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Enhancing Atlas Based Segmentation with Multi-Class Linear Classifiers

Michaël Sdika
Université de Lyon, CREATIS ; CNRS UMR 5220 ; Inserm U1044 ; INSA-Lyon ; Université Lyon 1, France.

a. Purpose To present a method to enrich atlases for atlas based segmentation. Such enriched
atlases can then be used as a single atlas or within a multi-atlas framework.
b. Methods In this paper, machine learning techniques have been used to enhance the atlas-

based segmentation approach. The enhanced atlas defined in this work is a pair composed of a gray
level image alongside an image of multi-class classifiers with one classifier per voxel. Each classifier
embeds local information from the whole training dataset that allows for the correction of some
systematic errors in the segmentation, and accounts for the possible local registration errors. We
also propose to use these images of classifiers within a multi-atlas framework: results produced by
a set of such local classifier atlases can be combined using a label fusion method.
c. Results Experiments have been made on the in vivo images of the IBSR dataset and a com-

parison has been made with several state-of-the-art methods such as FreeSurfer and the multi-atlas
non-local patch based method of Coupé or Rousseau. These experiments show that our method is
competitive with state-of-the-art methods while having a low computational cost. Further enhance-
ment has also been obtained with a multi-atlas version of our method. It is also shown that, in this
case, nonlocal fusion is unnecessary. The multi-atlas fusion can therefore be done efficiently.
d. Conclusions The single atlas version has similar quality as state-of-the-arts multi-atlas

methods but with the computational cost of a naive single atlas segmentation. The multi-atlas
version offers a improvement in quality and can be done efficiently without a nonlocal strategy.

I. INTRODUCTION

Atlas based segmentation [1–3], is now a common im-
age processing tool. Using an image registration proce-
dure, the geometric transform from a subject image to an
image with known segmentation, an atlas, is estimated
and used to map the atlas segmentation to the subject
image. The only constraint on the atlas is to be similar
to the subject image up to a geometric (possibly nonlin-
ear) geometric transform. Atlas based segmentation has
been used extensively on human brain data [4, 5] but it
has also successfully been used on large variety of med-
ical image segmentation problems such as bee brain [6],
heart [7, 8] or prostate [9], for example. In practice, at-
las based segmentation is used to measure the size or the
atrophy of specific anatomical structures. For example
in [10], it allows to investigate clinical factors influencing
the size hippocampus. Hippocampus atrophy is indeed
an indicator of dementia and cognitive decline. It can
also be used to delineate structures for treatment plan-
ning in radiotherapy either when the tumor does not de-
form the anatomy [11–13] or even when the tumor does
deform the anatomy [14, 15]. Atlas based segmentation
also allows measuring physiological parameters in specific
structures. It has been used for example to measure vol-
umetric bone mineral density on quantitative computed
tomography images [16], or to quantify the blood flow in
the vessel on cardiac images [17].

The segmentation obtained from one atlas depends on
the registration quality. But registration is an ill posed
problem and the choice of the similarity metric, the trans-
formation model and the degree of regularization that
would produce accurate and robust results is difficult.
Furthermore, as it is a non-convex nonlinear problem,
local minima must be avoided during its numerical reso-

lution.

To improve the segmentation results, a set of several
atlases can be used instead of a single atlas. For example,
STAPLE was introduced in [18]; this method produces
an agreement among a set of manual binary segmenta-
tion volumes. In [19], this method has been extended to
the problem of multi-label segmentation using multiple
atlases. In [20], it is proposed to use shape based aver-
aging to fuse multiple atlas segmentation maps: distance
maps to each label and each atlas output is computed
and the final labeling minimizes the mean distance map
of each label. Majority voting has also been investigated
in [6, 21, 22] to fuse the results of multiple atlas segmen-
tation. This method, while simple to implement, does
clearly improve the segmentation with respect to the best
segmentation of all atlases. In [7, 23], the vote is weighted
by a function of the local registration residual. The work
of [24] formalizes these kinds of fusion methods using a
probabilistic framework. This framework is extended in
[25] to include the joint registration of all the atlases to
the subject and support intermodality. In [5], the accu-
racy map of an atlas is introduced and proposed as an
original weighting for a vote. A mapping consistent with
tissue classification is also proposed. The combination
of both propositions provides a clear improvement. The
work of Wang [26] is also based on a weighted vote with
offline computed weights. The novelty here is to account
for the correlation between the atlases for the estima-
tion of the weights. In [9], a weighted vote procedure is
also proposed and the weights are estimated iteratively:
the segmentation maps from each atlas are fused using
a weighted vote, then the weights are re-estimated by
comparing each atlas segmentation to the fused segmen-
tation. In [27], the weights are also computed iteratively
but using the Expectation Maximization procedure. To
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remove the cost of the registration to each atlas of the
registration, it has been proposed in [28] to create an av-
erage atlas from the atlas dataset and to keep the trans-
formation from the average atlas to each individual atlas.
To segment a new subject, only the registration to the
template is required, the transformation from the subject
to each atlas is obtained by composition.

The fusion methods proposed in [4, 29] are both in-
spired by the non-local mean denoising method presented
in [30]. For these methods, the fusion is done using a vote
in which the matching voxel in each atlas and their neigh-
bors contribute. The difference between the local patch
around the subject voxel and the local patch around each
contributing voxel of the atlases is used to weight the
vote. This non-local fusion method has also successfully
been used on computed tomography (CT) images for the
segmentation of the prostate in [31] or for the parothyd
gland in [32]. The feature used in these cases was local
patches or HOG features [33].

The improvement offered by multi-atlas segmentation
is really important, especially when nonlocal fusion is
used. However, this benefit comes with a higher compu-
tational cost: several registrations need to be done and
whereas the multi-atlas fusion cost itself is often negligi-
ble, it is not when nonlocal fusion is used.

A different approach to improve atlas based segmenta-
tion is to gather information complementary to the label
map (such as local statistics) into the atlas. In FreeSurfer
[34], the atlas has been enriched with local intensity dis-
tributions and label neighborhood statistics. Machine
learning has been used for medical image segmentation
in [35–37]. In these works, a classifier is trained for each
structure to learn the decision functions that will segment
the structures. The local features used for the training
are augmented with the coordinates of the voxels for a
position dependent response of the classifier. A Bayes
classifier with Markov prior is used in [38] to segment
a single structure using multi-scale Gaussian derivatives
features. A probabilistic atlas is used to provide prior
on the structure location. In the atlas based segmenta-
tion context, machine learning can be used to enhance
an atlas: in the training step, a decision function is opti-
mized for the task of segmenting images based on known
samples. Once the model has been learned offline, it can
hopefully be efficiently used for the online segmentation
of a new subject.

In the work of [39], a random forest ai is trained on
each atlas of the dataset. Each tree of ai is a predic-
tor for one label of the segmentation. The features used
are a fourth dimensional vector containing local inten-
sity statistics. To segment a new subject, each voxel of
the subject image should be processed with each tree, of
each atlas forest, of each atlas of the dataset. The work
presented in [37] propose to train a classifier using lo-
cal patches as features on the misclassified voxel of any
given segmentation method to correct its systematic er-
ror. The procedure acts as a post processing using one
classifier per segmentation label.

Only very recently, some methods have been proposed
where local classifiers are trained on the image to help the
segmentation. In [40], a linear classifier is trained for each
voxels from a set of atlases using 400 dimensional feature
vectors. The method is used for binary segmentation and
still requires the registration to the whole dataset for an
atlas selection step. In [41] local non-linear SVM classi-
fiers are trained on the atlas. Despite the fact that it is
used for 2D images, the classifiers are trained with only
a subset of the pixels to save training time. Regarding
the segmentation time, their SVM based method is more
computationally expensive than their non-local inline fu-
sion method. Local classifiers are also used in [42] for
the segmentation of 2D ultrasound cardiac images: lo-
cal random forests are trained for each pixel with a local
intensity patch as feature vector.
In the present work, we use machine learning to intro-

duce additional information to the mapping process. In
the training phase, using a set of atlases, local linear SVM
classifiers learn a new mapping from local features with
the goal to correct segmentation error due to registration
failures. To segment a new subject, the method can be
used either with the registration to a single trained atlas
and can be further improved if the registration to several
trained atlases is done. Indeed, our segmentation time is
equal to a standard single atlas segmentation while still
having a quality similar to the multi-atlas patch based
method proposed by Coupé or Rousseau [4, 29]. While
presenting some similarity with the approach presented
in [40–42], our method seems to have an advantage re-
garding the inline segmentation time. Indeed, while they
report an important overhead for the application of their
classifiers, the single atlas method presented here has no
noticeable overhead over standard single atlas segmen-
tation thanks to the use of linear classifiers, a compact
feature vector and a careful implementation: our local
SVM are evaluated only when necessary. This efficiency
allows us to make a second contribution by including lo-
cal classifier atlases in a multi-atlas framework: if a set of
segmentation maps is generated by a set of classifier im-
ages, they can be combined with any multi-atlas fusion
method to enhance the results. As we will see, costly
non-local fusion methods are unnecessary. Local clas-
sifier atlases seem very good at capturing neighborhood
information and this allows an efficient multi-atlas fusion.
The method has been evaluated with experiments on

in vivo Magnetic Resonance (MR) images of the brain
and compared to the state-of-the-art methods FreeSurfer
and nonlocal multi-atlas fusion [4, 29].

II. THEORY

A. Standard Atlas Based Segmentation

For the standard atlas-based segmentation, an atlas is
a couple composed of a gray level image Ia and the corre-
sponding segmentation map Sa. To segment a gray level
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image I using this atlas, the geometric transform T that
maps the subject image voxels in the atlas coordinate
space has first to be estimated. Typically, T is the out-
put of any image registration algorithm. To compute the
segmentation of I, the atlas segmentation is then mapped
through the T transform:

S(x) = Sa (T (x)) . (1)

The segmentation clearly depends on the quality of the
image registration and any local misregistration will di-
rectly affect the segmentation. Unfortunately, these local
misregistrations are frequent due to the very large num-
ber of local minima of the nonlinear registration problem.

B. Atlas Based Segmentation with Machine

Learning

Image registration is a difficult problem: it is ill-posed
and the presence of a huge number of local minima com-
plicates its resolution when the images are complex. This
induces a non-negligible uncertainty in its output that
one needs to take into account for the segmentation.
From now on, it is no longer assumed that the trans-
formation given by the registration maps each subject
image voxel to its true corresponding voxel in the atlas.
It is only assumed that a voxel is mapped in a neighbor-
hood of its true matching position.
The problem is now to discriminate between the vox-

els in this neighborhood to choose the correct label. For
such a discrimination between voxels to be possible, some
new information is needed. In our framework, it takes the
form of a feature vector that is returned by a function F :
for a given voxel x of a given image I, F returns a dF -
dimensional local feature vector: F (I, x) ∈ R

dF . The
features can be of any type (shape, texture, contrast,
etc.) and should be complementary to the (imperfect)
localization information provided by the atlas registra-
tion. Several local descriptors have been proposed in the
literature based on the estimation of the signal intensity,
its derivative or local histograms for example (for exam-
ple HOG [33], SIFT [43], SURF [44], or LBP [45]). The
feature vector can be chosen depending on the applica-
tion. Indeed, specificities of the modality and the organ
one wants to segment can be taken into account in the
design of the feature vector. If the label can be esti-
mated given the feature vector, systematic errors of the
registration can be reduced. This finally comes down to
a multi-class, supervised classification problem: for each
neighborhood in the atlas, we need a multi-class classi-
fier that, given a feature vector, returns a segmentation
label. An atlas is now considered differently: as a pair
composed of the gray level image Ia and an image of
multi-class classifiers Ca. Each voxel of Ca is a multi-
class classifier, that, given a feature vector, will return a
label.
To segment a new image I, the transformation T from

an image I to the atlas is first computed from any im-

age registration procedure. Then the segmentation label
of the voxel x is found by applying the corresponding
classifier in the atlas, Ca (T (x)), to the feature vector
computed on the subject image at x, F (I, x). Formally,
we obtain:

S(x) = Ca (T (x)) (F (I, x)) . (2)

This is what we call MLMapping: instead of the atlas
segmentation, this is the output of local classifiers that
is mapped through the geometric transform between the
subject and the atlas.

C. Atlas Training

To train the classifier image of an atlas, a dataset com-
posed of Na grey level images (Ii)i along with their seg-
mentation images (Si)i is needed. Let Ia be the image on
which one wants to train the classifier image Ca. There
is no conceptual restriction on the choice of Ia. It can,
for example, be one of the image of the dataset, it can
also be taken as the average of the dataset images or a
minimal deformation template [46, 47].
Let Ti be the invertible transformation from the coor-

dinate space of Ii to the one of Ia computed by a chosen
image registration procedure and T−1

i its inverse. To ac-
count for the uncertainties due to the potential errors of
the registration, it is only assumed that, for a voxel x in
Ia, its true corresponding voxel in Ii is in Vi(x), the box
of size NsxNsxNs centered on T−1

i (x).
Thus, for each voxel x, the classifier in Ca(x) is trained

with the following dataset of NaN
3
s feature vectors:

{(Si(y), F (Ii, y)) |i ∈ [1, Na], y ∈ Vi(x)} .

Note that when the registration is symmetric, T−1
i can

be computed directly by switching Ia and Ii in the reg-
istration routine. In the general case, it is preferable to
perform the registration during the training as it will be
during the segmentation: with the atlas as the moving
image and the subject as the fixed one.

D. Further Improvement Using a Multi Atlas

Combination Method

So far, only one registration is required for the segmen-
tation of a new subject. Information from the whole atlas
dataset is gathered on a classifier image. To segment a
new subject, only one registration, to the classifier image
space, needs to be computed while still using the infor-
mation from the whole dataset.
This is interesting from a computation point of view

but the segmentation quality can be further improved
with a multi-atlas version of our method. Consequently,
if the training dataset contains Na images, each image
can be trained as a classifier atlas using the method de-
scribed in the previous section. For the segmentation of a
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new subject, its image should be registered to each of the
trained atlas, and segmented using the equation 2. Con-
sequently, Na different MLMapping segmentations can
be produced for a given subject image. These label im-
ages can then be combined using any method from the
multi-atlas segmentation fusion literature.
Note that these combination methods, such as major-

ity or weighted vote, were often inspired from the multi-
classifiers combination methods in the machine learning
community. With the formalism proposed in this work,
the atlases are now real classifiers that can be combined
using these methods.
In the experiment section, we will see that the multi-

atlas version of our method indeed improve the segmen-
tation quality over the single atlas version. We will see
that as opposed to standard label fusion method, non-
local fusion is not beneficial for the combination of the
output segmentations. So a simple weighted vote, which
can be very efficiently done, is sufficient for the label fu-
sion.

III. CALCULATION

The method presented in section II is general and the
different components of the method can be chosen in-
dependently depending on the application, the imaging
modality, the object within the image, etc. The three
main components of our framework are: the registration
method, the classifier and the feature function. When
the multi-atlas MLMapping is used, the multi-atlas com-
bination method should also be defined.

A. Image Registration

As in the training step, the transformation output of
the registration needs to be inverted, the registration
method should be able to produce such transform. Many
published registration methods are now able to do so.
The registrations in this work have been performed us-
ing our previously published registration method [48] and
inverted as in [5]. The transformation is modeled using
B-spline and constraints during the registration force the
Jacobian to be positive for every voxel in the image.
Note also that, as in [4], the inclusion of the neigh-

bors of the matching point in the segmentation process
allows us to be much less accurate in the registration. We
also tested our method using only rigid transformations.
These transforms are more robust and faster to compute
but much less accurate.

B. Local Features

Numerous local image descriptors have been proposed
in the literature for image matching, image recognition,
texture characterization, etc. Our method is not bound

to the choice of the feature vector but in our current im-
plementation, the most straightforward local descriptor
is used: the local feature is a vector whose components
are the intensities of the voxels in a box shaped neigh-
borhood of a given voxel. This is similar to the patch
approach uses for example in [4] or [23]. We followed
the recommendation of [4] and took 3x3x3 as the size of
the box defining the feature. Note that, when a linear
classifier is used with local patch as feature vector, as
we do, it is not necessary to add any linear filter out-
put such as local mean or smoothed derivatives to the
feature vector. The classification step will be in charge
to find the most discriminant linear combination of the
voxel in the patch. To be robust to intensity variation or
inhomogeneity artifacts, the images have been corrected
for bias field inhomogeneities, they have been histogram
equalized and rescaled in [0, 1].

C. Classification Method

Two things should be kept in mind for the choice of
the classifier: its evaluation for a new vector should be
efficient, and storing its parameters should take a mini-
mal size in memory. Indeed, these two requirements will
enable the evaluation of equation 2 efficiently, and conse-
quently, to have a fast segmentation once the registration
is done. Ideally, we would have no overhead when com-
puting the equation 2 compared to equation 1, this would
mean that the MLMapping would have a computation
time similar to standard atlas-based segmentation.
In this work, a linear support vector machine (SVM)

classifier is used to define the voxels of Ca. A binary
linear SVM solves the problem:

min
w,b

1

2
w2 +

C

N

N∑

i=1

max (0, 1− yi(wxi + b)) , (3)

where xi are the feature vectors, yi ∈ {−1, 1} the cor-
responding labels, w and b define the separating hyper
plane and C is a penalization parameter. A ”one versus
the rest” strategy is used to account for the multi-class
nature of our problem: a binary classifier is trained for
each class using the features from all other classes as
negative points. This classifier fulfills the two criteria
stated above and the overhead of MLMapping compared
to atlas-based segmentation is negligible. The storage
cost is reasonable: only the normal w and the offset b of
the separating hyper plane for each class involved in the
local classification are stored. The computation time is
also low: for each class of the local classifier, the compu-
tational cost is the cost of the few dot products between
the feature patch and the normal hyper plane. The main
problem is in the training time. As we will see in sec-
tion IVF, the training time is very high and is a limiting
factor for the feature dimension or the number of atlases
in the training dataset. However, the training is done
offline and its cost is hidden to the user.
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(a)Manual Segmentation (b)Ns = 1 (c)Ns = 3 (d)Ns = 5 (e)Ns = 7

FIG. 1. Number of classes in the multi-class classifier as a function of the neighborhood size Ns. The colormap is black when
the classifier is constant (one class) and varies from blue to red when the number of classes varies from 2 to 16.

Note that usually the number of classes is very low for
most of the voxels in the image. In figure 1 is presented
the images of number of classes as a function of the neigh-
borhood size. In black, where only one class is involved,
the cost is exactly the same as standard segmentation.
In dark blue, the classifiers are binary and only one dot
product is needed for the segmentation. In this exam-
ple, where 5 images are used in the training dataset and
when Ns = 5 is set for the training, the atlas is composed
at 84% of constant classifiers, 10% of binary classifiers,
4% of ternary classifiers and for less than 2% more than
three class are involved.
The LIBSVM library [49] has been used for the training

of the local classifiers.

D. MAML Multi-Atlas Combination

If the multi-atlas MLMapping is considered, a multi-
atlas combination method should be used on top on the
MLMapping procedure. In this work, the outputs of the
classifier atlases are fused using a non-local weighted vote
procedure. Formally, we define Li, the vector image with
1 on the kth component if Si(x) = k and 0 otherwise and
the vector image L as:

L(x) =

∑N ′

a

i=1

∑
y∈Ni(x)

wi(x, y)Li(y)
∑N ′

a

i=1

∑
y∈Ni(x)

wi(x, y)
, (4)

where N ′

a is the number of atlas used in the combination.
The weight wi measures the local similarities between the
input image at x and the ith atlas at y as the distance
between their feature vectors using a Gaussian kernel.
The final label on the voxel x is the label corresponding
to the highest component of L(x). This procedure is
similar to what has been proposed in [4, 29].
The parameters of the multi-atlas fusion are the σ pa-

rameter of the Gaussian kernel and the size of the neigh-
borhood Ni defined as a N ′

s ×N ′

s ×N ′

s box.
This fusion method has been evaluated either with

a standard labeling (equation 1) or with the proposed
MLMapping (equation 2). As we will see in the exper-
iment section, an interesting property of the multi-atlas
MLMapping is that is does not require a non-local fusion:

the optimal N ′

s value is 1. This allows a non-negligible
saving of the computation time for the fusion of the mul-
tiple atlases.

IV. EXPERIMENTAL

A. Experimental Setup

In this section, the influence of the parameters Ns and
C of the single atlas MLMapping method is studied in
section IVB. The multi-atlas MLMapping parameters
N ′

a, N
′

s and σ are analyzed in section IVC. Our methods
are compared with the state of the art single or multi-
atlas segmentation procedures in section IVD and IVE.
The notation and meaning of the different method’s pa-
rameters has been summarized in table I.
When only one atlas is used for the registration, the

two mappings are denoted as STD for the standard atlas-
based registration (equation 1) and ML for the MLMap-
ping (equation 2). In both cases, each image of the train-
ing dataset is successively chosen as the atlas to segment
images of the test set. For the STD method, the manual
segmentation is used as the label image to be mapped,
no fusion is done on the label images beforehand.
The multi-atlas MLMapping method of section IID is

denoted as MAML. It will be compared to a non-local
weighted vote denoted as MASTD. For both methods,
the fusion is performed using equation 4 with a 3× 3× 3
patch as feature vector, a N ′

sxN
′

sxN
′

s box shaped neigh-
borhood, and a weighting of each voxel using a Gaussian
function with a parameter σ. The difference between
MAML and MASTD is that in equation 4, Li are gen-
erated from the manual segmentation of the ith atlas
for MASTD whereas for MAML, it is generated from
the output of the classifiers. MASTD is similar to the
method of Coupé or Rousseau [4, 29]. The results will
also be compared with the widely used FreeSurfer soft-
ware [34].
The experiments have been performed using the IBSR

dataset provided by the Center for Morphometric Anal-
ysis at Massachusetts General Hospital[50]. It is com-
posed of the images and manual segmentations into 32
structures of the brain of 18 healthy subjects. The
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Ns Neighborhood size for the training of the classifier images
N

′

s
Neighborhood size for the multi-atlas fusion

Na Number of atlases in the dataset for the classifier image training
N

′

a
Number of atlases in the multi-atlas fusion (equation 4)

C SVM Penalization coefficient (equation 3)
σ Gaussian parameter for the multi-atlas fusion (equation 4)

TABLE I. Notations

structures used in this work are given in the table IX
of the appendix. As for symmetric structures the re-
sults obtained are similar for the left and right parts,
only the left structures results are reported. The images
are 256 × 256 × 128 MR T1 images with a resolution of
0.93×0.93×1.5, 1×1×1.5 or 0.83×0.83×1.5 mm3. Note
that FreeSurfer has its own 40 images training dataset.
However, the FreeSurfer dataset have been created us-
ing the same manual segmentation protocol as the IBSR
dataset.

Cross validation has been done by randomly splitting
the database in three: 5 subjects were used as the train-
ing dataset, 4 subjects were used to tune the parame-
ters of the different methods while the remaining data
were used as a test set for comparison. The tuning set is
used to find the optimal value for: the C penalization of
the SVM (equation 3), the neighborhood size Ns in the
MLMapping training and the σ and the neighborhood
size N ′

s of the multi-atlas fusion (equation 4). The valida-
tion protocol has been constrained by the computational
time of the training as we will see in section IVF: while
the segmentation time of our method is low, the training
time is not and is problematic for the experiments with
a large training dataset.

A quantitative comparison of the different methods has
been done using the Dice metric and the average Haus-
dorff distance between the ground truth (G) and the au-
tomatic segmentation (A). For a given region of interest
(ROI), the Dice score is given by:

D(G,A) = 100×
2 |G ∩A|

|G|+ |A|
,

and the average Hausdorff distance is given by:

AvgDst(G,A) =

∑
x∈G dist(x,A)

2 |G|
+

∑
x∈A dist(x,G)

2 |A|
.

Except for FreeSurfer which has its own registration
procedure, all the methods were tested with either a rigid
registration or the non-rigid registration algorithm de-
scribed in [48]. A B-spline node spacing of 4x4x4 has
been used and the registration is run with a constraint
ensuring that the Jacobian is positive for all the voxels.

An example of the results of STD, MASTD, ML and
MAML is presented on figure 2.

B. MLMapping Parameters Influence

Two parameters are crucial in the performance of
MLMapping: the size Ns of the box used to include
neighbors in the training and the C parameter of the
SVM learning step (equation 3). They have been chosen
by optimizing the mean Dice (see figure 3).
One can remark that the optimal C is dependent on the

neighborhood size Ns and the size of the image dataset:
it is increasing with these two parameters. This unfortu-
nately implies that C has to be optimized for each new
dataset.

C. Multi-Atlas MLMapping Parameter Influence

To study the influence of the parameters of MAML, a
classifier image has been computed for all the images of
the training dataset. The training has been done with the
optimal MLMapping parameters (Nopt

s = 5 and Copt =
1015) and with a suboptimal value for the MLMapping
Ns parameter (N subopt

s = 3 and Csubopt = 1015).
The segmentation has then been performed with sev-

eral values of the multi-atlas combination parameters:
the neighborhood size N ′

s and the σ parameter of the
Gaussian weighting function. The mean Dice of MAML
for different parameters values as well as those of MASTD
is presented in figure 4.
The first thing to notice is that, as opposed to MASTD,

increasing ofN ′

s for MAML does not improve the segmen-
tation when Nopt

s is used. It is even detrimental to the
results. Simply, this means that the MLMapping is good
at capturing the information from the neighbors. Once
the optimalNs value is chosen for the training, there is no
point in looking at neighboring classifiers as they embed
information from voxels too far away from the original
one. With an optimal Ns for the MLMapping training,
using N ′

s > 1 for MAML, seems to be similar to the use
of a too large Ns value during the MLMapping training.
This interpretation seems to be confirmed by the fig-

ure 4(d): when Ns < Nopt
s for the MLMapping training,

using N ′

s > 1 enable to catch up with the missing neigh-
borhood information but then, when N ′

s is too large, per-
formance also decreases.
In the table II, the mean Dice of the MAML method

is given as a function of the number of atlases combined,
N ′

a. Each atlas is trained with the whole training dataset
(five labeled images), Ns = Nopt

s and N ′

s = 1. One
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(a)Gray Level Image (b)Ground Truth (c)STD

(d)MASTD (e)ML (f)MAML

FIG. 2. An example of an image of the IBSR dataset with its manual segmentation (Ground Truth). The results of the
automatic segmentation using standard atlas-based segmentation (STD), MLmapping (ML), FreeSurfer, multi-atlas standard
labeling (MA-STD) and multi-atlas MLmapping (MA-ML).
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FIG. 3. Mean Dice for the comparison of ML results when the C parameter of the SVM and the learning neighborhood box
size Ns are varying. Results are given when the size of the training dataset is 2 or 5.

can see that the method behaves differently when N ′

s or N ′

a varies: while increasing N ′

s was detrimental to the
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FIG. 4. Mean Dice for the comparison of ML results when the σ parameter of the non-local fusion and the learning neighborhood
box size Ns are varying. Results are given when the size of the fusion dataset is 2 or 5.

segmentation, the addition of new voxels by the addition
of atlases in the segmentation images fusion improves the
results. However, one can see that the improvement is
limited.

D. Comparison of Single Atlas Methods

In this section, methods requiring the registration to
only one atlas to segment a subject are compared. We
include in the comparison the standard atlas-based seg-
mentation STD, FreeSurfer, the weighted vote with one
atlas and a neighborhood of size Ns = 5 (which was the
optimal value when only one atlas was used) and the
MLMapping with either rigid or nonlinear registration.
MLMapping has been used with the optimal parameters

found in the previous section (Nopt
s = 5, Copt = 1015 for

ML-Nonlinear and Nopt
s = 7, Copt = 1017 for MLRigid).

Structure by structure Dice values and mean Dice are re-
ported in the table III, the average Hausdorff distances
are reported in table IV. In these tables, the two best
methods are in bold, the stars indicate the best one.

As one can see, both the rigid and nonrigid version of
MLMapping clearly outperforms the other methods, with
a clear advantage when a nonlinear registration is used.
ML-Nonlinear outperforms STD by 8 points on the mean
Dice. It also has a 5 points difference with weighted vote
and 4 points difference with FreeSurfer. ML-Nonlinear
is consistently the best method for all structures except
cerebellum white matter for which FreeSurfer is better.
Indeed, even if the registration to only a single atlas is
used for the segmentation using ML, this atlas carries the
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N
′

a
1 2 3 4 5

Mean Dice 79.83 80.12 80.51 80.45 80.63

TABLE II. Mean Dice for MAML as a function of the number of classifier atlases used for the segmentation.

ROI STD STD+Ns = 5 FreeSurfer ML-Rigid ML-Nonlinear
LCaWM 82.3± 5.6 88.3± 6.1 88.9± 5.2 88.7±10.4 *90.1± 9.3*
LCaCo 83.2± 5.9 88.7± 5.3 83.1±22.3 89.5±12.4 *92.4± 5.3*
LLatVe 84.9±19.2 *91.6±12.8* 78.2±29.0 87.1±21.5 91.2±17.5

LInfLatVe 28.2±12.9 34.5±17.6 40.9±24.2 44.4±15.6 *49.7±14.6*
LCuWM 71.8±25.8 68.9±43.9 *83.9± 8.8* 75.2±35.3 77.1±35.1

LCuCort 83.4±18.2 84.6±24.7 87.4±10.2 89.0±13.4 *91.2±11.4*
LThPr 83.7±12.9 86.8± 8.8 86.9± 4.2 85.6±11.3 *87.5±11.3*
LCau 77.8±10.1 83.5± 5.6 83.4± 7.7 83.3±12.8 *85.8± 6.0*
LPut 81.5± 8.6 82.2± 7.0 82.5± 5.8 84.9±13.6 *88.0± 7.3*
LPal 67.9±15.2 73.8±17.9 75.2±26.2 78.8± 7.3 *80.1± 8.3*
3Ve 67.9±15.9 72.3±14.0 79.3± 9.0 78.3±11.5 *79.5±14.2*
4Ve 70.7±11.8 73.6±13.4 76.6±15.8 75.8±10.0 *78.0±11.4*

BStem 88.9± 5.8 90.3± 7.1 86.4± 4.1 90.2± 8.5 *92.2± 6.3*
LHippo 69.7±11.5 72.0±14.5 73.7± 8.7 72.3±23.0 *77.8±11.1*
LAmyg 59.7±16.6 61.7±17.8 65.5± 9.3 64.9±16.3 *67.2±13.7*
CSF 48.5±28.2 56.2±31.9 57.5±21.9 58.8±29.9 *59.7±32.7*
LAcc 58.8±20.8 58.1±19.4 59.1± 7.8 60.9±16.8 *67.0±16.4*
LVeDC 76.8±12.6 80.7±12.8 73.6± 8.3 79.2±15.1 *81.5±14.9*

Mean Dice 71.4±14.3 74.8±15.5 75.6±12.6 77.0±15.8 *79.7±13.7*

TABLE III. Single Atlas Segmentation Comparison: average Dice values for each structures of interest for single atlas segmen-
tation methods: standard atlas-based segmentation (STD), standard atlas-based segmentation with neighbors contributions
(STD+Ns = 5), FreeSurfer, MLMapping with rigid registration (ML-Rigid) and MLMapping with a deformable registration
(ML-Nonlinear). Rigid registration was used for ML-Rigid, FreeSurfer deformable registration was used for FreeSurfer, for all
the other methods, the deformable registration described in [48] was used. The two best methods are in bold, the star indicates
the best one.

ROI STD STD+Ns = 5 FreeSurfer ML-Rigid ML-Nonlinear
LCaWM 0.24±0.04 0.15±0.03 0.14±0.03 0.16±0.07 *0.12±0.05*
LCaCo 0.22±0.05 0.14±0.03 0.19±0.09 0.17±0.11 *0.08±0.02*
LLatVe 0.29±0.34 *0.10±0.04* 0.31±0.26 0.23±0.21 0.15±0.25

LInfLatVe 1.59±0.51 2.48±0.84 3.30±1.93 1.05±0.39 *0.95±0.34*
LCuWM 0.51±0.32 0.97±0.96 *0.25±0.08* 0.58±0.51 0.48±0.46

LCuCort 0.29±0.19 0.28±0.23 0.15±0.04 0.21±0.13 *0.13±0.07*
LThPr 0.23±0.12 0.18±0.06 *0.16±0.02* 0.22±0.08 0.17±0.08

LCau 0.29±0.08 0.19±0.02 0.21±0.04 0.23±0.10 *0.16±0.03*
LPut 0.25±0.07 0.24±0.06 0.23±0.05 0.22±0.10 *0.14±0.05*
LPal 0.46±0.15 0.36±0.16 0.35±0.25 0.29±0.09 *0.25±0.07*
3Ve 0.51±0.40 0.32±0.10 0.29±0.08 0.29±0.07 *0.28±0.11*
4Ve 0.48±0.18 0.39±0.12 0.43±0.35 0.35±0.09 *0.31±0.07*

BStem 0.15±0.05 0.13±0.04 0.18±0.03 0.16±0.06 *0.11±0.04*
LHippo 0.47±0.18 0.47±0.20 0.36±0.07 0.48±0.27 *0.32±0.14*
LAmyg 0.63±0.25 0.68±0.29 0.48±0.08 0.58±0.23 *0.48±0.17*
CSF 1.80±1.70 1.26±1.01 1.26±0.94 *1.22±0.92* 1.33±1.27
LAcc 0.61±0.34 0.64±0.34 0.57±0.13 0.76±0.36 *0.54±0.30*
LVeDC 0.32±0.11 0.26±0.09 0.37±0.07 0.30±0.13 *0.26±0.12*
Mean 0.52±0.28 0.51±0.26 0.51±0.25 0.42±0.22 *0.35±0.20

TABLE IV. Single Atlas Segmentation Comparison: average Hausdorff distance values for each structures of interest for single
atlas segmentation methods: standard atlas-based segmentation (STD), standard atlas-based segmentation with neighbors con-
tributions (STD+Ns = 5), Fressurfer, MLMapping with rigid registration (ML-Rigid) and MLMapping with a deformable reg-
istration (ML-Nonlinear). Rigid registration was used for ML-Rigid, FreeSurfer deformable registration was used for FreeSurfer,
for all the other methods, the deformable registration described in [48] was used. The two best methods are in bold, the star
indicates the best one.

information of the whole training dataset. The worst results are obtained by the standard atlas-
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ROI MV MAML-Rigid MASTD ML-Nonlinear MAML-Nonlinear
LCaWM 86.6± 5.6 88.5±10.0 89.3± 9.9 90.1± 9.3 *90.6±10.2*
LCaCo 86.9± 6.0 89.3±12.0 89.9± 7.3 92.4± 5.3 *92.9± 5.6*
LLatVe 90.1±10.7 88.0±22.2 92.1±12.0 91.2±17.5 *92.6±12.2*

LInfLatVe 33.5± 7.0 37.7±24.2 46.4±22.0 49.7±14.6 *52.4±15.6*
LCuWM 75.5±29.7 74.4±37.0 76.1±36.4 77.1±35.1 *77.5±36.9*
LCuCort 86.4±18.6 89.4±14.0 88.1±19.9 91.2±11.4 *91.8±11.0*
LThPr 86.9±10.2 86.2±12.0 *87.9±10.5* 87.5±11.3 87.9±10.8

LCau 82.0± 7.5 84.2±14.2 86.0± 6.0 85.8± 6.0 *86.2± 6.6*
LPut 85.8± 5.9 85.4±14.8 87.8± 6.0 88.0± 7.3 *88.3± 7.3*
LPal 75.2±14.8 78.9± 9.3 77.8±12.4 80.1± 8.3 *80.9± 7.4*
3Ve 74.7±14.6 *80.0±11.8* 78.9±17.0 79.5±14.2 79.8±14.9

4Ve 77.3± 9.6 75.4±11.6 77.5±14.7 78.0±11.4 *78.9±12.7*
BStem 91.1± 5.3 90.7± 8.2 91.6± 6.5 92.2± 6.3 *92.4± 6.4*
LHippo 75.9±10.1 74.4±25.5 79.0±11.8 77.8±11.1 *79.4±10.7*
LAmyg 66.2±18.0 67.2±18.3 67.9±16.4 67.2±13.7 *68.8±14.2*
CSF 54.7±30.2 58.9±30.3 57.5±33.3 59.7±32.7 *60.5±33.6*
LAcc 66.5±19.2 62.9±18.7 *70.6±13.5* 67.0±16.4 68.6±16.2

LVeDC 81.4±12.8 79.8±16.0 *82.1±15.2* 81.5±14.9 81.8±15.7

Mean Dice 76.493 77.295 79.250 79.780 *80.630*

TABLE V. Multi Atlas Segmentation Comparison: average Dice values for each structures of interest for single atlas MLMap-
ping (ML-Nonlinear) and multi-atlas segmentation methods: Majority Voting (MV), Multi Atlas MLMapping with a rigid
registration (MAML-Rigid), Non local Multi Atlas patch weighted vote (MASTD), MLMapping with deformable registration
(ML) and Multi Atlas MLMapping with a deformable registration (MAML-Nonlinear). Rigid registration was used for MAML-
Rigid, the deformable registration described in [48] was used for all the other methods. The two best methods are in bold, the
star indicates the best one.

ROI MV MAML-Rigid MASTD ML-Nonlinear MAML-Nonlinear
LCaWM 0.17±0.03 0.17±0.08 0.13±0.05 0.12±0.05 *0.11±0.05*
LCaCo 0.16±0.04 0.17±0.12 0.12±0.04 0.08±0.02 *0.08±0.02*
LLatVe 0.12±0.04 0.21±0.20 0.09±0.04 0.15±0.25 *0.08±0.04*

LInfLatVe 1.25±0.21 1.73±1.10 1.11±0.46 *0.95±0.34* 0.97±0.54

LCuWM 0.48±0.39 0.75±0.76 0.55±0.53 *0.48±0.46* 0.49±0.50
LCuCort 0.23±0.16 0.19±0.13 0.20±0.16 0.13±0.07 *0.11±0.06*
LThPr 0.17±0.06 0.21±0.10 *0.16±0.07* 0.17±0.08 0.16±0.07

LCau 0.21±0.03 0.22±0.14 0.16±0.02 0.16±0.03 *0.15±0.03*
LPut 0.17±0.04 0.21±0.12 0.14±0.04 0.14±0.05 *0.14±0.05*
LPal 0.31±0.11 0.29±0.11 0.28±0.08 0.25±0.07 *0.23±0.05*
3Ve 0.33±0.20 *0.26±0.08* 0.27±0.15 0.28±0.11 0.27±0.09

4Ve 0.33±0.08 0.36±0.09 0.33±0.09 0.31±0.07 *0.29±0.08*
BStem 0.11±0.03 0.14±0.06 0.10±0.03 0.11±0.04 *0.10±0.03*
LHippo 0.32±0.08 0.45±0.33 0.28±0.09 0.32±0.14 *0.26±0.07*
LAmyg 0.48±0.25 0.54±0.28 0.46±0.22 0.48±0.17 *0.44±0.18*
CSF 1.32±1.09 1.25±0.98 1.26±1.08 1.33±1.27 *1.22±1.05*
LAcc 0.43±0.23 0.69±0.38 *0.39±0.14* 0.54±0.30 0.47±0.23
LVeDC 0.25±0.09 0.30±0.15 0.25±0.11 0.26±0.12 *0.25±0.12*
Mean 0.380 0.454 0.348 0.347 *0.325*

TABLE VI. Multi Atlas Segmentation Comparison: average Hausdorff distance values for each structures of interest for single
atlas MLMapping (ML-Nonlinear) and multi-atlas segmentation methods: Majority Voting (MV), Multi Atlas MLMapping
with a rigid registration (MAML-Rigid), Non local Multi Atlas patch weighted vote (MASTD), MLMapping with deformable
registration (ML) and Multi Atlas MLMapping with a deformable registration (MAML-Nonlinear). Rigid registration was used
for MAML-Rigid, the deformable registration described in [48] was used for all the other methods. The two best methods are
in bold, the star indicates the best one.

based segmentation STD. It is indeed very sensitive to
the registration performance. This method is clearly im-
proved by simply adding the contribution of the voxels in
the neighborhood of the matching point (STD+Ns = 5).

Note that even if FreeSurfer also carries information from
several atlases (40 images) it is outperformed by MLMap-
ping (with a training set of 5 images) which seems much
better at capturing the information required for the seg-
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mentation.
Note however that as FreeSurfer has its own de-

formable registration procedure, it is difficult to tell if
its results can be improved by changing the registration
or its classification routine.
One can reach similar conclusions when looking at av-

erage Hausdorff distances in table IV as we did for the
Dice values. It can however be noticed that, although
MLMapping with nonlinear registration still outperforms
the other methods, it is now not the best method for
three structures, and the rigid MLMapping loses its sec-
ond rank for two structures. The use of the average
Hausdorff distance seems to be (slightly) beneficial to
FreeSurfer and STD +Ns = 5.
Between STD and ML-nonlinear, the average Haus-

dorff decrease ranges from 5% to 63% depending on the
structure with an average of 35% reduction per structure.
Between STD + Ns = 5 and ML-nonlinear, the average
Hausdorff is increased of 50% for the Lateral Ventricle.
Apart from this structure, the results range from a 5%
increase to a 61% decrease with an average of 22% im-
provement per structure.

E. Comparison of Multi-Atlas Methods

In table V the Dice values for each structure and the
mean Dice of the four multi-atlas methods MV (Major-
ity Voting), MASTD, MAML with either rigid or non-
rigid registration are reported. The results of ML with
nonlinear registration, which is a single atlas method,
are also reported for comparison. The average Hausdorff
distances for each structure are reported in table VI. Op-
timal parameters found in the section IVB and IVC have
been used: N ′

s = 1, σ = 40 for MLMapping, N ′s = 3,
σ = 15 for MASTD.
Out of the 18 structures of interest, the nonlinear reg-

istration version of MAML has the best Dice value for 14
structures. For three structures (the accumbens area, the
ventral diencephalon and the thalamus proper), MASTD
gives the better results. This confirms that MAML-
Nonlinear gives a segmentation of high quality. One can
also notice that despite the fact that only one registra-
tion is required, ML is second when looking at the mean
Dice as it ranked second for many structures. The seg-
mentation quality of ML is similar to MASTD while only
one registration is required and no time is needed for the
combination of several segmentation images. The worse
results are obtained with MV and MAML-Rigid. One
can notice that although only a rigid registration is used
for MAML-Rigid it is competitive with MV which uses a
deformable registration.
As one can see in table VI, when the metric is the av-

erage Hausdorff distance, the ranking of the methods is
similar. One can notice that although MAML-Nonlinear
is still ranked first on most structures (and second other-
wise) its superiority is less significant: it is first on eleven
structures while it was first on 14 structures with the

Dice metric.

Between MASTD and MAML-nonlinear, the average
Hausdorff distance is increased by 22% for the Accum-
bens area. Apart from this structure, the average Haus-
dorff ranges from a 3% increase to a 34% decrease with
an average of 8% improvement per structure.

F. CPU time consideration

The main limitation of MLMapping is its training time.
This time depends on three parameters: the classifier pa-
rameters (C), the size of the training set (Na) and the size
of neighborhood (Ns). CPU time of the training and seg-
mentation time have been measured on a HP computer
with Intel Xeon CPU E5620 2.40GHz processor and re-
ported in the table VII and VIII. As one can see in the
table VII, for a training dataset of five images, this time
is reasonable when a nonlinear registration and optimal
parameters are used: five hours when Na = 5, Ns = 5
and C = 1015. However, the computation time is a real
problem when a rigid registration and the optimal Ns are
used: the time needed to train one atlas with the optimal
parameters (Ns = 7, C = 1017) is 411 hours for a dataset
of five atlases. Such a computation time is acceptable for
a one time training of one atlas, it is however a problem
for the numerical experimentation and cross validation
involving repeated training on several atlases. For the
user of the atlas, this problem does not exist: once the
learning has been done, the atlas can be used at the cost
of the registration used.

Although a large time is required for the training, the
advantage of MLMapping resides in the time required for
the segmentation itself. The table VIII presents a com-
parison between the cost of ML, MAML and MASTD.
Note that the reported time does not account for the
registration, the values reflect the fusion time only. So
the CPU cost of the registration, linear in N ′

a, should be
added to get the total time. Depending on the image size,
the image content, the transformation and the algorithm
this time usually range from few minutes to more than
an hour and sometimes several hours per registration.
While the computational time depends on the N ′

s and
N ′

a for MASTD it depends only on N ′

a for MAML and is
constant for ML mapping. This is a clear advantage of
MLMapping especially when a linear registration is used.
In this case, with only 5 atlases, the time post registra-
tion is reduced from almost an hour for MASTD to few
seconds for ML or few dozens of seconds for MAML.

Note that if the transformation between a chosen tem-
plate and all the atlases are precomputed and stored, the
MASTD method can also be implemented with only one
registration to the template: the transformation from the
subject to any atlas is obtained by composition as in [28].
Even in this case, ML is advantageous over MASTD as
the non-local label fusion time is null for ML and few
dozens of minutes for MASTD.
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Na = 2 Na = 5
Ns C = 1013 C = 1015 C = 1017 C = 1013 C = 1015 C = 1017

1 : : 09 : : 06 : :07 : : 26 : : 20 : :21
3 : 3: 52 : 3: 17 : 7:27 :19: 59 :22: 04 8:03:13
5 :55: 06 :47: 56 20:48:19 5:06: 01 5:05: 35 106:24:27
7 5:27: 48 5:32: 24 107:32:21 39:06: 19 35:25: 14 411:38:12

TABLE VII. CPU time (hours:minutes:seconds) for the training of one classifier image as a function of the number of atlas
(Na)and the size of the neighborhood (Ns) and the C parameter of the support vector machine.

MASTD ML MAML
N

′

a
N

′

s
= 1 N

′

s
= 3 N

′

s
= 5 N

′

s
= 7

1 : 03 :59 3: 23 11: 19 00:02 :02
2 : 08 1:42 6: 49 19: 12 :07
3 : 10 3:06 13: 06 25: 18 :11
4 : 16 4:31 19: 58 33: 12 :15
5 : 17 4:30 19: 06 50: 08 :18

TABLE VIII. CPU time (minutes:seconds) for the segmentation using a weighted vote (MASTD) with N
′

a
atlases or ML

mapping. The time reported account only for the fusion, not the (potentially multiple) registration needed before the fusion.

V. CONCLUSION

In this work, a new method to improve the atlas-based
segmentation method has been presented. The idea is
to change the mapping of the segmentation labels to the
subject to segment once the registration has been done.
An atlas is now defined by a gray level image and an im-
age of local classifiers. For a given voxel in the subject
image, a local feature is computed and given as input
into the classifier of the corresponding voxel in the atlas
that will assign the output label. This new formalism
generalizes the standard mapping for which all classifiers
are constant and always return the corresponding man-
ual segmentation label of the atlas. As opposed to other
methods of the literature, the additional computation
overhead due to the incorporation of new information
is offline, during the training of the classifier image.

The limitation of our method is the training time which
can be very long, especially for the optimization of the
parameter and the setup of the numerical experimenta-
tion. This training time constraint is however completely
transparent for the atlas user as the training is done once
and for all. This aspect surely deserves more investiga-
tions and will be the object of a future work. Another
limitation of the proposed method is the cost required to
store the classifier images. Indeed, for each trained atlas,
one has to store several binary classifiers per voxel (ex-
cept when there is only one class for this voxel though).
This constrains us in the choice of the classifier: it should
be represented using a reasonable number of parameters.
This also constrains us in the choice of the feature vector:
for linear SVM, the number of parameters of the model
is the size of the feature vector. This problem can po-
tentially be addressed using a feature selection step and
will be investigated in a future work.

The ML mapping presented in this work allows seg-
menting an image at the cost of standard atlas-based
segmentation but with a quality similar to multi-atlas
segmentation. As in [4, 29], neighborhood information
is also included in our framework but, in our case, its
cost is also completely offline. Further enhancement is
still possible when several atlases are registered to the
subject image.
It is assumed in this work, that a standard registration

preprocessing has been applied to the images. Standard
preprocessing can include artifact correction and/or in-
tensity normalization.
In this paper, the feature vector used is a local patch.

One of the interest of a linear classifier (such as linear
SVM) with a local patch as feature vector is that in the
training step, the most discriminant linear filter will be
selected as the normal to the separating hyper plane.
This may be a low pass filter when it is the raw average
local intensities that will discriminate the classes. It can
also be any directional derivative filter (and in this case,
it is invariant of any intensity shift). It is left to the
algorithm to adaptively decide the nature of the filter
that is applied to find the label.
The choice of the feature vector is very important and

the results can probably be improved by more investi-
gations on the design the feature vector. One can take
advantage of the huge literature in computer vision for
the development on local descriptor vectors that have
been successfully used for object recognition, segmenta-
tion and content based image retrieval [33, 51–53]. One
can also use recent results on using local feature for shape
classification or segmentation in medical images such as
[54, 55]. If tissue probability maps [56] are used are fea-
tures, a tissue coherent mapping can be obtained [5, 57].
This can be extended in the multi-atlas case to label
probability maps that can be computed on the fly, and
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also used as features.

Appendix A: Indexes of the IBSR database ROIs
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