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Abstract—In this paper, we study the relationship between a
novel personal entropy measure for online signatures and the
performance of several state-of-the-art classifiers. The entropy
measure is based on local density estimation by a Hidden
Markov Model. We show that there is a clear relationship
between such entropy measure of a person’s signature and the
behavior of the classifier. We carry out this study on a Dynamic
Time Warping classifier, a Gaussian Mixture Model and a
Hidden Markov Model as well. It is worth noticing that the
HMM classifier differs from the HMM used for entropy
computation. Signatures were split into three -categories
according to their entropy value. These categories are coherent
across four different databases of around 100 persons each:
BIOMET, MCYT-100, BioSecure data subsets DS2 and DS3.
We studied the impact of such categories on classifier’s
performance with a larger signature data subset of DS3, of 430
persons.

I. INTRODUCTION

N general, a biometric system’s performance is measured

globally on all the available data of a database, in terms of

the two types of errors that a biometric system can make,
namely False Rejections and False Acceptances. Instead of
considering global performance on a database, a first possible
way to better tackle performance assessment is to consider the
fact that the degree of recognition difficulty is not the same
from one individual to another. Therefore, to have a better
insight on the behavior of a classifier, it is wise to split the
database in subsets, according to a criterion related to the
difficulty of recognizing an individual.

Previous works for the speech face and fingerprint
modalities have proposed categorizations of users in terms of
their behavior with respect to an automatic recognition system
[1, 2, 3, 4, 5]. Such categorizations are well-known as the
Biometric Menagerie, since animal names were used for
different types of users. A first classification of speakers
divided the population in four non exclusive categories [1]:
Sheeps (easy to recognize speakers), Goats (difficult to
recognize speakers), Lambs (easy to imitate speakers) and
Wolves (successful at imitating other speakers). Such
classification was applied on the face modality later [2] and
completed by adding Worms, Chameleons, Phantoms and
Doves, according to a user’s relationship between genuine and
impostor match scores [3]. This last categorization was
applied on the fingerprint modality. To our knowledge, no

study in this direction concerned the online signature
modality.

Nevertheless, such categorizations have the weakness of
strongly depending on the classifier that is used. In the same
direction, [6] measures the quality of a biometric signal (such
as online signature) in function of the scores of a specific
classifier. In this paper, we propose another way to tackle this
problem for the online signature modality through a novel
personal measure of the entropy of the writer (client-entropy),
based on a set of genuine signatures [7]. This measure allows
to categorize users according to the information content or
alternatively to the “degree of disorder” or “uncertainty” of
their signatures. We show that there is a strong relationship
between such measure and the behavior of the user with
respect to different automatic recognition systems. Therefore,
it has become possible to quantify the difficulty of recognizing
a person according to the value of its entropy measure.

To that end, the signature is seen as a discrete random
variable described by its raw Cartesian coordinates (x,y), as
these are the only available features in all types of databases,
whether acquired on fixed platforms (as digitizing tablets) or
on mobile platforms (as Personal Digital Assistants). As the
online signature is piecewise stationary, it is natural to
estimate the probability density locally, namely on portions of
the signature. To that end, we propose to use a Hidden Markov
Model [8] (HMM) as a local estimator of the probability
density. To our knowledge, it is novel to measure the entropy
of a single person’s signature based on several instances of
such signature.

Indeed, the concept of entropy was previously used in the
document analysis literature to measure the complexity of a
character image database [9], by defining the entropy related
to each pixel in the image. In a more security oriented recent
work [10], the concept of entropy is used to measure how
likely it is that two persons have accidentally the same
signature, based on a particular classifier. Some authors have
tried to analyze in terms of other measures than entropy, the
variability and complexity in signatures. In [11], both
complexity and variability criteria were proposed for off-line
signature verification by a human expert. Indeed, a human
operator labels signatures according to both criteria and their
impact on performance is studied.

Four databases are used in our study of performance
assessment across personal entropy-based categories : the
most two widely used in the Online Signature Verification



literature, BIOMET Signature subset [12] and the freely
available subset of 100 users MCYT-100 of MCYT database
[13], and two data sets containing the same 104 users but
differing by the type of acquisition platform (digitizing tablet
vs. mobile platform), the DS2 and DS3 subsets acquired in the
framework of BioSecure Network of Excellence [14].

This paper is organized as follows: in Section 2, we present
our novel client-entropy measure and the resulting categories
across the four databases: BIOMET, MCYT-100, DS2 and
DS3. In Section 3, we first present the three classifiers used
for performance assessment across the client-entropy-based
categories, namely a Dynamic Time Warping classifier [8], a
Hidden Markov Model [8], and a Gaussian Mixture Model
[15]. Then, we analyze results on a larger signature data subset
of DS3 containing 430 persons. Finally, conclusions are stated
in Section 4.

II. GENERATING SIGNATURE CATEGORIES BASED
ON CLIENT-ENTROPY

A. Measuring “Client-Entropy” with a Hidden Markov
Model

As mentioned above, signatures are described by their raw
coordinates (x,y). We consider each signature as a succession
of portions, generated by its segmentation via the
client-Hidden Markov Model (HMM) [8]. Therefore, we
obtain as many portions in each signature as there are states in
the client-HMM. Then we consider each point (x,y) in a given
portion as the outcome of one random variable that follows a
given probability mass function.

Therefore, the entropy associated to a given portion of a
signature is represented by the entropy of an ensemble of
outcomes of a random variable Z. Such random variable is
discrete since its alphabet A has a finite number of values, as
many as found in the Cartesian product XxY of all possible
values of ordered pairs (x,y). The cardinal of A is of course
related to the resolution of the acquisition surface that may be
a digitizing tablet or a Touch Screen in the case of a mobile
acquisition platform.

Each outcome of Z=(x,y) has a probability value attached to
it; if Z has as probability mass function p(z) = Pr(Z = z)
where z belongs to A, its entropy is defined as:

P(Z) ==, p(2).log(p(2)) 1)

ze A
where log denotes the logarithm to the base 2.

Although the random variable Z=(x,y) is discrete, we take
advantage of the continuous emission probability law
estimated on each portion by the client-HMM. Such density is
a mixture of Gaussian components. This choice is motivated
by the fact that the discrete version of entropy and the
continuous one (called Differential Entropy) are directly
related when the density is Riemann integrable [7], which is
the case as we have a linear combination of Gaussian
densities. Also, a more orthodox version of H(Z) could have
been computed by quantizing the domain of Z in bins and

using as probability mass function, the density value obtained
by the Mean Value Theorem in each bidimensional bin. But as
the quantization is actually very fine because of the fine
resolution of acquisition devices (in general 1 million pixels
for the acquisition surface), we can assume that the continuous
density value is close to the quantized one (the density value
obtained by the Mean Value Theorem). To compute
client-entropy, we consider several genuine signatures of a
given user or client, namely 10, and a personalized number of
states, computed as:

T

Total

M %30 @)

where T, is the total number of sampled points available in
the training signatures, and M=4 is the number of Gaussian
components per state.

We ensure this way that the number of sample points per
state is at least 120 in order to obtain a good estimation of the
Gaussian Mixture in each state (four Gaussian components).
Then we compute, following (1), the entropy per portion first
(after segmentation which is performed by the client-HMM),
by using all the sample points belonging to each portion across
the 10 instances of the person’s signatures. We then average
the entropy over all the portions of a signature and normalize
the result by the average length of the ten signatures
considered in order to generate the client-entropy measure.

B. Databases description

We used five databases in this work: the freely available
MCYT subset of 100 persons [13], the BIOMET signature
sub-corpus of 84 persons [12], and subsets of the online
signature databases acquired in the framework of the
BioSecure Network of Excellence [14]: DS2 (for Second Data
Set of the whole data collection), acquired on a digitizer, and
DS3 (for Third Data Set of the whole data collection),
acquired on a mobile platform, a Personal Digital Assistant
(PDA) [16]. Two subsets of DS3 and DS2 that we use in this
work both contain data from the same 104 persons. Also, a
larger subset of DS3 of 430 persons is used in our study of
classifiers’ performance assessment per client-entropy
category. Indeed, the whole BioSecure Signature Subcorpus
DS3 and DS2 are not yet publicly available but, acquired on
several sites in Europe, they are the first online signature
multi-session databases acquired in a mobile scenario (on a
PDA) for DS3 and on a digitizer for DS2. DS3 contains the
signatures of 713 persons, acquired on the PDA HP iPAQ
hx2790, at the frequency of 100Hz and a touch screen
resolution of 1280*960 pixels. Three time functions are
captured from the PDA: x and y coordinates and the time
elapsed between the acquisition of two successive points. The
user signs while standing and has to keep the PDA in his or her
hand. Two sessions were acquired spaced of around 5 months,
each containing 15 genuine signatures. The donor was asked
to perform, alternatively, three times five genuine signatures
and twice five forgeries. Indeed, for skilled forgeries, at each



session, a donor is asked to imitate five times the signature of
two other persons. In order to imitate the dynamics of the
signature, the forger visualized on the PDA screen the writing
sequence of the signature he/she had to forge and could sign
on the image of such signature in order to obtain a better
quality forgery both from the point of view of the dynamics
and of the shape of the signature.

On the other hand, DS2 contains data from 667 persons
acquired in a PC-based offline supervised scenario and the
digitizing tablet WACOM INTUOS 3 A6. The pen tablet
resolution is 5080 lines per inch and the precision is 0.25 mm.
The maximum detection height is 13 mm and the capture area
is 270mm (width) x 216mm (height). Signatures are captured
on paper using an inking pen. At each sampled point of the
signature, the digitizer captures at 100 Hz sampling rate the
pen coordinates, pen pressure (1024 pressure levels) and pen
inclination angles (azimuth and altitude angles of the pen with
respect to the tablet). This database contains two sessions,
acquired two weeks apart. The acquisition protocol is the
same as the one used for DS3.

C. Client categories with Entropy measure

We performed on the four databases containing around 100
persons, a K-Means on the client-entropy values for different
values of K and reached a good separation of signatures with
K=3 on all databases as shown in Figures 1 to 4, respectively
on MCYT-100, BIOMET, DS2 and DS3.

We notice visually that on the four databases, the first
category of signatures, those having the highest
client-entropy, contains paraph-like signatures, the shortest.
At the opposite, signatures in the third category, those of
lowest client-entropy, are the longest and their appearance is
rather that of handwriting, some are even readable. In
between, we notice that signatures with medium
client-entropy (second category) have sometimes more the
aspect of those of highest client-entropy and sometimes the
aspect of those of lowest client-entropy.

III. CLASSIFIERS FOR INTRACLASS PERFORMANCE
ASSESSMENT

A. Score computation by the three Classifiers

Three classifiers are used in this study considering only
the raw coordinates description of signatures as input data: a
Dynamic Time Warping classifier [8], a Hidden Markov
Model [8], and finally a Gaussian Mixture Model [15]. We
consider in this study only the largest database at our disposal,
namely a subset of DS3 containing 430 persons, denoted as
DS3-430.

For performance assessment, we considered only random
forgeries in this study, in order to fit to the evaluation
conditions in other biometric modalities where in general no
skilled forgeries are available [1,2,3,4,5]. Five random
samplings are carried out on genuine and impostor signatures

Figure 1: Examples of signatures from MCYT-100 of (a) highest, (b)
medium and (c) lowest client-entropy
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Figure 2: Examples of signatures from BIOMET of (a) highest, (b) medium
and (c) lowest client-entropy
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Figure 3: Examples of signatures from DS2 of (a) highest, (b) medium and
(c) lowest client-entropy

Figure 4: Examples of signatures from DS3 of (a) highest, (b) medium and
(c) lowest client-entropy

in the following way: each sampling contains five genuine
signatures used as reference signatures for Dynamic Time
Warping and as the training set for statistical approaches. For
test purposes, the remaining 25 genuine signatures (belonging
to two sessions) and 30 impostor signatures randomly



sampled in equal number in each client-entropy category (10
random forgeries per category) are used. The False
Acceptance and False Rejection Rates are computed relying
on the total number of False Rejections and False Acceptances
obtained on the whole five random samplings.

Dynamic Time Warping determines the dissimilarity
between two time sequences with different lengths [8]. This
method, with polynomial complexity, computes a matching
distance by recovering optimal alignments between the two
time series. The alignment is optimal in the sense it minimizes
a cumulative distance measure consisting of “local” distances
between aligned samples. In this system, the DTW-distance

between two time series X,...X,, and y,...y, is D(M,N)
computed as:
D@, j-D+w,
D@i-1,/)+w,
D@i-1,j-D+w,

D(i, j) = min +d(i, /) (3)

where the “local” distance function d(7, j) is the Euclidian
Distance between i” reference point and jth testing point,
with D(00) = d(00) = 0, and equal weights wp are given to
insertions, deletions and substitutions. We use the
Sakoe-Chiba band constraint [8] to ensure that the warping
path stays close to the diagonal of the matrix which contains
the local distances D(i,j). The DTW-based classifier aligns by
Dynamic Time Warping (DTW) a test signature with each
reference signature and the average value of the resulting five
distances is used to classify the test signature as being genuine
or a forgery. The dissimilarity matching score for the DTW
classifier is:

N
Score = L Z D(test , reference )/ L 4)

reference =1

where N is the number of reference signatures and L is the
length of the test signature.

If the final distance is lower than the value of the decision
threshold the claimed identity is accepted, otherwise it is
rejected.

Concerning statistical models, we used a GMM and a
left-to-right HMM of the same complexity in terms of
Gaussian components. It is worth noticing that the HMM
classifier differs from the HMM used for client-entropy
computation. Indeed, the former is devoted to classification,
while the latter only performs local density estimation. We
considered for the HMM classifier a six states and four
Gaussian components per state, as a tradeoff in complexity
between the signatures of the two extreme categories. For the
GMM, accordingly, we considered 24 Gaussians to model a
person’s signatures. The dissimilarity matching score for both
statistical models is:

Score =|LL — LL | (5)

where LL is the Log-Likelihood of the test signature
(normalized by the length of the test signature) and LL,is
the corresponding average Log-Likelihood of the training
signatures.

B. Results and analysis

For each classifier, we show in Figure 5 the client and
impostor scores distributions per client-entropy category
(high, medium and low client-entropy) and, in Figure 6, the
associated DET-Curves on DS3-430 database.

Distribution of scores per category with HMM classifier
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Figure 5: Client and impostor scores distributions considering random
forgeries on categories of highest, medium and lowest client-entropy on
DS3-430 database with HMM, GMM and DTW classifiers.



We notice in Figure 5 that for the statistical classifiers the
distributions’ shapes behave in the same way for client and
impostor scores as well: they are the sharpest in the lowest
entropy category (long, complex, stable and readable
signatures) and become more flat when we change to a higher
entropy category. As a consequence, we observe that in the
highest entropy category, the overlap between client and
impostor scores distributions is the most important, and such
area is considerably higher than the area of overlap obtained
in the lowest entropy category (around a factor 3).

For the DTW classifier, we note that this phenomenon of
increasing sharpness of the distributions with decreasing
client-entropy is only observed for client scores distributions.
Indeed, for the three client-entropy categories, the impostor
scores distributions are similarly flat. Nevertheless, as the
DTW client distributions shapes are still different per
category, the area of overlap of client and impostor scores
distributions in the lowest entropy category is still lower than
on the other categories. This result leads to different behaviors
in terms of performance according to the category of
client-entropy that we consider for all the three classifiers.

High entropy Medium entropy Low entropy
EER | CI95% | EER | CI95% | EER | CI95%
HMM 13.93% +0.78 8.5% +0.74 4.79% +0.85
GMM 19.49% +1.23 13.39% +1.04 7.49% +0.87
DTW 5.76% +0.59 2.95% +0.49 2.03% +0.19

Tablel: Equal Error Rate and Confidence Interval on each client-entropy
category on DS3-430 database with HMM, GMM and DTW classifiers.

As shown in Table 1, for the three classifiers, at the Equal
Error Rate functioning point, performance is roughly
improved by a factor three when switching from the highest
entropy category to the lowest one. Confidence Intervals at
95% are given to show the significance of results. At other
functioning points, this behavior is maintained for the
statistical classifiers; nevertheless, for the DTW classifier, the
difference between the high client-entropy category and the
two others remains the same at other functioning points, but
there is no longer a difference between the two categories of
lowest client-entropy.

We notice that DTW outperforms the statistical
approaches independently of the client-entropy categories.
This can be explained by the fact that the description of
signatures by the raw coordinates is not sufficient to allow a
good adaptation of the statistical models. Moreover, the
HMM topology and GMM complexity were not optimized but
rather used in a “baseline” manner. Indeed, our goal in this
paper was not to compare the classifiers but to show the
relationship between the behavior of classifiers in terms of
performance and the client-entropy categories.

In order to study the link between our client-entropy-based
categories and the version of the Biometric Menagerie in [3],
we plotted in Figure 7 for each classifier, the Average
Impostor Score (averaged on all the available impostor
accesses) vs. the Average Genuine Score. First, for statistical

models, we notice that the highest client-entropy category
shows low average client scores, and a pronounced scattering
of persons along the average impostor score axis. This
situation, in which individuals have variable impostor scores
and low client scores, corresponds to “Phantoms” or “Goats”
[3]: Phantoms when both types of scores are low at the same
time, Goats when the user is easy to imitate.
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Figure 6: DET-Curves considering random forgeries on categories of highest,
medium and lowest client-entropy on DS3-430 database with HMM, GMM
and DTW classifiers.

Then, we notice that for signatures of lowest client-entropy,
the average impostor score per user is bounded and the
average client score per user is variable. Thus, such signatures
resist well to impostures and span three classes of the
Biometric Menagerie: Phantoms, when client scores are low,
Sheep when client scores are intermediate, and Doves when
client scores are high. Concerning the medium client-entropy
category, it scatters in all the previously mentioned classes as
it is a transition category in terms of client-entropy.
Nevertheless, individuals in this category are more
concentrated in the Sheep class when client scores are
intermediate and impostor scores are low, and in the Phantoms
class.

For the DTW classifier, the highest client-entropy
category remains concentrated in the Phantoms class showing
the same behavior of scattering along the vertical axis
(impostor scores) and low average client score per user. With
this classifier, at the opposite of statistical models, impostor
scores are very variable for all the remaining client-entropy
categories (medium and lowest entropy); users in such
categories are concentrated in the Sheep class, thus explaining
that system performance is improved with the DTW classifier
with regard to statistical approaches.
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Figure 7: Average impostor score per user vs. average client score per user
with the three classifiers (HMM, GMM and DTW) on DS3-430 database.
Rectangular area on top right is the zoom of the circled area in bottom left.

IV. CONCLUSION

We have proposed in this work a novel measure of
client-entropy, based on a Hidden Markov Model that
performs local density estimation. Such measure allows
obtaining three categories of signatures, coherent across
several databases, spanning from highly variable, short and
low information content signatures (high client-entropy) to
stable, longer and complex signatures with the aspect of
handwriting (low client-entropy). Then, we analyzed the
relationship between this entropy measure and system
performance by considering three classifiers: an HMM, a
GMM and a DTW. We showed that for all classifiers, the
three entropy categories have a different behavior in terms of
performance: the lowest entropy category performs three
times better than the highest entropy category. This result was
explained in terms of the overlap of client and impostor scores
distributions that vary across -client-entropy categories.
Finally, we related our entropy categories to the Biometric
Menagerie [1,2,3,4,5]. In spite of the fact that our
entropy-based categories do not correspond to identified

classes of the Biometric Menagerie, we have observed that the
lowest entropy category is more concentrated in the best
configurations of the Menagerie (Doves and Sheep). Future
work will focus on the impact of skilled forgeries on
performance assessment and on the use of this categorization
of databases for developing better and more robust
identification strategies.
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