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Abstract

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions,
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a
model can be useful in the goal of predicting turbine blade life, given a set of FDR data.
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Abstract

It is well known that both damage and plastic anisotropy strongly affect the ductility limit of thin metal sheets. Due to the
manufacturing processes, initial defects, such as inclusions and voids, are commonly present in the produced sheet metals. Plastic 
anisotropy is a direct outcome of the rolling process, where the resulting metal sheets exhibit preferred crystallographic
orientations or strong texture. In the present study, the combined effect of plastic anisotropy and damage on localized necking is
numerically investigated and analyzed. To this aim, an improved version of the GursonTvergaardNeedleman (GTN)
constitutive framework is used to model the mechanical behavior of the studied sheet. This version, which is an extension of the
original GTN model, incorporates Hill’s anisotropic yield function to take into account the plastic anisotropy of the matrix
material. Particular attention is devoted to the derivation of the analytical tangent modulus associated with this constitutive
model. This extended GTN model is successfully coupled with bifurcation theory to predict sheet metal ductility limits, which
are represented in terms of forming limit diagrams (FLDs). The effect of some material parameters (e.g., anisotropy parameters
of the metallic matrix) on the shape and the location of the predicted FLDs is then investigated and discussed through numerical
simulations.
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1. Introduction

Sheet metal forming is one of the most used processes in manufacturing industries. This process involves plastic 
deformation of metallic sheets and is designed to obtain complex parts with fast cadence. Nevertheless, it happens 
that localized necking occurs in the drawn part before the end of forming operations. The onset of this localized 
necking represents the ultimate deformation that the drawn part can undergo, since this phenomenon is often 
precursor to material failure. Hence, efficient and reliable prediction of the occurrence of localized necking is 
required to help in the calibration of the process controlling parameters. The most common representation for the 
necking limit strains relies on the concept of forming limit diagram (FLD), which was initially proposed by Keeler 
and Backofen (1963). The prediction of such diagrams requires the combination of a plastic instability criterion and 
a constitutive model that describes the mechanical behavior of the studied sheet. Our attention in this paper is 
focused on materials exhibiting plastic anisotropy. Such anisotropic behavior is due to rolling operations, which are 
performed before the forming process. It is expected that plastic anisotropy plays a crucial role in the prediction of 
localized necking in sheet metals. Hence, accurate predictions of strain localization are needed, especially for 
anisotropic materials and for complex loading paths. The onset of localized necking may occur as a bifurcation from 
a homogeneous deformation state or it may be triggered by some assumed initial imperfection. Accordingly, two 
main classes of strain localization criteria can be found in the literature: 

 Imperfection approach: This approach has been initially developed by Marciniak and Kuczynski (1967). It is
based on the assumption that an initial imperfection exists in the form of a narrow band across the section of
the studied sheet. This approach, denoted hereafter as MK approach, has been first applied to rigid-plastic
materials following the von Mises isotropic yield function. Then, the MK approach has been extended to
take into account the plastic anisotropy of the metal sheets, by considering different formulations for the
adopted yield functions. In this context, one can quote the work of Butuc et al. (2002), who used the Barlat
yield function (Barlat, 1987), Cao et al. (2000), who used the Karafillis and Boyce yield function (Karafillis
and Boyce, 1993), and Kim et al. (2003), who used the YLD 2000. In spite of the over-sensitivity of its
predictions to the initial imperfection value, the MK approach has attracted a great deal of attention in both
academic and industrial applications, due to its pragmatic character.

 Bifurcation theory: In addition to its sound mathematical foundations, the bifurcation theory does not require
any fitting parameter, such as the initial imperfection needed in the M–K analysis. This theory has been
initially applied by Hill (1952) to materials obeying flow theory of plasticity. In the latter case, both
hardening and plasticity were assumed to be isotropic. To predict ductility limits at realistic strain levels for
the whole range of strain paths (i.e., from the uniaxial tensile state to equibiaxial tension), the bifurcation
approach must be combined with constitutive models exhibiting some destabilizing effects. The development
of such destabilizing effects may be due to the application of the deformation theory of plasticity (see, e.g.,
Stören and Rice, 1975), or the use of the Schmid law within the framework of crystal plasticity (see, e.g.,
Franz et al., 2013). This destabilizing effect may also be due to some softening behavior introduced in the
constitutive modeling through coupling with damage (Mansouri et al., 2014). To account for the effect of
plastic anisotropy on localized necking predictions, the constitutive models are usually coupled with
anisotropic yield criteria. In this field, one can quote Hill’48 yield function, which has been coupled with the
deformation theory of plasticity in Jaamialahmadi and Kadkhodayan (2011), and with the Lemaitre damage
model in Haddag et al. (2009). This coupling allows analyzing the effect of plastic anisotropy on the shape
and the level of FLDs predicted by bifurcation theory. The main objective of the present contribution is to
expand these earlier investigations by coupling an improved version of the GursonTvergaardNeedleman
(GTN) damage model with the bifurcation theory. This improved version extends the original one to take into
account the plastic anisotropy of the matrix material. The Hill’48 yield function is used to model this plastic
anisotropy.

The present paper is organized as follows: 
 In Section 2, the constitutive equations describing the improved GTN model are presented.
 Section 3 details the coupling between the bifurcation theory and the improved GTN model.
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 The various numerical predictions are presented in Section 4.

Nomenclature 

K , 0ε , n Swift’s hardening parameters of the dense matrix 
pε equivalent plastic strain of the dense matrix 

σ flow stress of the dense matrix 
pD macroscopic plastic strain rate tensor (dense matrix+voids) 

γ   plastic multiplier 
Σ macroscopic Cauchy stress tensor 
F,G,H,L,M,N  Hill’s matrix components 
Η  Hill’s anisotropy matrix 
0r , 45r , 90r Lankford’s coefficients  

q  anisotropic equivalent stress 

mΣ hydrostatic part of the macroscopic stress Σ  

1q , 2q , 3q damage constants 

GTNΦ yield function of the improved GTN model 
f total void volume fraction (also called porosity) 

cf critical void volume fraction 

Ff final void volume fraction 

gf  volume fraction of grown voids 

nf volume fraction of nucleated voids 

Nf volume fraction of inclusions tending to nucleate 

uf  ultimate void volume fraction 
*f modified volume fraction of voids 

Nε equivalent plastic strain for which half of inclusions have nucleated 

Ns  standard deviation on Nε  
eC  fourth-order elasticity tensor  
epC elastic-plastic tangent modulus 

L  analytical tangent modulus  
I  second-order identity tensor  

2. Constitutive equations

In this work an improved GTN model is used to take into account the plastic anisotropy of the matrix. In addition
to the classical equations that are common to conventional elastic-plastic constitutive models (i.e., decomposition of 
the deformation into elastic and plastic parts, hypo-elastic law…), the current version of GTN model is defined by 
the following supplementary equations: 

 The expression of the yield function:

2

2 1* *22 m
GTN 1 3

q ΣqΦ q f cosh q f
σ κσ

       
   

,  (1) 
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where q  and mΣ  are equal to : : / 2Σ Η Σ  and  tr / 3Σ , respectively, while κ  is a coefficient reflecting the 
plastic anisotropy effect and which depends on 0r , 45r  and 90r  through coefficients ih  (Benzerga and Besson, 2001): 

1.6 0.8
    

          
1 2 3

1 2 2 3 1 3 4 5 6

h h h 1 1 1κ
h h h h h h h h h

. (2) 

The matrix   used to compute the anisotropic equivalent stress q  is expressed by the following relation: 

0 0 0
0 0 0
0 0 0

0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

G H H G
H H F F
G F F G

N
L

M

   
    
   

  
 
 
 
  

 . (3) 

The components F,G,H,L,M  and N  are related to the 0r , 45r  and 90r  coefficients by the following relations: 

  
 

0 90 45

90 0

2 13; ; ; ;
1 2 2 1

 
     

 
0

90 0 0

r r rrH HF G H L M N
r r r r r

. (4) 

As demonstrated by Eq. (1), the yield surface strongly depends on the plastic anisotropy of the matrix material. 
This dependency is reflected by the introduction of Hill’s matrix Η  into the expression of the equivalent stress q , 
on the one hand, and by the introduction of the scalar parameter κ  into the 'cosh', on the other hand. It must be 
noted that when coefficients 0r , 45r  and 90r  are equal to 1 (case of isotropic materials), the classical GTN yield 
surface is obviously recovered. Indeed, in this particular case, the scalar functions q  and κ  become equal to 

(3 / 2) d d:Σ Σ  ( dΣ  being the deviatoric part of Σ ) and 2, respectively. 

The expression of *f  is given by the empirical formula introduced in Tvergaard and Needleman (1984). 
 The evolution of void volume fraction: the porosity rate f  is additively decomposed into nucleation and growth

contributions, denoted nf  and gf , respectively:

   
2

1exp 1
22

p
p pN N

n g
NN

ff f f f tr
ss

 




  
       
   

D , (5) 

where pD  is related to GTNΦ  by the normality rule: 

p GTNΦ 


D
Σ

. (6) 

 The expression of the flow stress   of the fully dense matrix, which is defined by the Swift law:

 0

npK    .  (7) 
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 The equivalence between the rates of macroscopic and microscopic (matrix) plastic work:

 1  p pf    Σ D . (8) 

3. Bifurcation approach

The bifurcation theory (see, e.g., Rice, 1976) is used to predict the onset of plastic strain localization in the 
studied sheet metals. In this approach, bifurcation should be interpreted as the occurrence of a nonhomogeneous 
strain mode, in the form of an infinite localization band defined by its normal n , within a continuous medium that 
is subjected to a homogeneous strain state. Making use of the equilibrium and compatibility conditions, it is possible 
to derive the following localization criterion, namely the singularity of the acoustic tensor, which only involves the 
normal n  to the localization band and the analytical tangent modulus L :  

 det 0 .  . n L n . (9) 

The analytical tangent modulus L  is related to the elastic-plastic tangent modulus epC  by: 

1 2 3   epL C C C C , (10) 

where 1C , 2C  and 3C  are fourth-order tensors that can be expressed, after some mathematical derivations, as: 

   1 2 3
1 1; ;
2 2

    ijkl ij kl ijkl jl ik jk il ijkl ik jl il jkΣ δ δ Σ δ Σ δ Σ δC C C . (11) 

The elastic-plastic tangent modulus epC  is determined by expressing the improved GTN yield function and the 
plastic multiplier in the Kuhn–Tucker form as follows: 

0 ; 0 ; 0.GTN GTNΦ γ Φ γ    (12) 

This form is convenient because it reveals that there is no plastic flow (i.e., 0γ ) when 0GTNΦ  , while a strict 

plastic loading (i.e., 0γ ) necessarily implies that = 0GTNΦ  and = 0GTNΦ . The latter represents the consistency 
condition, and can be developed as follows: 

: 0*
*

GTN σ f
Φ V σ V f   ΣV  . (13) 

The derivatives ,  σVΣV  and *f
V  are obtained analytically in the following forms: 
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V q q f
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Σ
HV  

(14) 

The rate form of the hypo-elastic law allows us to express the stress rate in terms of the plastic multiplier γ : 
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 : :e epγ  ΣΣ C D V C D . (15) 

After some mathematical derivations involving the normality rule (6) and Eqs. (13-15), the elastic-plastic tangent 
modulus is obtained as follows: 

   : :e e
ep e

γH


  Σ ΣC V V C
C C , (16) 

where γH  is defined by the following relation: 
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4. Results and discussion

The constitutive equations of the improved GTN model are numerically integrated, using a fully implicit time
integration scheme (Ben Bettaieb et al., 2011), and implemented into the ABAQUS finite element (FE) code via a 
user material subroutine UMAT. To predict the ductility limits, the bifurcation condition (9) is combined with the 
above constitutive equations and checked at every time increment. In practice, localized necking is predicted when 
this condition of singularity of the acoustic tensor is verified. The material parameters of the GTN model and of the 
hardening law are those adopted for an AA5182 sheet metal according to Mansouri et al. (2014). These parameters 
are summarized in Table 1.  

Table 1. Values for GTN material parameters. 

E [GPa] ν n K (MPa) 0  0f cf Ff 1q  2q 3q  Ns N Nf
70 0.33 0.17 371.2 0.00324 10-3 0.00213 0.15 1.5 1 2.15 0.1 0.27 0.035 

A sensitivity analysis is performed to investigate the effect of the Lankford coefficient 0r  on the ductility limits. 
In this parametric study, three different sets of Lankford coefficients are considered. The first set, referred to as Set 
1, assumes isotropic behavior for the AA5182 material. In order to emphasize the effect of 0r  on the ductility limits, 
this 0r  Lankford coefficient is varied by setting its value to 1.4 and 0.7, which correspond to Set 2 and Set 3 
respectively, as shown in Table 2. 

Table 2. Selected sets of Lankford coefficients associated with Hill’48 quadratic yield criterion. 

Lankford coefficients 0r 45r 90r
Set 1 (isotropic) 1 1 1 

Set 2 1.4 1 1 

Set 3 0.7 1 1 

Fig. 1(a) shows the evolution of the analytical tangent modulus component 1111L  for the different sets of 
Lankford coefficient 0r , in the case of equibiaxial tensile loading path. The observed trends for the evolution of 

1111L  are quite similar until a value of 0.05 for the macroscopic strain component 11E , which corresponds to the 
onset of coalescence. Starting from this strain threshold, a rapid drop of the stiffness occurs, and differences are 
evidenced gradually between the isotropic profile and the others. Fig. 1(b) shows the evolution of the minimum of 
the determinant of the acoustic tensor, min(det( . . ))n L n , with respect to the logarithmic longitudinal strain for 
equibiaxial tensile loading path. This function, denoted min(det( . . ))n L n , represents the minimum of the 



6 Author name / Structural Integrity Procedia 00 (2016) 000–000

 : :e epγ  ΣΣ C D V C D . (15)

After some mathematical derivations involving the normality rule (6) and Eqs. (13-15), the elastic-plastic tangent
modulus is obtained as follows:

   : :e e
ep e

γH


  Σ ΣC V V C
C C , (16)

where γH is defined by the following relation:

     *

: :: : 1 :
1 1

σ p
e n

γ GTNf

V AH V f
f f


 

 


         

Σ Σ
Σ Σ Σ

V VV C V V   . (17)

4. Results and discussion

The constitutive equations of the improved GTN model are numerically integrated, using a fully implicit time
integration scheme (Ben Bettaieb et al., 2011), and implemented into the ABAQUS finite element (FE) code via a 
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A sensitivity analysis is performed to investigate the effect of the Lankford coefficient 0r on the ductility limits. 
In this parametric study, three different sets of Lankford coefficients are considered. The first set, referred to as Set
1, assumes isotropic behavior for the AA5182 material. In order to emphasize the effect of 0r on the ductility limits, 
this 0r Lankford coefficient is varied by setting its value to 1.4 and 0.7, which correspond to Set 2 and Set 3 
respectively, as shown in Table 2.

Table 2. Selected sets of Lankford coefficients associated with Hill’48 quadratic yield criterion.

Lankford coefficients 0r 45r 90r
Set 1 (isotropic) 1 1 1

Set 2 1.4 1 1

Set 3 0.7 1 1

Fig. 1(a) shows the evolution of the analytical tangent modulus component 1111L for the different sets of
Lankford coefficient 0r , in the case of equibiaxial tensile loading path. The observed trends for the evolution of

1111L are quite similar until a value of 0.05 for the macroscopic strain component 11E , which corresponds to the
onset of coalescence. Starting from this strain threshold, a rapid drop of the stiffness occurs, and differences are
evidenced gradually between the isotropic profile and the others. Fig. 1(b) shows the evolution of the minimum of
the determinant of the acoustic tensor, min(det( . . ))n L n , with respect to the logarithmic longitudinal strain for
equibiaxial tensile loading path. This function, denoted min(det( . . ))n L n , represents the minimum of the
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determinant of the acoustic tensor over all possible orientations for the normal n  to the localization band, and it 
illustrates the evolution of the bifurcation indicator until strain localization is detected. Hence, earlier strain 
localization is recorded for the largest Lankford coefficient 0r , due to premature void coalescence. To confirm this 
trend, further simulations are performed for the whole range of strain paths, and the corresponding FLDs are plotted 
for the different sets of Lankford coefficients considered.  

(a) (b) 

Fig. 1. Prediction of strain localization during equibiaxial tensile loading path. (a) Component L1111 with the longitudinal strain E11. (b) Evolution 
of the minimum of the determinant of the acoustic tensor with the longitudinal strain E11. 

Fig. 2(a) reveals, through plots of complete associated FLDs, a strong dependence of the ductility limit on the 
Lankford coefficient 0r . These observed effects of plastic anisotropy are more significant for negative strain paths. 
By contrast, they are less pronounced for plane strain and equibiaxial tension, although still noticeable. As has been 
shown previously, the initiation of strain localization is strongly dependent on the void volume fraction f , through 
the expression of the analytical tangent modulus L  (see Eqs. (10)(17)). The evolution of the porosity f  depends 
in turn on the Lankford coefficients, as expected and demonstrated in Fig. 2(b). This explains the sensitivity of the 
shape and the level of the predicted FLDs to the plastic anisotropy. 

(a) (b) 

Fig. 2. (a) FLDs obtained for linear strain paths applied along the rolling direction, and (b) evolution of the volume fraction of voids for different 
values of Lankford coefficient 0r  for the case of equibiaxial tensile state. 
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Conclusions 

An extended GTN model accounting for plastic anisotropy effects has been numerically integrated, using an 
implicit time integration scheme, and successfully implemented into the FE code ABAQUS. In order to predict 
FLDs for sheet metals under in-plane biaxial stretching, the current version of GTN model has been coupled with 
the bifurcation approach. The predicted FLDs show a strong dependence to the Lankford coefficient 0r , especially 
in the negative strain-path range. Less pronounced, but still noticeable effects on the ductility limits are observed in 
the positive strain-path range, suggesting different damage behavior depending on the variation of 0r . These 
findings indicate that the predicted ductility limits may be quite different for a given loading path, depending on the 
values of Lankford coefficients. For anisotropic sheet metals, it is well known that the consideration of the effect of 
plastic anisotropy on the ductility limits is crucial in order to determine the actual conditions of strain localization 
and subsequent failure. 
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