
HAL Id: hal-01375760
https://hal.science/hal-01375760v1

Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Mechanisms Planning to Enforce Security
Policies

Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia, David
Gross-Amblard

To cite this version:
Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia, David Gross-Amblard. Security Mecha-
nisms Planning to Enforce Security Policies. International symposium on foudations and practice
of security, Oct 2015, Clermont-Ferrand, France. pp.85 - 101, �10.1007/978-3-319-30303-1_6�. �hal-
01375760�

https://hal.science/hal-01375760v1
https://hal.archives-ouvertes.fr

Security mechanisms planning to enforce
security policies

Anis Bkakria 1, Frédéric Cuppens 1, Nora Cuppens-Boulahia 1, and
David Gross-Amblard 2

Tél ’ecom Bretagne 1

{anis.bkakria,frederic.cuppens,nora.cuppens}@telecom-bretagne.eu

IRISA,Université de Rennes 1 2

david.gross_amblard@irisa.fr

Abstract. This paper presents an approach allowing for a given secu-
rity and utility requirements, the selection of a combination of mecha-
nisms and the way it will be applied to enforce them. To achieve this
goal, we firstly use an expressive formal language to specify the security
and utility properties required by data owners and the security mech-
anisms that can be used to enforce them. Second, we extend and use
a Graphplan-based approach to build a planning graph representing all
possible transformations of the system resulting from the application of
security mechanisms. Finally, we define a method to search the best se-
curity mechanisms execution plan to transform the used system from its
initial state to a state in which the security requirements are enforced.

1 Introduction

In recent years, the concept of data outsourcing has become quite popular since
it offers many features, including reduced costs from saving in storage, increas-
ing availability as well as minimizing management effort. Many security-related
research issues associated with data outsourcing have been studied focusing on
data confidentiality [2, 12], data authentication and integrity [15, 16], Copyright
protection [11], privacy and anonymity [21], because outsourced data often con-
tains highly sensitive information which will be stored and managed by third
parties. To tackle those traditional security issues, data protection mechanisms
have recently been the focus of huge interest, especially cryptographic and in-
formation hiding techniques such as encryption, anonymization, watermarking,
fragmentation, etc. These mechanisms are known to be efficient when used in-
dependently. However, in many situations they have to be combined to ensure
security requirements.

To illustrate, let us take an example in which a company wants to outsource
its stored and collected data. Let us suppose that the company considers that
a first part of the data (Data I) to be outsourced are sensitive and must be
protected, a second part of the data (Data II) is not sensitive but it could be
stolen and used by competitors, so the company wants to be able to prove its
ownership for the outsourced data. A third part of the data (Data III) could

2 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

disclose the identities of the customers of the company, and that it should be
able to perform mathematical and statistical operations such as data mining
over this part of data. In order to preserve confidentiality of Data I, the com-
pany may use encryption. It can also use a watermarking mechanism to embed
some robust proof of ownership over Data II, and to anonymize Data III in or-
der to preserve its privacy. As you know, many encryption, watermarking and
anonymization mechanisms have been proposed recently. The problem then is to
define a reasoning method allowing the company to choose the best mechanisms
to enforce its security requirements. Moreover, if we suppose that Data I, Data
II, and Data III are intersecting, then there will be a piece of data over which
encryption, watermarking, and anonymization will be applied. Therefore, these
mechanisms must be combined in an appropriate way to provide the security
functionalities without one harming the other.

In this paper, we strive to design an approach allowing for given security
requirements, selection of the combination of mechanisms and the way it will
be applied (e.g, the order of application of the mechanisms) to enforce security
requirements. To meet this goal, we present in section 3 an expressive language
[3] to formally express the security requirements to be enforced and the secu-
rity mechanisms that can be used to enforce the corresponding policy. Section 4
presents the problem we want to address in this paper. In Section 5,we extend
and use the Graphplan approach [5] to build a planning graph representing all
possible states of the system resulting from the application of security mech-
anisms. Section 6 presents our reasoning method to search the best security
mechanisms execution plan that can transform the target system from its ini-
tial state to a state in which the security requirements are enforced. Section 7
presents the implementation and experimental testing results of our approach.
Finally, Section 8 reports our conclusions.

2 Related Work

Few research efforts have investigated how to combine security mechanisms to en-
force security policies over outsourced data. One of the firsts attempt is proposed
in [8], it consists of combining data fragmentation together with encryption to
protect outsourced data confidentiality and can only be applied over one-relation
databases 1. Recently, authors of [1, 2] have improved the approach presented in
[8] in such a way that it can deal with multi-relation databases. They have also
proposed a secure and effective technique for querying data distributed in several
service providers and improve the security of their querying technique in order to
protect data confidentiality under a collaborative Cloud storage service providers
model. Popa et al. [19] and Bkakria et al. [4] have proposed approaches based
on adjustable encryption, they combine different encryption schemes to get the
best trade-off between data confidentiality and data utility for outsourced rela-
tional databases. Boho et al. [6] have proposed interesting approach combining
watermarking and encryption to protect both the confidentiality and traceability

1 Databases composed of only one table

Security mechanisms planning to enforce security policies 3

of outsourced multimedia files. All previously cited approaches have three main
limitations: First, they are defined in such a way that only two pre-selected se-
curity mechanisms can be combined together. Second, they cannot deal with all
security properties that can be required by data owners as each approach can
provide at most two security properties. Finally, they cannot deal with all data
structures that can be used to store outsourced data. In our first attempt to
overcome these limitations, we define in [3] an expressive formal language based
on epistemic linear temporal logic (Epistemic LTL). This formal language allows
as to: (1) formally model the system (e.g., data owner, cloud server, etc.) and
the data structure on which the security policy should be enforced, (2) formally
express the security policy, and (3) formally specify existing security mechanisms
that can be used to protect outsourced data. Then, we have defined a reasoning
method for our formal model allowing as to pick up the set of security mecha-
nisms that can enforce each security property requirement by the data owner.
However, the reasoning method we proposed in [3], does not take into considera-
tion conflicts that may occur between security mechanisms which makes finding
a combination of security mechanisms that satisfy many security requirements
hard to fulfill.

3 System specification[3]

We define and use the language L to formalize our system. In particular, we
define formulas describing the basic knowledge of each agent , the formalization
of the security and utility requirements to be enforced, and the formalization of
the security mechanisms that can be used to enforce the policy. The first-order
temporal epistemic language L is made up of a set of predicates P, propositional
connectives ∨, ∧, ¬, → and ↔, the quantifiers ∀, ∃. We take the future con-
nectives © (next), ♦ (eventually), � (always) [10]. For knowledge we assume a
set of agents Ag = {1, · · · ,m} and use a set of unary modal connectives Kj , for
j ∈ Ag, in which a formula Kjψ is to be read as “agent j knows ψ”.

Definition 1. Let ϕ and ψ be propositions and Pi be a predicate of arity n in
P. The set of well-formed formulas of L is defined as follows:
φ ::= Pi(t1, · · · , tn)| Kiψ| ¬ϕ| ϕ∨ψ| ϕ∧ψ| ©ϕ| ♦ϕ| �ϕ|ϕ→ ψ| ϕ↔ ψ | ∃xψ | ∀xψ

Definition 2. An interpretation of the language L is the triple K = (W, I, Φ)
consisting of a sequence of states W = {w0, w1, · · · }, a set of classical first-order
structures I that assigns for each states wi ∈ W a predicate Iwi(P) : |Iwi |n →
{True, False} for each n-places predicate P ∈ P and Φ a transition function
which defines transitions between states due to the application of mechanisms
(actions). Φ(wi,mk) = wj if the mechanism mk transits our system from states
wi to state wj.

Definition 3. Let W be a sequence of states, wi (i ≥ 0) denote a state of W,
and let v be an assignment. The satisfaction relation |= for a formula ψ of L is
defined as follows:

– (wi,W) |= P (t1, · · · , tn) ⇐⇒ Iwi(P)(v(t1), · · · , v(tn)) = True

4 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

– (wi,W) |= ¬ψ ⇐⇒ (wi,W) 6|= ψ
– (wi,W) |= ψ → ϕ ⇐⇒ (wi,W) 6|= ψ or (wi,W) |= ϕ
– (wi,W) |= ψ ↔ ϕ ⇐⇒ (wi,W) |= (ψ → ϕ) ∧ (ϕ→ ψ)
– (wi,W) |= ∀xψ ⇐⇒ (wi,W) |= ψ[x/c] for all c ∈ |Iwi |
– (wi,W) |= ψ ∧ ϕ⇐⇒ (wi,W) |= ψ and (wi,W) |= ϕ
– (wi,W) |= ψ ∨ ϕ⇐⇒ (wi,W) |= ψ or (wi,W) |= ϕ
– (wi,W) |=©ψ ⇐⇒ (wi+1,W) |= ψ
– (wi,W) |= ♦ψ ⇐⇒ (wk,W) |= ψ for some k ≥ i
– (wi,W) |= �ψ ⇐⇒ (wk,W) |= ψ for all k ≥ i

3.1 Security policy specification

The security policy to be enforced over the target system are specified through
a set of security constraints and a set of utility goals.

Security constraints: Using security constraints, the data owner specifies the
security requirements that should be met by the target system. We define five
types of security constraints.

• Confidentiality constraint: It requires the protection of the confidentiality
of an object in the target system.

� [∀o, ∀e. object(o) ∧ sensitive(o) ∧ untrusted(e)→ ¬Ke o]. (1)

Formula 1 specifies that in any state of the target system, an untrusted entity
e should not knows any sensitive object o.

• Privacy constraint: The data owner requires the prevention of identity dis-
closure.

� [∀o, ∀e. object(o) ∧ identifier(o) ∧ untrusted(e)→ ¬Ke o]. (2)

Formula 2 specifies that an object o that can be exploited to identify an identity
should not be known by any untrusted entity e in any state of the used system.

• Traceability constraint (Traitor detection): In the applications where a
database contents are publicly available over a network, the content owner would
like to discourage unauthorized duplication and distribution. For this the owner
wants to give to a set of entities E′ the ability to check that the content has
been released to an authorized user.

� [∀o, ∀e. object(o) ∧ sensitive(o) ∧ untrusted(e) ∧Keo

→
∧

e1∈E′

Ke1(∃Er.
∧

er∈Er

(trusted(er) ∧ responsible(er, o)))]. (3)

Formula 3 means that in any state of the system, if an untrusted entity knows a
sensitive object o, the set of entities E′ should be able to know the set of entities
Er responsible of the disclosure of the sensitive object o.

• Ownership constraint: The data owner wants to give a set of entities E the
ability to verify the ownership of the object o2.

� [∀o1.∀o2, e object(o1) ∧ object(o2) ∧ copy of(o1, o2) ∧∧
er∈E

Kerowner(e, o1)→
∧

er∈E

Kerowner(e, o2)]. (4)

Formula 4 specifies that in any state of the system, if there are two objects o1

and o2 such that o2 is a copy of o1 and a set of entities E which know that the

Security mechanisms planning to enforce security policies 5

owner of o1 is e, therefore E should be able to know that o2 belongs to e.

• Integrity assessment constraint: verifying the accuracy and consistency of
an object o over its entire life-cycle. This means that data cannot be modified
in an undetected manner. In the target system, we should be able to check if o
has been modified or not. A data owner may want to give a set of entities E′

the ability to check the integrity of an object o.

� [object(o)→
∧

e1∈E′

Ke1(is modified(o) ∨ is unmodified(o))]. (5)

Utility goals: Using utility goals, the data owner can require that some func-
tionalities should be provided. An utility goals is specified using the formula 6
meaning that the utility requirement req is to be provided over the o.

utility requirement(req) ∧ provides(req, o) (6)

3.2 Mechanisms specification

The security mechanisms to be used in the system are specified using precondi-
tions formulas and effects formulas.

Preconditions. For each mechanism, preconditions are represented by a set of
formulas which are necessary conditions required for the application of the secu-
rity mechanism. We define the two-places predicate is applicable. The formula
is applicable(m, o) is to be read “the mechanism m can be applied over the ob-
ject o”. Preconditions of a security mechanism m are specified using a formula
of the following form:

� (is applicable(m, o) → ∆m) (7)

Where ∆m represents necessary conditions for the applicability of the mechanism
m. A formula of the form (7) is to be read “At any state of the system, m can
be applied if the preconditions ∆m hold”. Effects. Modifications resulting from
the application of a mechanism m that transits the system from a state wi to a
state wj . We use the two-places predicate apply(m, o) to say that the mechanism
m is applied over the object o. For a mechanism m, effects are represented by a
set of formulas Σm such that:

Φ(wi, apply(m, o)) = wj → (wj |= Σm) (8)

Axiom 8 states that if the application of the mechanism m over the object o
transits the system from a state wi to a state wj , therefore the set of effects Σm

of the application of the mechanism m is satisfied on the state wj .

4 Problem statement

We strive to plan a sequence of mechanisms allowing to transform the system
from its initial state to a state in which the goals are reached while respecting
a set of defined constraints. Planning efficiency can be improved by allowing
parallel application of mechanisms, which leads to minimize the number of par-
allel plan steps. In order to be able to apply mechanisms parallelly, we should

6 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

figure out which mechanisms are compatible by finding different kind of conflicts
between mechanisms.

Definition 4. Conflicting mechanisms: Two mechanisms M1 and M2 rep-
resented respectively by (∆M1 , ΣM1) and (∆M2 , ΣM2) where ∆Mi and ΣMi rep-
resents respectively the specifications of preconditions and the effects of Mi, are
effectively incompatible if and only if one of the following deductions hold:

(i) ΣM1
∪ ΣM2

` ⊥
(ii) ΣMi

∪ ∆Mj
` ⊥ with 1 ≤ i, j ≤ 2 and i 6= j

(iii) ∆M1 ∪ ∆M2 ` ⊥

Item (i) means that the effects of M1 and M2 are inconsistent. Item (ii) means
that the effects of the application of Mi dissatisfy the preconditions of Mj . Item
(iii) states that M1 and M2 have a competing preconditions such that they
cannot be true in the same state.

Definition 5. Parallel plan: Consider a set of available mechanisms M. A
parallel plan is a finite sequence of sets of mechanisms P = {p1, · · · , pn} such
that any pi ∈ P, pi ⊆M.

Definition 6. Correctness: Given a system S, its current state w1, a finite
set of mechanisms M, a parallel plan P = {p1, · · · , pn} is correct regarding S
and w1 if and only if the following conditions hold:

(i) ∃w2, · · · , wn such that : ∀M ∈ pi, wi |= ∆M , 1 ≤ i ≤ n.
(ii) ∀pi ∈ P,∀M1,M2 ∈ pi : M1 and M2 are not conflicting.

Parallel Planning Problem: Consider a system S, its current state w1, a set
of mechanisms M that can be applied over the system, a set of goals G that
should be achieved, and a set of constraints C that should be respected. The
Parallel Planning Problem consists on finding a sequence of sets of mechanisms
P = {p1, · · · , pn} such that the following conditions hold:

(i) P is correct regarding S and w1.
(ii) ∀wi = Φ(wi−1, pi−1), ∀c ∈ C : wi |= c, 2 ≤ i ≤ n.

In next part, we briefly introduce the Graphplan’s basic operations as defined in
[5]. Graphplan uses action schemata in the STRIPS format in witch each action is
represented as preconditions and effects which is suitable with the representation
of our mechanisms parallel planning problem.

4.1 Graphplan Description

Graphplan is a directed, leveled graph composed of two kinds of nodes and tree
kinds of edges. Graphplan levels alternate between fact levels containing fact
nodes (each node is labeled with a predicate), and action levels composed of
action nodes (each labeled with some security mechanism). Relations between
actions and predicates in a Graphplan are explicitly represented through edges.

Security mechanisms planning to enforce security policies 7

Preconditions-edges are used to connect action nodes of an action level i to their
preconditions in the fact level i. Effects-edges connect action nodes belonging to
the action level i to their effects in the fact level i+1. Mutual-exclusion edges are
relations connecting action nodes belonging to the same Graphplan level. They
represent conflicts between action nodes identified according to Definition 4.

Graphplan is based on two main phases: The first is called Graphplan con-
struction phase consisting of growing a planning graph. The second phase allows
to extract possible solutions (plans) from the graphplan by performing a back-
ward searching phase starting with the goals. In the graph construction phase,
we start with a planning graph having only a single fact level which contains the
initial specification of the used system. GraphPlan construction method runs in
stages, in each stage i, it extends the planning graph resulting from the stage i−1
by adding one time step which contains the next action level and the following
fact level. After each stage, Graphplan check if all predicates representing the
goals are presented in the last fact level in the planning graph, if it is the case,
search a valid plan that transform the system from its initial state to a state in
which all the goals are achieved.

4.2 Graphplan modeling of the problem

The STRIPS system [9] used by Graphplan is represented by four lists, a finite
set Cs of ground atomic formulas called conditions, a finite set of operators
Os where each operator is composed of two formulas (satisfiable conjunction of
conditions) representing its preconditions and effects, a finite set of predicates Is
that denotes the initial state, and a finite set of predicates Gs that denotes goal
state. As we have seen in the previous section, our planning problem is composed
of a system S, a set of security mechanismsM, a set of constraints C, and a set
of goals G. Obviously, S,M, and G can be easily modeled as a STRIPS planning
problem by expressing S as Cs and Is, M as Os, and G as Gs. According to the
section 3.1, C will be composed of security constraints and utility goals. Utility
goals specify the functionalities that should be provided for S (e.g. the ability to
compare the equality of objects). A plan P satisfies a set of utility goals Cu if at
its end none of the utility goals in Cu is violated. Consequently, utility constraints
will be expressed as goals in the STRIPS planning problem. Security constraints
specify the requirements that should be respected during the transformation of
S, they can be considered as safety constraint meaning that those requirements
are to be satisfied in all states of S. However, the STRIPS language as it is defined
in [9] cannot express this kind of constraints. To overcome this limitation, we
extend the STRIPS system language by adding the operator Constraint allowing
to express the set of security constraints. For instance, a confidentiality constraint
(rule 1) is to be expressed as follows:

Constraint (confidentiality constraint1(o, e) :

Formula: object(o) ∧ sensitive(o) ∧ untrusted(e) ∧Keo)

In the previous expression, confidentiality constraint1 (o,e) is used to denote
the name of the constraint and the variables (bounded variables of the rule 1)
to be instantiated. The Formula field represents the conjunction of predicates

8 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

indicating the condition under which the constraint is violated (the negation of
CNF representation of the constraint).

5 Extending Graphplan

5.1 Graph construction phase extension

We extend Graphplan’s construction method of the planning graph in two ways.
The first extension allows to build a planning graph of a planning problem which
contains Domain Axioms (axioms that formally specify relations between dif-
ferent objects of the system). Second, we improve the Graphplan’s construction
method of the planning graph to avoid the violation of security constraints while
building the planning graph.

The need of axioms. In Graphplan approach, the lack of axioms disrupts the
ability to represent real-word domains containing normally quite complex condi-
tions and rules. Without the use of axioms, mechanisms preconditions and effects
can become quickly too complex and unreadable. In our approach, we believe
that the use of axiom will provide a natural way of deriving supervenient prop-
erties, representing logical consequences of the effects of applied mechanisms.

Updating knowledge using an inference graph

In this part, we present how we define axioms in our approach and the way they
will be used in the planning process. We define an axiom as an expression in the
following form:

n∧
i=1

pi →
m∧

j=1

qj (9)

Where each pi and qj are predicates of our defined language.

According to a state w of the used system, we want to be able to infer
all possible new facts based on a set of axioms that represents relationships
between different predicates in our language. To meet this goal, we utilize the
same construction method used in Graphplan in order to build an inference
graph. In this construction method, we consider each axiom in our system as
an action, then the left part of the representation of the axiom (9) will be the
preconditions of the action and the right part is its effects. The idea consists on
applying in each layer of the graph the set of applicable actions (axioms) until
we infer all possible new facts. Algorithm 1 describes how the inference graph is
constructed. Once it is built, it allows to extract the set of facts that are derived
using the set of defined axioms. In fact, the set of inferred facts is IGl\IG0 were
IG0 and IGl represent respectively the set of predicate-nodes in the first fact
level and the set of predicate-nodes in the last fact level of the inference graph.

Security mechanisms planning to enforce security policies 9

input :
G /* planning graph (Graphplan) */
last flG = {f1, · · · , fn} /* set of facts in the last fact level of G */
Ax = {Ax1, · · · , Axm} /* the set of domain-axioms */

output:
inferred facts /* the set of derived new facts */

1 Main
2 IG = ∅ /* inference graph initialization */
3 add fact level(IG, last fl) /* add the last fact level of G to the inference graph IG */
4 for i = 0 to m do
5 new fact level = ∅ /* new empty fact level */
6 new fact level = last level(IG) /* copy the last fact level of IG to new fact level */
7 foreach axiom in Ax do
8 instances = instantiate(axiom) /* get all instances of the axiom */
9 foreach inst in instances do

10 /* axioms can be divided into left and right parts (rule 9) */
11 if (last level(IG) |= left part(inst)) then
12 new fact level = new fact level ∪ right part(inst)
13 end

14 endfch

15 endfch
16 if (new fact level == last level(IG)) then
17 inferred facts = new fact level \ last flG
18 break

19 else
20 add fact level(IG, new fact level)
21 end

22 end

Algorithm 1: Building inference graph and getting new derived facts

Theorem 1. Given the set of formulas Σw representing the system S in the
state w, and a set of n consistent axioms A = {ax1, · · · , axn}, the height of the
graph representing the graph inference of S using A will be at most n.

Theorem 2. Consider a system S composed of n objects and represented by p
predicates in a state wi, and m axioms each having a constant number of bounded
variables. Let q be the largest number of predicates in the right-side of each axiom
(formula 9). Then, the size of a k-level inference graph and the time required to
build it, are polynomial n, m, q, p and k.

Building planning graph under security constraints

The specification of security constraints requires that some properties should be
respected during all the states of the target system. Since each fact level of the
planning graph is built using the construction method of Graphplan, it can be
considered as a possible state of the system, our idea consists of verifying the
satisfiability of security constraints on each new created fact level of the planning
graph during its construction.

Definition 7. Violated security constraint: Consider a planning graph G
composed of n fact levels fl1, · · · , f ln, each fact level fli is composed of a set
of facts wi. A security constraint C specified in our formal language using the
set of formulas ΣC and specified in the STRIPS system language by ΣC (the
negation of CNF of ΣC) is violated in a fact level fli if and only if wi |= ΣC .

10 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

Graphplan uses directed edges to connect each action instance node belonging
to the ith action level of the graph to the set of fact nodes belonging to the ith
fact level representing its preconditions, and to the set of fact nodes belonging
to the (i+1)th fact level representing its effects. Thanks to this property, we are
able to find the combinations of actions belonging to the ith action level of the
graph and leading to security constraints violation in the (i+ 1)th fact level.

Algorithm 2 describes the used method to get the combinations of actions
leading to violate a security constraint. The correctness and the complexity of
the Algorithm 2 are proved by the following theorems.

Theorem 3. (Correctness): Given a violated security constraint C and a set
of fact nodes cause nodes that causes the violation of C, the Algorithm 2 termi-
nates and computes all the combinations of actions that lead to violate C.

Theorem 4. (Complexity): Given a violated security constraint C, a set of
cause nodes CN = {n1, · · · , nn} representing the set of fact nodes that causes
the violation of C, the complexity of the algorithm 2 is O(

∏n
i=1 li) in time, where

li is the number of different actions providing the fact node ni.

input :
C /* the violated security constraint */
cause nodes /* the set of fact nodes that causes the violation of C */

output:
action combinations /* the set of combinations of actions that violate the

constraint C */
1 Main
2 combination = ∅
3 all combinations(causes nodes, action combination)
4 End Main
5

6 Recursive Procedure all combination(nodes, combination)
7 if (Card(nodes) == 0) then
8 add(combination, action combination) /* add combination to action combination */
9 end

10 first node = nodes.first /* get the first node in the set nodes */
11 remove(nodes, first nodes) /* remove the first node from the set nodes */
12 foreach action node in first nodes.in edges do
13 copy combination = combination
14 if (action node /∈ copy combination) then
15 add(action node, copy combination)
16 end
17 all combinations(causes nodes, copy combination)

18 endfch

Algorithm 2: Getting all combinations of actions that violate a constraint

Once we know the combination of actions Cc that leads to the violation of
the security constraint C. The trivial way to solve this violation problem would
be to remove Cc and its corresponding effects from the planning graph. However,
this solution can be useless in many cases as it can prevent some actions in Cc

(a subset of Cc) that do not violate C to be used.

Avoiding security constraints violation. In Graphplan, mutual exclusions
are basically used to specify that no valid plan could possibly contain conflictual
actions in the same plan step. Since, a security constraint C is violated if all
actions in a combination Cc that violates C are applied in the same action level

Security mechanisms planning to enforce security policies 11

of the planning graph, our solution to prevent this violation is to use mutual
exclusion relations as following:

(i) If |Cc| ≥ 2: ∀ nodea ∈ Cc, create a mutual-exclusion between nodea and
Cc \ {nodea}.

(ii) If |Cc| = 1, remove the action-node in Cc and its corresponding effects from
the planning graph.

where |Cc| represents the number of action-nodes in Cc. (i) ensures that if the
number of action-nodes in Cc is more that one, therefore we will create a mutual-
exclusion between each action-node nodea in Cc and the set of other action-nodes
in Cc. This allows in one side to ensure that no correct plan could possibly
contain nodea and Cc \ {nodea} together which allows to avoid the violation
of the security constraint C, and on the other side allows the largest subsets of
action-nodes (Cc\{nodea}) in Cc that do not violate C to be used together in the
same plan. (ii) states that if Cc is composed of only one action-node, therefore,
the unique solution to avoid the violation of C is to remove the action-node in
Cc as well as its corresponding effects from the planning graph.

6 Searching the best plan

Given a planning graph G constructed using our previously explained extension
of GraphPlan, our goal is to find the best mechanisms execution plan (parallel
plan) that enforces the chosen security and utility requirements. For this end,
and to be able to compare different mechanisms execution plans, as a first step,
we assign a weight for each action-node in G representing a security mechanism
using the metric described in Definition 8. As a second step, we define a second
metric to measure a score for each mechanisms execution plan that can satisfy
the defined policy as described in Definition 9.

Definition 8. Consider an action-node anM in G representing the application
of the security mechanism M over the object ob. Suppose that M provides n se-
curity properties sp1, · · · , spn and m utility properties up1, · · · , upm. The weight
ω which will be assigned to anM is measured as following:

ω = αob

n∑
i=1

τi + βob

m∑
i=1

νi − δob εM

where τi ∈ [0, 1] represents the robustness level of the provided security property
spi, νi ∈ [0, 1] represents the satisfiability level of the provided utility property
upi, εM ∈ [0, 1] is the deployment efficiency level of the mechanism M , and
αob ∈ [0, 1], βob ∈ [0, 1], and δob ∈ [0, 1] represents respectively the security,
utility, and deployment efficiency factors of ob such that αob, βob, and δob are
complementary.

The intuitions behind the use of the robustness level τ (1), the satisfiabil-
ity level ν (2), the deployment efficiency level ε (3), and the security, utility

12 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

and deployment efficiency factors (4) to measure the weight of an action-node is
that: (1) Some security mechanisms are not as robust as they should be to fully
ensure their provided security properties under well known attacks. For exam-
ple, encryption-based mechanisms are supposed to ensure the confidentiality of
the objects over which they are applied. However an Order-preserving encryp-
tion based mechanisms such as Boldyreva [7] preserves the order of the plain-
texts, which may enable many attacks. It was concluded that order-preserving
encryption leaks at least half of the plaintexts bits [22]. Hence, the confidential-
ity robustness level τconfidentiality will be less that 0.5 for Boldyreva. (2) Some
security mechanisms cannot fully provide some utility requirements. In these
cases, the satisfiability level factor ν is used to specify the level of providabil-
ity of an utility requirement. For illustrative purpose, let us take the example
of homomorphic-based encryption mechanisms which are supposed to provide
computation (addition + multiplication) over encrypted objects. However, Pail-
lier cryptosystem [17] is homomorphic-based encryption mechanisms allowing to
perform only addition over encrypted data. Therefore, satisfiability level factor
of computation for Paillier cryptosystem will be νcomputation = 0.5. (3) Some
security mechanisms are expensive in terms of deployment time compared to
other security mechanisms, we take this fact into consideration by using the de-
ployment efficiency level εM , as much as the mechanism M can be efficiently
deployed, εM will be closer to 1. (4) The weight of anM representing the ap-
plication of M over ob should also take into account the security, utility and
deployment efficiency factors represented respectively by εob, ρob, and δob, which
are specified by the data owner for ob. For illustrative purpose, let us take a
file f1 storing information about the payment parameters used by the costumers
of a company. The company attributes the value 0.8 to εf1 , 0.1 to ρf1 , and 0.1
to δob as it considers that the utility of f1 as well as deployment efficiency of
the policy over f1 are not important compared to its security. That is why the
action-node in G representing a security mechanism applied over f1 which en-
sures the highest level of robustness for security properties will have the highest
weight compared to others having high providability of utility requirements, high
deployment efficiency and weakly robustness for security properties.

Definition 9. Consider a parallel plan P = {p1, · · · , pn}. Suppose that each
pi ∈ P is composed of mi action-nodes ani1, · · · , animi

. The score Sc of P is:

Sc =

n∑
i=1

mi∑
j=1

ωi
j

where ωi
j is the weight of the action-node anij measured according to the Defi-

nition 8.

Definition 10. Consider a security policy SP and a set of parallel plans P1, · · · ,Pn

in G each satisfying SP and all having respectively the scores Sc1, · · · , Scn. A
parallel plan P having the score Sc is the best parallel plan in {P1, · · · ,Pn} if
the following condition holds:

∀i ∈ 1 · · ·n, Sc ≥ Sci

Security mechanisms planning to enforce security policies 13

Obliviously, finding the best parallel plan in a planning graph G that enforces
a security policy SP requires finding all parallel plans in G that satisfy SP.

Theorem 5. Computing all parallel plans in a planning graph that enforce a
security policy SP is NP-hard.

Heuristic search based planning

Our goal is to find the parallel plan having both the maximum score regard-
ing our metric (defined in Definitions 8, 9, and 10), and the minimum number
of steps. To this end, we use the cost-optimal planner CO-PLAN [20] which
proceeds in four stages:

– Planning graph conversion to CNF wff: Convert the planning graph into a
CNF notation by constructing proposition formula as described in [13].

– Wff solving: CO-PLAN uses a modified version of RSAT [18] called CORSAT
to process the CNF formulae which allows to figure out: (1) If a solution exists
for the given decision problem, and (2) if a solution exists, it is identified
with minimal plan costs.

– Bounded forward-search: CO-PLAN uses the speed and efficiency of SAT-
based planners allowing to obtain a good admissible initial bound on the
cost of an optimal plan. In the second phase, CO-PLAN performs then a
bounded forward-search in the problem state space.

– Plan extraction: If a model of the wff is found, then the model is converted to
the corresponding plan; otherwise, the length of planing graph is incremented
and the process repeats.

In fact, CO-PLAN identify the solution having the minimal parallel plan
costs. To be able to use it, we transform our parallel plan score maximization
problem to a minimization plan cost problem by considering that CostP =
−ScP , where CostP and ScP represent respectively the cost of the parallel plan
P and the score of P measured according to Definition 9.

7 Implementation and Evaluations

In the experimental part of this work, we measure the computational perfor-
mance of our approach.

7.1 Implementation

We develop a prototype implementing our approach to find a near-optimal se-
curity mechanisms plan allowing to enforce security policies for outsourced data
using available open source C++ libraries. For GraphPlan construction, we used
the SATPLAN’06 library [14] allowing to create a planning graph up to some
length k. We extend SATPLAN’06 library (as described in section 5) to support:

14 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

(1) the use of domain axioms allowing to deduce new facts about objects of the
system to be used, and (2) we improve the Graphplans construction method of
the planning graph to avoid the violation of security constraints while building
the planning graph. For analyzing the planning graph and searching the best
mechanisms plan, we used CO-PLAN library [20].

7.2 Experimental setup

The domain that we have used in evaluating our prototype is composed of:

– A data owner;
– A finite set of users:
• Trusted users: which can access and use the outsourced data
• Untrusted users: which are not supposed to be able to violate the policy.

In all experiments, we suppose that we have two untrusted users, a cloud
server and an external adversary.

– A finite set of objects that represents the data to be outsourced, we consider
that the data owner wants to outsource a file system. So the objects are the
set of files and directories in the file system to be outsourced.

– A finite set of security and utility requirements representing the policy to
be enforced. We suppose that the data owner will specify some security
constraints and utility goals over some objects in the file system to be out-
sourced. Only the objects over which the data owner has specified the policy
will be considered in the planning problem.

– A finite set of security mechanisms that can be used to enforce the secu-
rity policy. We specified 20 security mechanisms, including 8 encryption-
based mechanisms, 4 anonymization-based mechanisms, 6 watermarking-
based mechanisms, and 2 information transfer protocols HTTPS and SSH
that can be used to send the objects to be outsourced to the cloud server.

We ran the all experiments on a server with Intel core i7 2.50 GHz, 16 GB of
RAM, and running Debian 7.

7.3 Experimental results

We conducted a set of experiments to evaluate the performance of our prototype.
Table 7.3 shows the parameters used in each experiment, the number of nodes
in the planning graph built to resolve the problem, and the time needed to find
a near-optimal solution using the method we presented in Section 6. Due to lack
of space, we will not be able to include the specifications of the constraints and
the security mechanisms that are used in each experiment.

8 Conclusion

In this paper, we have presented a new framework allowing: first, a data owner
to formally specify different security and utility requirements that should be en-
forced over the data to be outsource. Second, to specify existing security mecha-
nisms that can be used to enforce the policy defined by the data owner. Finally,

Security mechanisms planning to enforce security policies 15

Parameters number of
time(s)

objects constraints users mecanisms nodes

5 5 5 15 75952 1.9
10 10 5 15 121385 9.7
20 15 5 15 721385 97.65
100 50 5 20 1951423 721.5

Table 1. Our prototype performance with respect to: the number of objects that
will be outsourced (objects), the number of constraints defined over the object to be
outsourced (constraints), the number of users involved in the used system (users), the
number of security mechanisms that can be used to enforce the policy (mechanisms).
Column ”number of nodes” indicates the number of nodes in the planning graph.

to choose the near-optimal security mechanisms execution plan that enforces the
policy while offering the best tradeoff between security, utility and complexity.

References

1. Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia, and José M. Fernan-
dez. Confidentiality-preserving query execution of fragmented outsourced data.
In Information and Communicatiaon Technology - International Conference, ICT-
EurAsia 2013, Yogyakarta, Indonesia, March 25-29, 2013. Proceedings, pages 426–
440, 2013.

2. Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia, José M. Fernandez, and
David Gross-Amblard. Preserving multi-relational outsourced databases confiden-
tiality using fragmentation and encryption. JoWUA, 4(2):39–62, 2013.

3. Anis Bkakria, Frédéric Cuppens, Nora Cuppens-Boulahia, and David Gross-
Amblard. Specification and deployment of integrated security policies for out-
sourced data. In Data and Applications Security and Privacy XXVIII - 28th Annual
IFIP WG 11.3 Working Conference, DBSec 2014, Vienna, Austria, July 14-16,
2014. Proceedings, pages 17–32, 2014.

4. Anis Bkakria, Andreas Schaad, Florian Kerschbaum, Frédéric Cuppens, Nora
Cuppens-Boulahia, and David Gross-Amblard. Optimized and controlled provi-
sioning of encrypted outsourced data. In 19th ACM Symposium on Access Control
Models and Technologies, SACMAT ’14, London, ON, Canada - June 25 - 27,
2014, pages 141–152, 2014.

5. Avrim Blum and Merrick L. Furst. Fast planning through planning graph analy-
sis. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes,
pages 1636–1642, 1995.

6. Andras Boho, Glenn Van Wallendael, Ann Dooms, Jan De Cock, Geert Braeckman,
Peter Schelkens, Bart Preneel, and Rik Van de Walle. End-to-end security for video
distribution: The combination of encryption, watermarking, and video adaptation.
IEEE Signal Process. Mag., 30(2):97–107, 2013.

7. Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, pages
224–241, 2009.

16 A. Bkakria, F. Cuppens, N. Cuppens-Boulahia , and D. Gross-Amblard

8. Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajo-
dia, Stefano Paraboschi, and Pierangela Samarati. Fragmentation and encryp-
tion to enforce privacy in data storage. In Computer Security - ESORICS 2007,
12th European Symposium On Research In Computer Security, Dresden, Germany,
September 24-26, 2007, Proceedings, pages 171–186, 2007.

9. Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971.

10. Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal
analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’80, pages 163–173, New York, NY,
USA, 1980. ACM.

11. David Gross-Amblard. Query-preserving watermarking of relational databases and
xml documents. ACM Trans. Database Syst., 36(1):3, 2011.

12. Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Executing
SQL over encrypted data in the database-service-provider model. In Proceedings
of the 2002 ACM SIGMOD International Conference on Management of Data,
Madison, Wisconsin, June 3-6, 2002, pages 216–227, 2002.

13. Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional
logic and stochastic search. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelli-
gence Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4-8, 1996, Volume
2., pages 1194–1201, 1996.

14. Henry A. Kautz, Bart Selman, and Jörg Hoffmann. SatPlan: Planning as satisfia-
bility. In Abstracts of the 5th International Planning Competition, 2006.

15. Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and in-
tegrity in outsourced databases. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2004, San Diego, California, USA, 2004.

16. Maithili Narasimha and Gene Tsudik. DSAC: an approach to ensure integrity of
outsourced databases using signature aggregation and chaining. IACR Cryptology
ePrint Archive, 2005:297, 2005.

17. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology - EUROCRYPT ’99, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, pages 223–238, 1999.

18. Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver description. Tech-
nical report, 2007.

19. Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. Cryptdb: protecting confidentiality with encrypted query processing. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles 2011,
SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 85–100, 2011.

20. Nathan Robinson, Charles Gretton, and Duc-Nghia Pham. Co-plan: Combining
sat-based planning with forward-search. Proc. IPC-6, 2008.

21. Latanya Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570,
2002.

22. Liangliang Xiao and I-Ling Yen. Security analysis for order preserving encryption
schemes. In 46th Annual Conference on Information Sciences and Systems, CISS
2012, Princeton, NJ, USA, March 21-23, 2012, pages 1–6, 2012.

