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Abstract. In this paper, we present some results on multimodality 
implementation resulting from the VINSI (“Vérification d’Identité Numérique 
Sécurisée Itinérante” for Secured Mobile Digital Identity Verification) French 
project. The VINSI handheld terminal allows identity verification in mobile 
conditions (airport gates) using two biometrics usable in future biometric 
passports (fingerprint and face). We propose an incremental fusion strategy 
aiming at improving the global performance of the combined system over each 
individual recognizer while optimizing the cost resulting from the fusion. 
Indeed, in this kind of application, time and complexity optimization is 
essential. To this aim, we split the fingerprint scores’ range into different 
interest zones, on which we do not apply the same strategy depending on the 
relative quality of the modalities at hand. Results on a virtual database 
corresponding to VINSI applicative conditions (Combination of BIOMET 
fingerprints and FRGCv2 faces) show that this incremental fusion strategy 
allows the same improvement in performance as global fusion methods while 
significantly reducing the cost. 
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1   Introduction 

The VINSI handheld terminal is a mobile secured terminal allowing the control of 
identity in mobile conditions. Two biometric modalities are implemented, namely 
face and fingerprint, on this mobile device which contains a highly secured part, 
named “security box”, allowing the terminal itself to be safe and secured from the 
point of view of storage and processing of biometric data. This is in accordance with 
the specification of the new biometric passport which will contain, stored on a 
contactless chip, the fingerprint and face references of the owner of the passport. This 
way, this terminal could be used to verify a person’s identity in airport gates at the 



exit of planes or even more generally outdoors, in the framework of mobile customs 
for instance. Note that the terminal embeds not only the softwares but also the sensors 
(camera, fingerprint sensor) necessary for the verification stage. 

In this article we want to explore the interest of using multimodality in this 
context. Indeed, multimodality is often presented as a way to increase the 
performance of the system, to provide an alternative when one modality alone cannot 
be used and to enhance robustness to forgeries. 

However, this VINSI application deserves several remarks. In this mobility 
context where a lot of disturbance on images will come from illumination variations 
(indoor versus outdoor acquisitions), fingerprints will give much better results than 
face. Processing time and usage friendliness are also important issues. Indeed, the 
processing capabilities of such a mobile terminal are limited compared to those of a 
fixed PC and in verification applications using the terminal, acquisition of both face 
and fingerprints can appear fastidious both to the user and to the operator.  

 

 

Fig 1: The proposed incremental biometric fusion strategy composed of two blocks: the 
fingerprint system and the fusion system 

For this reason, we propose a novel incremental fusion strategy, based on the 
multistage approach proposed in [1], that we exploit for fusion of biometric 
modalities. In [1] Pudil et al. proposed a multi-experts system based on a serial 
architecture with a reject option. At each stage, the reject option consists in an 
impossible decision of the expert due to a low confidence in its decision. This 
multistage approach with reject option was also used in [2, 3] applied to handwritten 
digit and word recognition. In biometrics, Cordella et al. proposed in [4] a cascaded 
multi expert system for signature verification based on the same approach. Our idea is 
to used a multi-stage approach applied to multimodal biometrics, that is the fusion of 
two different biometrics. In most of multimodal systems, experts are fused in a 
parallel way that we call “global” fusion methods, that is all the available scores are 
systematically used. The architecture that we propose is a sequential fusion strategy 
composed of two blocks (see Fig 1).  The first block corresponds to the fingerprint 
system alone, and the second, eventually used, is a fusion system of the two biometric 
scores (face and fingerprint). Therefore, the architecture has increasing complexity, 
since using the second block involves the acquisition of a second modality, face.  

This strategy was also proposed by Marcialis et al. in [5] for a multimodal 
biometric system composed of fingerprint and face. The major difference between our 
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architecture and the one in [5] is the second stage in which the authors use only the 
second system while we applied fusion of the two modalities. This guarantees better 
results, as performance of fusion when performed in an optimal way are better than 
those of any of the two modalities alone [11].   

Our incremental fusion strategy will allow increasing system performance to the 
same level as the one reached by global fusion methods (which always use the two 
modalities) while using only the additional modality (in this case face) in the 
situations when this can bring an improvement over using fingerprint alone. 

We first describe briefly our experimental monomodal context (systems and 
database), then we present the global fusion schemes that are commonly used in the 
literature before introducing our new incremental fusion strategy. Comparative results 
are finally presented allowing putting forward the interest of this incremental 
approach. 

2   Bimodal Database and Evaluation Protocol 

Experiments have been realized on publicly available databases suitable in the context 
of this application because we did not have at disposal during the time of the project a 
database acquired on VINSI terminal.  

In the VINSI application, reference images stored on the ID document are 
acquired with an optical sensor while the platform embedded sensor which will be 
used for test, is a capacitive sensor. The BIOMET database allows therefore 
evaluating the fingerprint system in conditions close to those of the application 
because it includes fingerprint images acquired with an optical sensor as well as 
images acquired with a capacitive sensor. BIOMET database contains for each person 
6 optical fingerprint images and 6 capacitive fingerprint images. Thus, we can 
compute in the best case 36 matching scores per person for the fingerprint system. 
However, as a quality control is applied in order to select images with good enough 
quality to be used by the system, we selected 124 persons among all BIOMET users 
having enough genuine scores (30 scores in average).  

FRGCv2 [7] database has been chosen for the face system evaluation. This 
database includes important lighting variations and blurred images as will be the case 
in the VINSI application. We chose to use the “Experiment 4” protocol associated to 
FRGCv2. It is a degraded conditions protocol with controlled images (indoor, 
controlled light, controlled background) as references and uncontrolled images 
(outdoor, uncontrolled light, blurred images …) for test. As for fingerprints, the face 
modality also has a quality control that selected images that have good enough quality 
to be used by the face system. We thus selected from FRGCv2, 124 persons with in 
average 30 genuine face matching scores per person, so that we have the same 
number of persons and the same number of matching scores per person for both 
biometric modalities. 

In order to realize fusion experiments we considered a database of virtual persons 
obtained by combining a person of the BIOMET database with a person of the 
FRGCv2 database. This can be considered as valid as fingerprint and face are two 
uncorrelated modalities [8]. For each person, each of the 30 fingerprint matching 



scores is coupled with a face matching score. This permits to have 124 virtual persons 
with in average 30 pairs of genuine scores (one fingerprint score associated to one 
face score).  

The fingerprint system used in this study is NFIS2 [9] (NIST Fingerprint Image 
Software) developed by NIST (National Institute of Standards and Technology). The 
Face system has been developed by our team and is based on PCA (Principal 
component analysis) [10].  

Score distributions provided by both systems and presented in Fig 2, allow noticing 
that performance of both systems are very different. Client and impostor scores 
distributions are well separated for the fingerprint system as shown in Fig 2 
(left).Because of this sharp separation, the fingerprint system considered individually 
can take the correct decision in most of the cases. On the contrary, scores distributions 
of clients and impostors for the face system have an important overlap, as shown in 
Fig 2 (right). This will induce a lot of decision errors when considering the face 
system individually. 

3   Global Fusion Methods 

The aim of all fusion methods is to take a final decision, that is to separate the 2 
classes (client and impostor) in the 2-dimensional space of scores (face and 
fingerprint scores). 

In this section we will present global fusion methods, that is, methods that always 
fuse all the available scores. Most of these methods are described in [11]. 

We will present two types of global fusion methods: 
• Score combination after a normalization step. Combination could be a simple 

average of the scores or a weighted average. Normalization of scores as well 
as of weighted coefficients if needed, requires a learning phase for the 
normalization parameters and the weights. Combination methods normalize 
each type of score separately before combining them. 

• Classification with a learning phase. In this paper, we will present only two 
methods that model the bi-dimensional distribution of the scores provided by 
the fingerprint and face systems. These methods model the two types of 
scores together by estimating their joint distribution as already presented in 
[12].  

 
We will now detail two score normalization schemes for combination methods: 

• MinMax normalization method. 
• Normalization method using posterior probabilities.  

 
The MinMax score normalization method is very simple. The aim is to rescale 

each system’s scores in the same interval. Indeed, as we can see in Fig. 2 (left and 
right), fingerprint scores vary from 0 to 1000 while face scores vary from -1 to 1. 
MinMax normalization permits to rescale each system’s scores in the [0,1] interval. 
Normalization parameters are estimated on a dedicated training set. 

 



      

Fig 2 : Scores distributions of the fingerprint system (left) and face system (right). The “safe” 
and “uncertain” zones for the fingerprint system (first block of the architecture) are reported in 
Fig. 2 (left). 

Normalization using posterior probabilities consists in transforming each 
system’s scores in posterior probabilities to be a client. To this aim, an assumption of 
normal distribution for the two classes (client and impostors) is made. This 
assumption permits to estimate the class conditional densities of each system by using 
a Gaussian component whose parameters are learnt on a dedicated training set. Bayes 
rule is then use to compute the posterior probabilities. 

This normalization also allows rescaling each system’s scores in the [0,1] 
interval. It generally turns out to be more precise than MinMax normalization 
presented previously because it relies on a model of each class and not only on a 
simple rescaling of scores. However, the model requires a training set representative 
of the application population and large enough to learn the Gaussian parameters 
accurately. 

We will now present two fusion methods based on a bi-dimensional scores 
distribution model: 

• Joint class conditional densities estimation with assumption of joint normal 
distribution.  

• Estimation of joint class conditional densities based on Gaussian Mixture 
Model (GMM) [13]. 

 
These two bi-dimensional fusion methods consider face and fingerprint scores 

jointly and not separately as done by combination methods. Their objective is to 
estimate the joint class conditional densities in order to estimate the probability to be 
a client knowing the scores pair (face and fingerprint). This probability is the 
posterior probability given by the Bayes rule. 

The difference between the two bi-dimensional fusion methods is the way the 
two class conditional densities are estimated. The first method is based on a normal 
assumption of the two-dimensional class conditional densities. The second method is 
less restrictive on the shape of the joint density of scores, since it is based on Gaussian 
Mixture Model (GMM) [13]. 
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4   Performance of Global Fusion Methods 

We run fusion experiments using the global fusion methods presented above. We also 
tested another combination method using a weighted sum. For this method, scores are 
normalized using MinMax method before being weighted. Weights are learnt in order 
to minimize the Half Total Error Rate (HTER) on the training set, by an exhaustive 
search of weights such as their sum equals 1. 

In Table 1, the Equal Error Rate (EER) of each fusion method is reported as well 
as their relative improvement compared to face and fingerprint systems. The 90% 
confidence intervals for EER values are also indicated in square brackets. Confidence 
Intervals are estimated using a parametric method as described in [14]. Performance is 
estimated using a leave-one-out cross-validation protocol [15] on the persons. In 
practice, for each person, we learn the fusion parameters on the 123 remaining ones in 
order to produce the result associated to this person. All the global fusion methods 
improve the performance of the fingerprint system considered individually. Fusion by 
MinMax normalization and average of scores which is the simplest method does not 
improve significantly performance of the fingerprint system alone. All other schemes 
bring a big improvement on the performance compared to the best unimodal systems 
(fingerprint) by 42% to 45%. We notice that when scores are weighted before 
combining them (after normalization), performance is in the same range as those 
obtained with more complex methods involving density estimation (GMM, 
normalization using posterior probabilities, joint density model). It could be explained 
by the fact that the size of the training set is too small to correctly estimate densities 
for models like GMM. 

Table 1.  Performance of global fusion methods.  
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4   Incremental Fusion Strategy 

In Fig 2 (left) that represents the client and impostor distributions of fingerprint scores 
on the test set, we can distinguish two zones where the fingerprint system has 
different behaviors and performance: a “safe” zone for high fingerprint scores, that 
corresponds only to client scores, and an “uncertain” zone for low fingerprint scores, 
where client and impostor scores overlap.  

The implementation of our incremental fusion strategy is therefore dependent on 
a threshold τ on the fingerprint score (see Fig 1). If the fingerprint score is higher than 
τ (belongs to the “safe” zone), the person is accepted, otherwise (the score is in the 
“uncertain” zone), we exploit the second block of our incremental fusion architecture, 
which is the fusion system combining both biometrics (see Fig 1).  

We define the cost of the fusion scheme as the average time (in seconds) for 
acquisition and processing of the biometric data of one user. The longer is the identity 
verification process, the higher is the cost. The total time is composed of 5 steps: 
fingerprint acquisition, fingerprint processing, face acquisition, face processing and 
fusion of fingerprint and face. In Table 2, we give approximations of the time needed 
for each of these 5 steps in the framework of the VINSI application on the handheld 
terminal.  

Table 2.  Time estimations of each step of the verification process on the VINSI terminal  

Fingerprint 
acquisition 

Fingerprint 
processing 

Face 
acquisition 

Face 
processing 

Processing 
of scores 
fusion 

Average time 
for one 

modality 
(fingerprint) 

Average 
time for two 
modalities 

 
10 s 1 s 10 s 4 s 0.001 s 11 s 25 s 

Acquisition times are estimated empirically while processing times correspond to 
experiments on the mobile terminal. All the values given in Table 2 are average 
estimations and can vary from one user to the other and from one system to the other. 
Time for score fusion is not significant compared to all the other times. These values 
are only estimations allowing illustrating the cost gain using the incremental 
architecture.   

The cost for global fusion methods is 25s. For the incremental fusion, for 
example if 30% of the users required two modalities, the cost will be 15,2s, that is a 
decrease of 40% compared to global fusion methods. Indeed, for these clients, the 
operator needs to acquire the face and process the fusion of both biometrics, that 
represents extra time cost mainly because of face acquisition, quality control and 
preprocessing. This extra time cost may be critical in certain applications where 
human flow is extremely important. The cost (c) is linearly related to the proportion 
(p) of clients requiring two modalities  by the equation: c=11*(1-p)+25*p . 

The objective of our strategy is to minimize the cost while still keeping a good 
performance (at least as good as the global fusion one). For this purpose, we propose 
to determine the acceptance threshold (τ) for fingerprint scores by the following 
formula: 

( )0)()(minarg* >= τττ
τ

FARFAR     (1) 



 

Fig 3: Error rate of the complete fusion system (2-blocks architecture) vs. the proportion of 
clients not accepted by fingerprint only at the first stage, on the test set.  

That is, τ* corresponds to the threshold giving the lower non zero FAR (False 
Acceptance Rate). It follows that τ* also corresponds to the maximum value of the 
impostor scores.  

In order to determine this value, we used an independent development set of 
fingerprint data extracted from the same BIOMET database. On this development set, 
the corresponding acceptance threshold estimated by Eq. (1) is 35. It roughly 
corresponds to 70% of client scores and 0% of impostor scores in the “safe” zone 
(that is, 70% of clients are only processed by the first block of the architecture 
(fingerprint)) and 100% of impostor scores and 30% of client scores in the 
“uncertain” zone. It corresponds to an average cost of 15,2s (0,7*11+0,3*25) on the 
development set, that is a decrease of 45% of the cost compared to global fusion.  

This value of the threshold corresponds on the test set to 80% of client scores and 
0% of impostor scores in the “safe” zone and to 20% of client scores and 100% of 
impostor scores in the “uncertain” zone. It gives an average cost of 13,8s 
(0,8*11+0,2*25) on the test set.  

With this strategy, we do not insure the optimality of the choice of the threshold 
(as defined in Eq. (1)) on the test database but due to the fact that the impostor score 
distribution drops sharply in its upper tail, the corresponding values of cost and error 
rates on the test set will be very similar to those obtained on the development set. The 
important point is that the strong decision power of the fingerprint system in the 
“safe” zone (no impostors) is kept on the test database when using this strategy for 
choosing the threshold on the development set.  

More generally, we can study the variation of the Error Rate in function of the cost 
when the threshold τ is varying. In Fig 3 the complete system (2-blocks architecture) 
error rate is presented depending on the proportion of clients needing to be processed 
by the second stage. Two special cases are considered, namely proportion=1, 
indicated in Fig 3 by the mark (o). In this case, the two scores are always fused 
through a global fusion strategy, corresponding to a cost of 25s. The second value 

τ* 



indicated in Fig 3 by the mark (□) correspond to the proportion=0.2 (τ*=35). We can 
observe that for all the values in the interval [0.2, 1], the error rate roughly remains 
constant. It is even true for lower values (until p=0.08). Another way to determine the 
threshold could be to find the lowest cost associated to the incremental strategy whose 
performance is still equivalent to that of the global strategy on the development 
dataset (threshold for p=0.08). But the main drawback of this threshold optimization 
is that it is not robust in generalization. As we can see in Fig 3, a small variation of 
threshold around 0.08 could imply a large degradation of performance. On the 
contrary, our choice of the threshold as defined in Eq. (1) is robust to small variations 
as explained above.  

In the second block of our incremental architecture, the fusion method used to 
combine fingerprint and face can be of two sorts: it can be a global fusion method as 
described in Section 3; in this case, the parameters of the fusion scheme are learnt on 
the complete training dataset (all the available scores). But it could also be a local 
fusion method whose parameters are learnt only on the scores of the training set 
which belong to the “uncertain” zone. This direction will be studied in future work.  

4   Conclusion 

In this paper, we realized fusion experiments in the context of a mobile terminal 
aiming at performing identity verification using fingerprint and face. We implemented 
global fusion methods where fingerprint and face are combined for each test access. 
We noticed a significant improvement of performance due to fusion: 40% to 45% of 
relative improvement for global fusion methods compared to the best modality 
(fingerprint). We also implemented an incremental fusion strategy where the second 
biometric modality (face in this example) is used only when the fingerprint system 
alone is not sufficient to take a reliable decision. The aim of our incremental fusion 
strategy is to minimize the cost of using several modalities while keeping the same 
level of performance than global fusion methods. In the VINSI application, the cost is 
due to acquisition of biometric modalities and their processing. It is estimated in our 
strategy by the proportion of clients for which we need to acquire the second modality 
(face). With our incremental strategy we have shown that 80% of clients can be 
authenticated using fingerprint alone without the need of the face modality leading to 
a decrease of 55% of the cost compared to global fusion methods. This property is 
very important particularly in the context of a mobile identity verification application 
through a handheld device like the VINSI terminal, in which computational 
constraints are significant and real time response is mandatory. The only drawback of 
our incremental strategy is that if we do not use a second modality, we cannot 
guarantee that the fingerprint has not been forged, while it is possible at low effort as 
explained in [16]. Nevertheless, in this kind of application, a human operator is 
physically present and can therefore do a visual control thanks to the face image that 
is stored in the passport and can be visualized on the screen of the VINSI terminal. 
The big cost improvement that results from our incremental fusion strategy is due in 
particular to the fact that the client and impostor scores of the fingerprint system are 
very well separated and thus that fusion can be largely driven by the fingerprint 



modality. Anyhow, this incremental fusion strategy can also be applied with profit to 
other application contexts reflecting other behaviors of the modalities at hand. 
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