi
obtained from G by removing the vertices of X1, . . . , Xi−1. Algorithms LexBFS
from [43] and MCS from [45] compute a moplex ordering of a chordal graph,
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and algorithms LEX M from [43] and MCS-M from [3] compute a minimal
triangulation and a moplex ordering of this minimal triangulation [2].

Clique minimal separator decomposition and atoms.
Decomposing a connected graph G = (V,E) by its clique minimal separators
can be done by repeatedly finding a clique minimal separator S of G, with
{C1 . . . Ck} the connected components of G(V − S), and replacing G with the
set of subgraphs G(Ci ∪N(Ci)), with i ∈ [1, k] [13].

The subgraphs obtained in the end, which we call atoms, are the maximal
connected subgraphs of G having no clique separator [36]. In this paper, we will
refer to atoms indifferently as subgraphs or as vertex sets. A graph has at most
n atoms. The atoms of a chordal graph are its maximal cliques.

Finding the clique minimal separators of a graph can be done by first com-
puting a minimal triangulation, as described by the following property:

Property 2.3 [36][41][13] Let G = (V,E) be a connected graph, and let H =
(V,E + F ) be a minimal triangulation of G. Any minimal separator S of H is
a minimal separator of G, the connected components of G(V − S) are the same
as those of H(V − S), and for each such component C we have that NH(C) =
NG(C). The clique minimal separators of G are the minimal separators of H
that are cliques in G.

The reader is referred to [13] for full details on this decomposition.

Elementary decompositions.
We call elementary decomposition by clique minimal separator, or elementary
decomposition for short, of a connected graph G = (V,E) a partition (Y1, S, Y2)
of V such that S is a clique of G, no vertex of Y1 is adjacent to a vertex of
Y2 in G and each one of Y1 and Y2 contains a component of G(V − S) whose
neighborhood is S. Note that in that case G(Y1∪S) and G(Y2∪S) are connected.

To prove that for each edge K1K2 of a clique tree T of a chordal graph H,
K1 ∩K2 is a minimal separator of H, [17] shows the following result.

Property 2.4 [17] Let H be a connected chordal graph, let T be a clique tree of
H, let K1K2 be an edge of T , let S = K1 ∩K2, and for each i ∈ {1, 2} let Ti be
the connected component of T − {K1K2} containing Ki and let Vi be the union
of the nodes of Ti; then (V1 − S, S, V2 − S) is an elementary decomposition of
H.

This elementary decomposition can be used as an elementary step in clique min-
imal separator decomposition. Thus a decomposition step can consist of finding
an elementary decomposition (Y1, S, Y2) of the current graph G′ = (V ′, E′) and
replacing V ′ by Y1 ∪S and Y2 ∪S, which corresponds to the following property:

Property 2.5 [36] Let G be a connected graph, and let (Y1, S, Y2) be an ele-
mentary decomposition of G; then the set of atoms of G is the disjoint union of
the sets of atoms of G(Y1 ∪ S) and of G(Y2 ∪ S).
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3 Computing an atom tree of a graph

3.1 Defining atom trees

To represent the atoms obtained by clique minimal separator decomposition,
we extend the notion of clique tree of a chordal graph to that of atom tree of
an arbitrary graph:

Definition 3.1 Let G = (V,E) be a connected graph. An atom tree of G is a
tree T = (VT , ET ) such that VT is the set of atoms of G and for any vertex x
of G, the subgraph Tx of T induced by the set of nodes of T containing x is a
subtree of T .

As is the case for a clique tree, the intersection of two adjacent nodes of an
atom tree is a clique minimal separator.

Property 3.2 Let G be a connected graph, let T be an atom tree of G, and let
S be a set of vertices of G; then S is a clique minimal separator of G if and
only if there is an edge A1A2 of T such that S = A1 ∩A2.

To prove Property 3.2, we will use the graph G∗ introduced by [36]:

Property 3.3 [36] Let G = (V,E) be a connected graph, and let G∗ be the graph
obtained from G by saturating its atoms; then G∗ is chordal, its maximal cliques
are the atoms of G and for any subsets S, Y1 and Y2 of V , S is a clique minimal
separator of G if and only if it is a minimal separator of G∗, and (Y1, S, Y2) is an
elementary decomposition of G if and only if it is an elementary decomposition
of G∗.

Proof: (of Property 3.2) By Property 3.3, T is a clique tree of G∗. S is a
clique minimal separator of G if and only if it is a minimal separator of G∗ by
Property 3.3, i.e. if and only if there is an edge A1A2 of T such that S = A1∩A2

by Property 2.2. 2

An atom tree not only yields the atoms of the decomposition by clique min-
imal separators, but also provides a compact representation of the organization
of the atoms, as illustrated by Figure 1.

Example 3.4 Figure 1 shows a graph G and one of its atom trees. Each edge
A1A2 of the atom tree is labeled with the associated clique minimal separator
A1 ∩ A2 of G (G has 2 atom trees, as node {h, j, k} can be adjacent to each of
the two other nodes containing h).

Figure 1: Graph G, the atoms of G, and an atom tree of G.
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To compute an atom tree from a clique tree of a minimal triangulation, we
will use a merging technique which contracts all the nodes of the clique tree
that are not separated by an edge representing a clique minimal separator of
the input graph:

Theorem 3.5 Let G = (V,E) be a connected graph, let H = (V,E + F ) be a
minimal triangulation of G, let T = (VT , ET ) be a clique tree of H, and let T ′

be the forest obtained from T by removing all edges KK ′ such that K ∩ K ′ is
a clique in G, let T ′′ be the tree obtained from T by merging the nodes of each
tree of T ′ into one node; then T ′′ is an atom tree of G, and for each edge KK ′

of T such that K ∩K ′ is a clique in G, K ∩K ′ = A ∩ A′, where A and A′ are
the atoms of G containing K and K ′ respectively.

To prove Theorem 3.5, we will extend Property 2.4 to atom trees:

Property 3.6 Let G be a connected graph, let T be an atom tree of G, let A1A2

be an edge of T , let S = A1 ∩A2, and for each i ∈ {1, 2} let Ti be the connected
component of T − {A1A2} containing Ai, let Vi be the union of the nodes of Ti
and let Gi = G(Vi); then (V1 − S, S, V2 − S) is an elementary decomposition of
G and for each i ∈ {1, 2}, Ti is an atom tree of Gi.

Proof: (of Property 3.6)
By Property 3.3, T is a clique tree of G∗. By Property 2.4, (V1 − S, S, V2 − S)
is an elementary decomposition of G∗, so by Property 3.3, it is an elementary
decomposition of G. It follows by Property 2.5 that the set of atoms of G is
the disjoint union of the sets of atoms of G1 and of G2. Let i ∈ {1, 2}, and
let us show that Ti is an atom tree of Gi. As for each vertex x of Gi, (Ti)x is
a subtree of Ti (since it is the restriction of Tx to Ti), it is sufficient to show
that the nodes of Ti are the atoms of Gi. The set of atoms of G is the disjoint
union of the sets of nodes of T1 and of T2, and is also the disjoint union of the
sets of atoms of G1 and of G2. As moreover no atom of G1 can be a subset of
V2 and no atom of G2 can be a subset of V1 (otherwise it would be a subset of
V1 ∩ V2 = S, and therefore a strict subset of A1 and A2) the atoms of Gi are
exactly the nodes of Ti. 2

Conversely, we can build an atom tree of G from atom trees of subgraphs of
G.

Property 3.7 Let G be a connected graph, let (Y1, S, Y2) be an elementary
decomposition of G and for each i ∈ {1, 2} let Ti be an atom tree of G(Yi ∪ S)
and let Ai be a node of Ti containing S; then the tree T composed of T1, T2 and
edge A1A2 is an atom tree of G.

Proof: (of Property 3.7)
The set of nodes of T is the disjoint union of the sets of nodes of T1 and T2, which
are the sets of atoms of G(Y1 ∪ S) and of G(Y2 ∪ S). It follows by Property 2.5
that the nodes of T are the atoms of G. Moreover, for each vertex x of G, Tx
is a subtree of T : if x ∈ S then Tx is the tree composed of (T1)x, (T2)x and the
edge A1A2, otherwise it is either equal to (T1)x or to (T2)x. Hence T is an atom
tree of G. 2
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Proof: (of Theorem 3.5)
We prove this by induction on the number of edges KK ′ of T such that K ∩K ′
is a clique in G. If there is no such edge then by Properties 2.2 and 2.3, G
has no clique minimal separator and therefore V is the unique atom, and T ′′ is
reduced to node V , so the property holds. We assume that it holds if T has at
most k edges KK ′ such that K ∩K ′ is a clique in G. Let us show that it holds
if T has k + 1 such edges.

Let K1K2 be an edge of T such that K1∩K2 is a clique in G, let S = K1∩K2,
and for each i ∈ {1, 2} let Ti be the connected component of T − {K1K2}
containing Ki, let T ′′i be the tree obtained from Ti by the merging process, let
Vi be the union of the nodes of Ti, let Gi = G(Vi) and let Hi = H(Vi).

By Property 2.4, (V1 − S, S, V2 − S) is an elementary decomposition of H.
By Property 2.3, this is also the case for G.

Let us show that H1 is a minimal triangulation of G1 and that T1 is a clique
tree of H1. H1 is clearly a triangulation of G1. We claim that this triangulation
is minimal: if it is not, let H ′ be a triangulation of G1 that is a strict subgraph
of H1; the union of H ′ and H2 is a triangulation of G that is a strict subgraph
of H, which contradicts the minimality of H. As T is a clique tree of H, it
is also an atom tree of H, so, by Property 3.6, T1 is an atom tree of H1, and
therefore a clique tree of H1 since H1 is chordal. By induction hypothesis, T ′′1
is an atom tree of G1 and for each edge KK ′ of T1 such that K ∩K ′ is a clique
in G, K ∩K ′ = A ∩A′, where A and A′ are the atoms of G1 containing K and
K ′ respectively.

By symmetry, this is also the case for T ′′2 and G2. As S = K1∩K2 ⊆ A1∩A2,
by Property 3.7, T ′′ is an atom tree of G.

For A1 and A2 the atoms of G containing K1 and K2 respectively, we have
S ⊆ A1 ∩ A2 ⊆ V1 ∩ V2 = S, and therefore S = A1 ∩ A2, which completes our
proof. 2

Example 3.8 Figure 2 shows a minimal triangulation H of graph G from Fig-
ure 1 (fill edges are dashed), a clique tree T of H (minimal separators which are
cliques in G are prefixed with a star) and the atom tree of G obtained from T
by the merging process.

3.2 Computing an atom tree from a clique tree of a min-
imal triangulation

From Theorem 3.5, we derive an algorithm to compute an atom tree from a
clique tree of a minimal triangulation. Our algorithm defines the connected
components of the forest T ′ by contracting each pair of adjacent nodes in T
separated by an edge which does not represent a clique minimal separator (the
contraction of two nodes K and K ′ into a single node consists in replacing K
and K ′ with node K ∪K ′; the set of its neighbors in the new tree is the union
of the sets of neighbors of K and of K ′).
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Figure 2: Graph G and a minimal triangulation H of G (fill edges are dashed),
a clique tree T of H (the minimal separators which are not cliques in G are
represented by dashed edges in the clique tree), and the atom tree of G obtained
from T by the merging process.

Algorithm Atom-Tree

input : A connected graph G, a clique tree T of a minimal triangulation
of G.

output: T is merged into the corresponding atom tree of G.
foreach edge KK ′ of T do

if K ∩K ′ is not a clique in G then
Contract K with K ′ ;

Theorem 3.9 Let G = (V,E) be a graph, and let H = (V,E+F ) be a minimal
triangulation of G, with |F | = f . Algorithm Atom-Tree computes an atom tree
of G from a clique tree of H in time:

• O(m+ f) if the clique minimal separators of G are provided.

• O(min(nm,m+ nf)) otherwise.

Proof: As T is a tree, it can be searched from one of its nodes in such a
way that for each processed edge KK ′, K ′ is still unreached, and therefore is
a node of the initial tree T with the same degree as in T . Computing K ∩K ′
and contracting K with K ′ can be done in O(|K ′| + |NT (K ′)|) time, hence in
O(m+ f) time globally since the sum of the sizes of the nodes of T is at most
n+m+ f and T has less than n edges.

If on the one hand the set of clique minimal separators of the input graph
is provided, determining whether K ∩K ′ is one of them costs O(m + f) time
globally: we build the tripartite graph I = (V,ET ,S ∗, EI), where ET is the
set of edges of the clique tree, S ∗ is the set of clique minimal separators of G,
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and EI is the set of edges of the tripartite graph, defined as follows: vy ∈ EI
if v ∈ V and y is either a minimal separator of S ∗ containing v or an edge of
the clique tree representing a minimal separator containing v. I has less than
3n vertices and less than 2(n+m+ f) edges, since there are at most n minimal
separators in H and since the sum of the sizes of the minimal separators of
H, which is less than the sum of the sizes of its maximal cliques, is at most
n + m + f . In I, we search for pairs of vertices {x, y}, x ∈ S ∗, y ∈ ET , with
identical neighborhoods. Finding sets of vertices with identical neighborhoods
can be done in linear time using partition refinement on the neighborhoods [30].

If on the other hand the clique minimal separators of G are not provided,
determining whether K ∩ K ′ is a clique in G costs O(m) time, and therefore
O(nm) time globally. Another way to determine whether K ∩ K ′ is a clique
in G is to check for each fill edge whether it belongs to K ∩K ′, which can be
done in O(f) time per edge of T , hence in O(nf) time globally, which makes
the total complexity in O(m+ nf) time. 2

The time complexity in O(m + nf) may be better than O(nm) when f is of
small size. This is interesting in the context of triangulations computed with
the Minimum Degree Heuristic, which approximates minimum triangulation and
can yield a small fill in practice [16].

When O(nm) is better than O(m + nf), our algorithm runs faster than in
the general case when the sum of the number of edges in G over all the minimal
separators of H is small, which happens when the separators are of small size,
when the overlap between separators contains few edges globally, when there
are few separators, or when there are few maximal cliques. This of course is
also the case when the size of the maximum clique of H is bounded.

4 Computing an atom tree directly from the in-
put graph

In this section, we explain how we can compute an atom tree directly from the
input graph in a single pass by combining two variations of Algorithm MCS.

MCS [45] was devised as a simplification of Algorithm LexBFS [43] to com-
pute a peo α of a chordal graph H. Originally, MCS (for Maximum Cardinality
Search), numbers the vertices from n to 1 and is described as using weights
(or labels) on unnumbered vertices. The label of a vertex x corresponds to the
number of already numbered neighbors of x, which is the number |MadjH(x)|
of neighbors of x which have a higher number than that of x if x is the vertex
being numbered.

The first modification of MCS, called Expanded MCS, was proposed by Blair
and Peyton [17] to build a clique tree of a chordal graph H in linear time: MCS is
run (from n to 1), and each time the vertex x which is chosen to be numbered has
a label which is not strictly larger than the label of the previously chosen vertex,
a maximal clique has just been completed, x is a minimal separator generator,
and an edge can be added to the clique tree, labeled with MadjH(x).

The second modification of MCS is Algorithm MCS-M [3], which computes
a minimal triangulation H of a non-chordal graph G, as well as an meo α of G,
in O(nm) time. MCS-M extends MCS in the same fashion that LEX M extends
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LexBFS in [43]: a feature computing the fill edges incident to the current vertex
is added.

The ordering α which is computed by MCS-M is both an meo of G and a peo
of the computed minimal triangulation H [2]; using the idea behind Expanded
MCS, a clique tree of the minimal triangulation can therefore be computed at
the same time as the ordering. We thus define Algorithm Expanded MCSM.

Finally, using the results from Section 3.2, we are able to modify Expanded
MCSM so that it uses only minimal separators of the minimal triangulation which
are also clique minimal separators of the input graph. This yields Algorithm
MCSM-Atom-Tree, which is a combination of Expanded MCS, MCS-M and Al-
gorithm Atom-Tree, and which computes an atom tree of a non-chordal graph
in a single O(nm)-time pass.

To make the paper self-contained, we will first recall algorithms MCS, Ex-
panded MCS, and MCS-M, before presenting Expanded MCSM and finally
MCSM-Atom-Tree.

In the following algorithms, V ′ is the set of not yet numbered vertices;
|NH(x) − V ′| is the label of vertex x, which is equal to |MadjH(x)| if x is
the vertex being numbered.

A clique tree of a chordal graph H is represented by a labeled tree T =
(VT , ET , Clique,MinSep), where VT is in the form {1 . . . q}, Clique maps each
node of VT to a maximal clique of H and MinSep maps each edge of ET to a
minimal separator of H. For each edge ps in ET , MinSep(ps) = Clique(p) ∩
Clique(s) is the corresponding minimal separator.

Similarly, an atom tree of a graph G is represented by a labeled tree T =
(VT , ET , Atom,CliqueMinSep), where VT is in the form {1 . . . q}, Atom maps
each node of VT to an atom of G and CliqueMinSep maps each edge of ET to a
clique minimal separator of G, with CliqueMinSep(ps) = Atom(p) ∩Atom(s).

Algorithm MCS[45]

input : A chordal graph H = (V,E).
output: A peo α of H.
V ′ ← V ;
for i from n downto 1 do

Choose a vertex x in V ′ such that |NH(x)− V ′| is maximum;
α(i)← x; V ′ ← V ′ − {x};
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Algorithm Expanded-MCS[17]

input : A connected chordal graph H = (V,E).
output: A peo α, the corresponding clique tree

T = (VT , ET , Clique,MinSep) of H.
V ′ ← V ; prev-card← 0; s← 0; VT ← ∅; ET ← ∅;
for i from n downto 1 do

Choose a vertex x in V ′ such that |NH(x)− V ′| is maximum;
α(i)← x; new-card← |NH(x)− V ′| // = |MadjH(x)|;
if new-card ≤ prev-card //begin new clique then
s← s+ 1; VT ← VT + {s}; Clique(s)←MadjH(x);
if new-card 6= 0 //get edge to parent then

k ←min{j | α(j) ∈MadjH(x)} ;
p← cli(α(k));
ET ← ET + {ps};
MinSep(ps)←MadjH(x) //x is a separator generator ;

cli(x)← s: Clique(s)← Clique(s) + {x}; V ′ ← V ′ − {x};
prev-card← new-card;

Algorithm MCS-M[3]

input : A graph G = (V,E).
output: A minimal triangulation H = (V,E + F ) of G, the

corresponding meo α of G, which is a peo of H.
EH ← E; H ← (V,EH); F ← ∅; V ′ ← V ;
for i from n downto 1 do

Choose a vertex x in V ′ such that |NH(x)− V ′| is maximum;
α(i)← x;
foreach y ∈ V ′ −NH [x] do

if there is an xy-path µ in G(V ′) such that for each internal node
z of µ |NH(z)− V ′| < |NH(y)− V ′| then

F ← F + {xy}; EH ← EH + {xy};

H ← (V,EH); V ′ ← V ′ − {x};

Combining Algorithms Expanded MCS and MCS-M, we obtain the following
algorithm:
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Algorithm Expanded-MCSM

input : A connected graph G = (V,E).
output: A minimal triangulation H = (V,E +F ) of G, an meo α of G (α

is a peo of H), and the corresponding clique tree
T = (VT , ET , Clique,MinSep) of H.

EH ← E; H ← (V,EH); F ← ∅; V ′ ← V ; s← 0; VT ← ∅; ET ← ∅;
for i from n downto 1 do

Choose a vertex x in V ′ such that |NH(x)− V ′| is maximum;
α(i)← x; new-card← |NH(x)− V ′| // = |MadjH(x)|;
if new-card ≤ prev-card then
s← s+ 1; VT ← VT + {s}; Clique(s)←MadjH(x);
if new-card 6= 0 then

k ←min{j | α(j) ∈MadjH(x)}; p← cli(α(k));
ET ← ET + {ps}; MinSep(ps)←MadjH(x);

cli(x)← s: Clique(s)← Clique(s) + {x};
foreach y ∈ V ′ −NH [x] do

if there is an xy-path µ in G(V ′) such that for each internal node
z of µ |NH(z)− V ′| < |NH(y)− V ′| then

F ← F + {xy}; EH ← EH + {xy};

H ← (V,EH); V ′ ← V ′ − {x}; prev-card← new-card;

We will now modify Algorithm Expanded-MCSM to compute the corre-
sponding atom tree directly.

For each edge ps of the clique tree of the minimal triangulation H com-
puted by an execution of Algorithm Expanded-MCSM, the minimal separa-
tor Clique(p) ∩ Clique(s) of H is MadjH(x), where x and H are the values of
these variables when adding edge ps to ET . Thus, in order to compute an atom
tree of a graph G, we will modify Algorithm Expanded-MCSM as follows: when
new-card ≤ prev-card, we determine whether MadjH(x) is a clique in G; if it
is, we increment s, and add edge ps to ET if prev-card 6= 0; if it is not, we merge
Clique(p) and Clique(s) by setting s to p. We obtain the following algorithm.
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Algorithm MCSM-Atom-Tree

input : A connected graph G = (V,E).
output: An atom tree T = (VT , ET , Atom,CliqueMinSep) of G, a set F

of fill edges defining a minimal triangulation of G.
EH ← E; H ← (V,EH); F ← ∅; V ′ ← V ; prev-card← 0; s← 0; VT ← ∅;
ET ← ∅;
for i from n downto 1 do

Choose a vertex x in V ′ such that |NH(x)− V ′| is maximum;
α(i)← x; new-card← |NH(x)− V ′| // = |MadjH(x)|;

if new-card ≤ prev-card //begin new clique then
if new-card = 0 then

s← s+ 1; VT ← VT + {s}; Atom(s)← ∅;
else

k ←min{j | α(j) ∈MadjH(x)}; p← ato(α(k));
if MadjH(x) is a clique in G then

s← s+ 1; VT ← VT + {s}; Atom(s)←MadjH(x);
ET ← ET + {ps}; CliqueMinSep(ps)←MadjH(x);

else
s← p //merge new clique with clique p;

ato(x)← s: Atom(s)← Atom(s) + {x};
foreach y ∈ V ′ −NH [x] do

if there is an xy-path µ in G(V ′) such that for each internal node
z of µ |NH(z)− V ′| < |NH(y)− V ′| then

F ← F + {xy}; EH ← EH + {xy};

H ← (V,EH); V ′ ← V ′ − {x}; prev-card← new-card;

Theorem 4.1 Let G = (V,E) be a connected graph. Algorithm MCSM-Atom-
Tree computes an atom tree of G in O(nm) time.

Proof: The correctness follows from the correctness of Algorithm Expanded-
MCSM and Theorem 3.5. O(nm) time complexity follows from the O(nm) time
complexity of Algorithm Expanded-MCSM and from the fact that determining
whether MadjH(x) is a clique in G costs O(m) time, and therefore O(nm) time
globally. 2

Let us remark that the clique tree of a chordal graph computed by the
algorithm from [17] is directed, and that each node can be labeled with the
vertices which are not part of the father clique. These new vertices correspond
to the transitory moplexes of the moplex ordering induced by α; in order to help
visualize the atoms, we thus propose a simplified atom tree, which we call the
moplex tree, bearing only non-redundant information: the (transitory) moplexes
label the nodes and the clique minimal separators label the edges. Figure 3 gives
this moplex tree for our example.

Example 4.2 Figure 3 gives graph G from Figure 1, and a numbering α and
the fill edges produced by an execution of Algorithm MCSM-Atom-Tree on G;
the corresponding atom tree of G is shown: the minimal separator generators
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Figure 3: Graph G, the underlying minimal triangulation H of G with the meo
computed by MCSM-Atom-Tree, and the corresponding atom tree and moplex
tree.

are postfixed by a star; the new vertices (transitory moplexes) in each node label
of the atom tree are circled; the moplex tree is also shown.

5 Computing an atom tree from the input graph
in O(n(n + m)) time

In this section, we will make use of the atom tree to devise an algorithm which
can compute the clique minimal separator decomposition with a different worst-
time complexity than the classical O(nm)-time ones discussed in the Introduc-
tion: we compute the decomposition in O(n(n+m)) time.

We first show in Section 5.1 how to traverse the clique tree of a minimal
triangulation to ensure O(n(n+ t)) time, where t is the number of 2-pairs of the
minimal triangulation. As discussed above, a 2-pair is a non-edge of the graph,
so t < m− f , where f is the number of fill edges added by the triangulation.

To complement this result, we then go on in Section 5.2 to provide an algo-
rithm which computes a minimal triangulation in O(n(n+m)) time.

Putting together these two results, we obtain an algorithm which computes
the atom tree (and thus the clique minimal separator decomposition) in
O(n(n+m)) time.

5.1 Computing an atom tree from a clique tree in
O(n(n + t)) time

Once a minimal triangulation has been computed, the bottleneck complexity
for computing an atom tree resides in deciding which minimal separators are
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cliques in the original graph. To determine this, we will use a new technique.
We will consider a directed version of the clique tree (by choosing an arbitrary
root). We will use the property that a minimal separator S is a clique in G if
and only if it contains no edge of F . We will traverse the clique tree from the
root down, and maintain information on the subset X of V represented by the
node or edge of the tree we are on. We will maintain for each vertex y of V
the number dF (y) of vertices x in the current subset X such that xy ∈ F (i.e.
the number of neighbors of y in the graph (V, F ) that are in X). Thus X will
be a clique in G if and only if for every vertex x of X, dF (x) = 0; dF will be
updated by vertex additions and removals when going downwards from node u
to node v through edge (u, v).

The clique tree is represented by a rooted tree T = (VT , Child,Atom), where
Child maps each node of T to the set of its successors in T , and Atom maps each
node of T to a subset of V , which is a maximal clique of H at the beginning,
and an atom of G at the end.

Algorithm DF-Atom-Tree

input : A connected graph G = (V,E), the set F of fill edges of a
minimal triangulation H of G, a rooted clique tree
T = (VT , Child,Atom) of H, the root r of T .

output: T is merged into the corresponding atom tree of G.
init: dFr(x) is 0 for each vertex x of V ;
foreach x ∈ Atom(r) do

foreach y ∈ V | xy ∈ F do dFr(y)← dFr(y) + 1;

REC-AT-DF(r, dFr);
foreach edge (u, v) of T do

if not Complete(u, v) then contract u with v ;

REC-AT-DF

input : A node u of T , the mapping dFu associated with Atom(u)
output: The mapping Complete from the set of edges of the subtree of T

rooted at u to {true, false} defined by: Complete(v, w) = true if
and only if Atom(v) ∩Atom(w) contains no edge of F .

foreach v ∈ Child(u) do
dFv ← dFu;
foreach x ∈ Atom(u)−Atom(v) do

foreach y ∈ V | xy ∈ F do dFv(y)← dFv(y)− 1;

Complete(u, v)← true ; // Atom(u)∩Atom(v) is set as a clique in G;
foreach x ∈ Atom(u) ∩Atom(v) do

if dFv(x) 6= 0 then Complete(u, v)← false;

foreach x ∈ Atom(v)−Atom(u) do
foreach y ∈ V | xy ∈ F do dFv(y)← dFv(y) + 1;

REC-AT-DF(v, dFv);

Example 5.1 Consider graph H and clique tree T of H from Figure 2: F =
{ae, eg, fh}, represented by dashed edges in H; the root r is node {a, c, d, e}.

After the initializing phase of Algorithm DF-Atom-Tree, dFr(a) = dFr(e) =
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dFr(g) = 1 and dFr(x) = 0 for every other vertex of H.
In the execution of REC-AT-DF(r, dFr), Atom(u) = {a, c, d, e}. When

Atom(v) = {a, b, c, e}, Atom(u)−Atom(v) = {d}, so dFv = dFr and Complete(u, v)
is set to false since dFv(a) = dFv(e) = 1 (Atom(u)∩Atom(v) = {a, e} contains
edge ae of F ). When Atom(v) = {c, d, e, g}, Atom(u) − Atom(v) = {a}, so
dFv(e) is decremented to 0 and Complete(u, v) is set to true since dFv(c) =
dFv(d) = dFv(e) = 0 (Atom(u) ∩Atom(v) = {c, d, e} contains no edge of F ).

Theorem 5.2 Let G = (V,E) be a connected graph. Given a minimal triangu-
lation H = (V,E+F ) of G and a clique tree T of H, Algorithm DF-Atom-Tree
computes an atom tree of G in O(n(n+t)) time, where t is the number of 2-pairs
of H.

To prove this, we will use the following Lemma.

Lemma 5.3 Let H be a connected chordal graph, let T = (VT , Child,Atom) be
a rooted clique tree of H; then Σu∈VT

Σv∈Child(u)|Atom(u)−Atom(v)| is bounded
by the number of 2-pairs of H.

Proof: It is sufficient to show that there is an injective mapping f from the set
of triples (x, u, v) such that (u, v) is an edge of T and x ∈ Atom(u)−Atom(v) to
the set of 2-pairs of H. Let f(x, u, v) = {x, y}, where y ∈ Atom(v) − Atom(u)
(which is not empty since Atom(u) and Atom(v) are maximal cliques of H).
Let us show that {x, y},is a 2-pair in H, or, equivalently, that NH(x) ∩NH(y)
is a minimal xy-separator in H. As Atom(u) and Atom(v) are cliques of H
containing x and y respectively, Atom(u) ⊆ NH(x) and Atom(v) ⊆ NH(y).
Hence Atom(u) ∩Atom(v) ⊆ NH(x) ∩NH(y). As, by Property 3.6, Atom(u) ∩
Atom(v) is an xy-separator in H, NH(x) ∩NH(y) is an xy-separator in H too,
and it is a minimal one since it is a subset of each xy-separator. Let us show
that f is injective. We suppose that f(x1, u1, v1) = f(x2, u2, v2) = {x, y}, with
the root of Tx being at a shorter distance from the root of T than the root of
Ty. Then x1 = x2 = x, v1 = v2 = the root of Ty and u1 = u2 = the predecessor
of v1 in T . Hence (x1, u1, v1) = (x2, u2, v2). 2

Proof: (of Theorem 5.2)
Let (u, v) be an edge of T . Determining Complete(u, v) costs O(n) time, and
therefore O(n2) time for all edges of T . A vertex x of V is added exactly once
to the current subset X represented by dF (when processing the predecessor
of the root of Tx if it exists and when computing dFr otherwise). Thus vertex
additions to X cost O(n2) time globally. The number of removals from X,
i.e. Σ(u,v) edge of T |Atom(u)−Atom(v)|, is bounded by t by Lemma 5.3. Thus
vertex removals from X cost O(nt) time globally, which puts the complexity of
Algorithm DF-Atom-Tree in O(n(n+ t)) time. 2

The complexity bottleneck of Algorithm DF-Atom-Tree resides in the num-
ber of vertex removals from dF. There are some instances where this number is
small: this is the case when the number of 2-pairs is in O(n), when the number
of leaves of T is bounded, and when the minimal triangulation is an interval
graph or a path graph. Note that in the general case, the number of vertex
removals is often much smaller than the number of 2-pairs.
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5.2 Computing a minimal triangulation in O(n(n+m)) time

We will complete this paper by providing an algorithmic process to compute a
minimal triangulation in O(n(n+m)) time. This algorithm improves the time
complexity of [38], which is O(m(δ2 + m)), where m is the number of edges of
G and δ is the maximum degree of G (which can be in O(n)).

Our basic process is the following: a minimal triangulation H of a connected
graph G can be computed by repeatedly choosing a moplex M , saturating the
neighborhood of M and removing M from the graph, until only a clique remains
[6], according to Algorithm Moplex-Triangulation given below:

Algorithm Moplex-Triangulation

input : A non-chordal graph G = (V,E).
output: A set F of fill edges defining a minimal triangulation of G.
V ′ ← V ; F ← ∅ ; G′ ← G;
repeat

M ← find a moplex of G′;
F ′ ← edges necessary to saturate NG′(M);
F ← F + F ′; V ′ ← V ′ −M ; G′ ← (G′ + F ′)−M ;

until G′ is a clique;

To find a moplex, one can use algorithm LexBFS from [43], as explained
in [5]. LexBFS computes an ordering of the vertices of a graph in linear time
[43]. For any LexBFS ordering α = (α(1), . . . , α(n)) of a non-clique graph G,
there is a moplex M of G such that M = {α(1), . . . , α(|M |)} [5]; therefore, a
moplex of a non-clique graph can be computed in linear time by computing
a LexBFS ordering α and defining M as {α(1), . . . , α(k)}, where k + 1 is the
smallest integer i such that N [α(i)] 6= N [α(1)].

A moplex can thus be found in linear time; the running time of Algorithm
Moplex-Triangulation is in O(n(m+ f)), since at each step added fill edges are
traversed. However, we will see that we can run it in the complement graph,
and that thus at each step fill edges are removed from the graph.

A LexBFS ordering of G can be obtained by running a slight variant of
LexBFS on G in O(n + m) time [35]. Note that for any vertices x and y
of G, NG[x] = NG[y] if and only if NG(x) = NG(y), and for any moplex
M of G containing x, NG(M) = V − (NG(x) + M). Therefore, Algorithm
Moplex-Triangulation can be implemented by initializing the current graph
G′ = (V ′, E′) with G, and repeatedly computing our LexBFS ordering α of
G′, defining M as {α(1), . . . , α(k)} where k + 1 is the smallest integer i such
that NG′(α(i)) 6= NG′(α(1)), defining S as V ′ − (NG′(α(1)) +M), removing all
edges in S from G′, adding the edges that have just been removed from G′ to
F and removing M from G′ until G′ has no edge. Initializing G′ with G costs
O(n2) time, each step of the loop costs O(n + m) time, the number of steps is
bounded by n and determining whether G′ has an edge costs O(n) time. The
algorithm thus runs in O(n(n+m)) time.
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6 Conclusion

In this paper, we introduce the notion of atom tree of a graph, which not only
yields its atoms and its clique minimal separators, but also gives a compact
representation of their organization. We study how to compute an atom tree
from a clique tree of a minimal triangulation, thereby providing a different
approach from the classical one. Previously, computing the decomposition by
clique minimal separators had 3 complexity bottlenecks, roughly corresponding
to the 3 steps involved:

1. Compute a minimal triangulation.

2. Perform up to n graph searches.

3. Check which of the minimal separators of the minimal triangulation are
cliques in the input graph.

As discussed in the Introduction, specialized minimal triangulation algo-
rithms lower the complexity of Item 1 for some graph classes, so this step can
be improved for specialized input. Our results have enabled altogether removing
Item 2. For Item 3, we provide an algorithm with an O(n(n + m − f)) time
complexity; however, a clever encoding of the clique tree may yield a better
algorithm in the future.

We also present an algorithm based on MCS which computes the minimal
triangulation and the atom tree at the same time. Recently, [12] unified results
for MCS and LexBFS regarding the generation of the maximal cliques and the
minimal separators of a chordal graph. Thus LexBFS and LEX M could be
extended in the same fashion as MCS and MCS-M to compute an atom tree;
the cousin of LexBFS, LexDFS, introduced by Corneil and Krueger [23], should
also work, in view of the recent results by Xua, Lia and Liangb [47].

We leave open the question of computing the atoms efficiently without com-
puting a minimal triangulation of the graph. This can be done in linear time
when all the clique minimal separators are of size 1 or 2 [40, 29]; for hole-
and-diamond-free graphs, this can be done in O(n2) time [8]; we do not know
whether this could be accomplished as efficiently in the general case. One of
the areas of investigation would be to define a non-minimal triangulation which
preserves clique minimal separators. However, in view of the results by Kratsch
and Spinrad [34], which show that finding a clique minimal separator in a graph
is at least as hard as finding a triangle, there is little hope in the general case
of improving the time complexity of computing the clique minimal separator
decomposition to less than O(nα) time. Finding a process to compute the de-
composition which matches the O(nαlogn) time for computing a minimal trian-
gulation of Heggernes, Telle and Villanger [28] would be an interesting advance
and should be possible.
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[19] A. Brandstädt, V. Giakoumakis, F. Maffray. Clique separator decompo-
sition of hole-free and diamond-free graphs and algorithmic consequences.
Discrete Appl. Math., 160:471-478, 2012.
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