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During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data.

Introduction

Sheet metal forming is one of the most used processes in manufacturing industries. This process involves plastic deformation of metallic sheets and is designed to obtain complex parts with fast cadence. Nevertheless, it happens that localized necking occurs in the drawn part before the end of forming operations. The onset of this localized necking represents the ultimate deformation that the drawn part can undergo, since this phenomenon is often precursor to material failure. Hence, efficient and reliable prediction of the occurrence of localized necking is required to help in the calibration of the process controlling parameters. The most common representation for the necking limit strains relies on the concept of forming limit diagram (FLD), which was initially proposed by [START_REF] Keeler | Plastic instability and fracture in sheets stretched over rigid punches[END_REF]. The prediction of such diagrams requires the combination of a plastic instability criterion and a constitutive model that describes the mechanical behavior of the studied sheet. Our attention in this paper is focused on materials exhibiting plastic anisotropy. Such anisotropic behavior is due to rolling operations, which are performed before the forming process. It is expected that plastic anisotropy plays a crucial role in the prediction of localized necking in sheet metals. Hence, accurate predictions of strain localization are needed, especially for anisotropic materials and for complex loading paths. The onset of localized necking may occur as a bifurcation from a homogeneous deformation state or it may be triggered by some assumed initial imperfection. Accordingly, two main classes of strain localization criteria can be found in the literature:  Imperfection approach: This approach has been initially developed by [START_REF] Marciniak | Limit strains in the process of stretch forming sheet metal[END_REF]. It is based on the assumption that an initial imperfection exists in the form of a narrow band across the section of the studied sheet. This approach, denoted hereafter as MK approach, has been first applied to rigid-plastic materials following the von Mises isotropic yield function. Then, the MK approach has been extended to take into account the plastic anisotropy of the metal sheets, by considering different formulations for the adopted yield functions. In this context, one can quote the work of [START_REF] Butuc | A more general model for forming limit diagrams prediction[END_REF], who used the Barlat yield function [START_REF] Barlat | Crystallographic Texture, Anisotropic Yield Surfaces and Forming Limits of Sheet Metals[END_REF], [START_REF] Cao | Prediction of localized thinning in sheet metal using a general anisotropic yield criterion[END_REF], who used the Karafillis and Boyce yield function [START_REF] Karafillis | A general anisotropic yield criterion using bounds and a transformation weighting tensor[END_REF], and [START_REF] Kim | Formability of AA5182/polypropylene/AA5182 sandwich sheets[END_REF], who used the YLD 2000. In spite of the over-sensitivity of its predictions to the initial imperfection value, the MK approach has attracted a great deal of attention in both academic and industrial applications, due to its pragmatic character.

 Bifurcation theory: In addition to its sound mathematical foundations, the bifurcation theory does not require any fitting parameter, such as the initial imperfection needed in the M-K analysis. This theory has been initially applied by [START_REF] Hill | On discontinuous plastic states, with special reference to localized necking in thin sheets[END_REF] to materials obeying flow theory of plasticity. In the latter case, both hardening and plasticity were assumed to be isotropic. To predict ductility limits at realistic strain levels for the whole range of strain paths (i.e., from the uniaxial tensile state to equibiaxial tension), the bifurcation approach must be combined with constitutive models exhibiting some destabilizing effects. The development of such destabilizing effects may be due to the application of the deformation theory of plasticity (see, e.g., [START_REF] Stören | Localized necking in thin sheets[END_REF], or the use of the Schmid law within the framework of crystal plasticity (see, e.g., [START_REF] Franz | Strain localization analysis for single crystals and polycrystals: Towards microstructureductility linkage[END_REF]. This destabilizing effect may also be due to some softening behavior introduced in the constitutive modeling through coupling with damage [START_REF] Mansouri | Ductility limit prediction using a GTN damage model coupled with localization bifurcation analysis[END_REF]. To account for the effect of plastic anisotropy on localized necking predictions, the constitutive models are usually coupled with anisotropic yield criteria. In this field, one can quote Hill'48 yield function, which has been coupled with the deformation theory of plasticity in [START_REF] Jaamialahmadi | An Investigation Into the Prediction of Forming Limit Diagrams for Normal Anisotropic Material Based on Bifurcation Analysis[END_REF], and with the Lemaitre damage model in [START_REF] Haddag | Strain localization analysis using a large deformation anisotropic elastic-plastic model coupled with damage[END_REF]. This coupling allows analyzing the effect of plastic anisotropy on the shape and the level of FLDs predicted by bifurcation theory. The main objective of the present contribution is to expand these earlier investigations by coupling an improved version of the GursonTvergaardNeedleman (GTN) damage model with the bifurcation theory. This improved version extends the original one to take into account the plastic anisotropy of the matrix material. The Hill'48 yield function is used to model this plastic anisotropy.

The present paper is organized as follows:  In Section 2, the constitutive equations describing the improved GTN model are presented.  Section 3 details the coupling between the bifurcation theory and the improved GTN model. 

Constitutive equations

In this work an improved GTN model is used to take into account the plastic anisotropy of the matrix. In addition to the classical equations that are common to conventional elastic-plastic constitutive models (i.e., decomposition of the deformation into elastic and plastic parts, hypo-elastic law…), the current version of GTN model is defined by the following supplementary equations:  The expression of the yield function:
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where q and m Σ are equal to : : / 2 Σ Η Σ and   tr / 3 Σ , respectively, while κ is a coefficient reflecting the plastic anisotropy effect and which depends on 0 r , 45 r and 90 r through coefficients i h (Benzerga and Besson, 2001):
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The matrix  used to compute the anisotropic equivalent stress q is expressed by the following relation:
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The components F,G,H,L,M and N are related to the 0 r , 45 r and 90 r coefficients by the following relations:
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As demonstrated by Eq. ( 1), the yield surface strongly depends on the plastic anisotropy of the matrix material.

This dependency is reflected by the introduction of Hill's matrix Η into the expression of the equivalent stress q , on the one hand, and by the introduction of the scalar parameter κ into the 'cosh', on the other hand. It must be noted that when coefficients 0 r , 45 r and 90 r are equal to 1 (case of isotropic materials), the classical GTN yield surface is obviously recovered. Indeed, in this particular case, the scalar functions q and κ become equal to
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Σ being the deviatoric part of Σ ) and 2, respectively.

The expression of * f is given by the empirical formula introduced in [START_REF] Tvergaard | Analysis of the cup-cone fracture in a round tensile bar[END_REF].

 The evolution of void volume fraction: the porosity rate f is additively decomposed into nucleation and growth contributions, denoted n f and g f , respectively:
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where p D is related to GTN Φ by the normality rule:
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)
 The expression of the flow stress  of the fully dense matrix, which is defined by the Swift law:
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)
 The equivalence between the rates of macroscopic and microscopic (matrix) plastic work:
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Bifurcation approach

The bifurcation theory (see, e.g., [START_REF] Rice | The localization of plastic deformation[END_REF]) is used to predict the onset of plastic strain localization in the studied sheet metals. In this approach, bifurcation should be interpreted as the occurrence of a nonhomogeneous strain mode, in the form of an infinite localization band defined by its normal n , within a continuous medium that is subjected to a homogeneous strain state. Making use of the equilibrium and compatibility conditions, it is possible to derive the following localization criterion, namely the singularity of the acoustic tensor, which only involves the normal n to the localization band and the analytical tangent modulus L :
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The analytical tangent modulus L is related to the elastic-plastic tangent modulus ep C by:
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)
where 1 C , 2 C and 3 C are fourth-order tensors that can be expressed, after some mathematical derivations, as:
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The elastic-plastic tangent modulus ep C is determined by expressing the improved GTN yield function and the plastic multiplier in the Kuhn-Tucker form as follows: 0 ; 0 ; 0.
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)
This form is convenient because it reveals that there is no plastic flow (i.e., 0  γ ) when 0 GTN Φ  , while a strict plastic loading (i.e., 0  γ ) necessarily implies that = 0 GTN Φ and = 0 GTN Φ . The latter represents the consistency condition, and can be developed as follows:
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The derivatives , σ V Σ V and * f V are obtained analytically in the following forms:
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The rate form of the hypo-elastic law allows us to express the stress rate in terms of the plastic multiplier γ :
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After some mathematical derivations involving the normality rule (6) and Eqs. (13-15), the elastic-plastic tangent modulus is obtained as follows:

   

: :

e e ep e γ H    Σ Σ C V V C C C , ( 16 
)
where γ H is defined by the following relation:
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Results and discussion

The constitutive equations of the improved GTN model are numerically integrated, using a fully implicit time integration scheme [START_REF] Ben Bettaieb | On the numerical integration of an advanced Gurson model[END_REF], and implemented into the ABAQUS finite element (FE) code via a user material subroutine UMAT. To predict the ductility limits, the bifurcation condition ( 9) is combined with the above constitutive equations checked at every time increment. In practice, localized necking is predicted when this condition of singularity of the acoustic tensor is verified. The material parameters of the GTN model and of the hardening law are those adopted for an AA5182 sheet metal according to [START_REF] Mansouri | Ductility limit prediction using a GTN damage model coupled with localization bifurcation analysis[END_REF]. These parameters are summarized in Table 1.

Table 1. Values for GTN material parameters. A sensitivity analysis is performed to investigate the effect of the Lankford coefficient 0 r on the ductility limits. In this parametric study, three different sets of Lankford coefficients are considered. The first set, referred to as Set 1, assumes isotropic behavior for the AA5182 material. In order to emphasize the effect of 0 r on the ductility limits, this 0 r Lankford coefficient is varied by setting its value to 1.4 and 0.7, which correspond to Set 2 and Set 3 respectively, as shown in Table 2. n L n , with respect to the logarithmic longitudinal strain for equibiaxial tensile loading path. This function, denoted min(det( . . )) n L n , represents the minimum of the determinant of the acoustic tensor over all possible orientations for the normal n to the localization band, and it illustrates the evolution of the bifurcation indicator until strain localization is detected. Hence, earlier strain localization is recorded for the largest Lankford coefficient 0 r , due to premature void coalescence. To confirm this trend, further simulations are performed for the whole range of strain paths, and the corresponding FLDs are plotted for the different sets of Lankford coefficients considered. Fig. 2(a) reveals, through plots of complete associated FLDs, a strong dependence of the ductility limit on the Lankford coefficient 0 r . These observed effects of plastic anisotropy are more significant for negative strain paths. By contrast, they are less pronounced for plane strain and equibiaxial tension, although still noticeable. As has been shown previously, the initiation of strain localization is strongly dependent on the void volume fraction f , through the expression of the analytical tangent modulus L (see Eqs. (10)( 17)). The evolution of the porosity f depends in turn on the Lankford coefficients, as expected and demonstrated in Fig. 2(b). This explains the sensitivity of the shape and the level of the predicted FLDs to the plastic anisotropy. 
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Conclusions

An extended GTN model accounting for plastic anisotropy effects has been numerically integrated, using an implicit time integration scheme, and successfully implemented into the FE code ABAQUS. In order to predict FLDs for sheet metals under in-plane biaxial stretching, the current version of GTN model has been coupled with the bifurcation approach. The predicted FLDs show a strong dependence to the Lankford coefficient 0 r , especially in the negative strain-path range. Less pronounced, but still noticeable effects on the ductility limits are observed in the positive strain-path range, suggesting different damage behavior depending on the variation of 0 r . These findings indicate that the predicted ductility limits may be quite different for a given loading path, depending on the values of Lankford coefficients. For anisotropic sheet metals, it is well known that the consideration of the effect of plastic anisotropy on the ductility limits is crucial in order to determine the actual conditions of strain localization and subsequent failure.



  The various numerical predictions are presented in Section 4.

  Fig. 1(a) shows the evolution of the analytical tangent modulus component 1111 L for the different sets of Lankford coefficient 0 r , in the case of equibiaxial tensile loading path. The observed trends for the evolution of 1111 L are quite similar until a value of 0.05 for the macroscopic strain component 11 E , which corresponds to the onset of coalescence. Starting from this strain threshold, a rapid drop of the stiffness occurs, and differences are evidenced gradually between the isotropic profile and the others. Fig. 1(b) shows the evolution of the minimum of the determinant of the acoustic tensor, min(det( . . )) n L n , with respect to the logarithmic longitudinal strain for

Fig. 1 .

 1 Fig. 1. Prediction of strain localization during equibiaxial tensile loading path. (a) Component L1111 with the longitudinal strain E11. (b) Evolution of the minimum of the determinant of the acoustic tensor with the longitudinal strain E 11.

  Fig. 2. (a) FLDs obtained for linear strain paths applied along the rolling direction, and (b) evolution of the volume fraction of voids for different values of Lankford coefficient 0 r for the case of equibiaxial tensile state.

Table 2 .

 2 Selected sets of Lankford coefficients associated with Hill'48 quadratic yield criterion.