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SUMMARY
The appraisal of tomographic models, of fundamental importance towards better understanding
the Earth’s interior, consists in analysing their resolution and covariance. The discrete theory of
Backus-Gilbert, solving all at once the linear problems of model estimation and appraisal, aims
at evaluating weighted averages of the true model parameters. Contrary to damped least-squares
techniques, one key advantage of Backus-Gilbert inversion is that no subjective regularization
is needed to remove the non-uniqueness of the model solution. Indeed, it is often possible to
identify unique linear combinations of the parameters even when the parameters themselves
are not uniquely defined. In other words, the non-uniqueness can be broken by averaging rather
than regularizing. Over the past few decades, many authors have considered that, in addition to
a high computational cost, it could be a clumsy affair in the presence of data errors to practically
implement the Backus-Gilbert approach to large-scale tomographic applications. In this study,
we introduce and adapt to seismic tomography the Subtractive Optimally Localized Averages
(SOLA) method, an alternative Backus-Gilbert formulation which retains all its advantages, but
is more computationally efficient and versatile in the explicit construction of averaging kernels.
As a leitmotiv, we focus on global-scale S-wave tomography, and show that the SOLA method
can successfully be applied to large-scale, linear and discrete tomographic problems.
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1 INTRODUCTION

A detailed knowledge of the magnitude and length scales of seismic
attributes of the Earth’s mantle is crucial to better understand its
physical properties and multi-scale dynamics (e.g., Ritsema et al.
2007; Simmons et al. 2009; Davies et al. 2012; Schuberth et al.
2012). Though there may be some consensus on long wavelength
features of global-scale tomographic models, seismic imaging of
shorter scale-length heterogeneities, such as sinking slabs or hot-
rising plumes, is usually more controversial. Therefore, a robust
analysis of the model resolution and covariance has now become of
fundamental importance to push further the physical interpretations
of tomographic models (e.g., Trampert 1998).

Damped least-squares (DLS) techniques have been widely
used to solve large-scale, linear and discrete tomographic problems
(e.g., Aster et al. 2012). In the DLS approach, the non-uniqueness
of the solution is usually broken by adding to the inverse problem
some subjective regularization constraints (e.g. model norm damp-
ing), often aimed at favoring the model simplicity. This is not to
be confused with objective regularization constraints added within
a Bayesian framework. Thus, the DLS model estimate, resolution
and covariance are dependent on these subjective regularization
constraints. The DLS model resolution and covariance (or ‘uncer-
tainty’) can either be fully calculated (e.g., Boschi 2003; Soldati &
Boschi 2005; Ritsema et al. 2007, 2011), or simply approximated
if the tomographic systems are too large (e.g., Nolet et al. 1999).
Nevertheless, in most of large-scale tomographic studies, resolu-

tion analysis has often been reduced to checker-board sensitivity
tests, coming with a number of potential drawbacks (e.g., Lévêque
et al. 1993; Rawlinson & Spakman 2016), and uncertainty assess-
ment has often been ignored, or at best given minimal treatment
(e.g., Rawlinson et al. 2014).

A fundamentally different approach is that of Backus-Gilbert
(e.g., Backus & Gilbert 1967, 1968, 1970), which belongs to the
class of Optimally Localized Averages (OLA) methods. It solves
all at once the linear problems of model estimation and appraisal,
while a direct control can be operated on the model resolution
and covariance. The theory of Backus-Gilbert (B-G) aims at de-
termining what are the properties of the continuous model space
that can be estimated given the data and their errors. In princi-
ple, there is no need to restrict attention to a particular subspace
of the full model space. However, in this study, we shall follow No-
let (1985) and assume some discrete, local model parametrization,
mainly as a numerical step to perform the calculations and to lessen
the computational cost. In the discrete theory of B-G, one aims at
evaluating linear combinations of the true model parameters. That
is, one seeks solutions which are not estimates of the true model
parameters themselves, but estimates of weighted averages of the
true parameters. The advantage of seeking to evaluate ‘averages’ of
parameters, rather than ‘estimates’ of the parameters themselves,
is that unique linear combinations of the parameters can often be
identified even when the parameters are not uniquely defined (e.g.,
Menke 1989). In other words, the non-uniqueness of the problem
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can be removed by the process of averaging rather than by adding
subjective regularization constraints. This is is a key advantage of
B-G compared to DLS. Indeed, the B-G solution refers to the true
model parameters, while the DLS solution refers to the ‘damped’
true model parameters – hence making its physical interpretation
with respect to the true model parameters more complicated.

As pointed out by Nolet (2008), “though the Backus-Gilbert
method receives much interest in helioseismology, it is woefully
underused in terrestrial applications”. Over the past few decades,
many authors have considered that, in addition to a high compu-
tational cost, it could be a clumsy affair in the presence of data
errors to practically implement the B-G method to large-scale to-
mographic applications (e.g., Menke 1989; Parker 1994; Trampert
1998; Aster et al. 2012). To the best of our knowledge, the B-G ap-
proach has never been applied to large-scale tomographic problems
(M ' 104–105 parameters, N ' 105–106 data).

The goal of this study is to show that a variant of the B-G
method can successfully be applied to large-scale, linear and dis-
crete tomographic problems. For this purpose, we shall introduce
and adapt to seismic tomography the Subtractive Optimally Lo-
calized Averages (SOLA) method, an alternative formulation used
in helioseismic inversions which retains all the advantages of the
B-G approach, but is more computationally efficient and versatile
in the explicit construction of averaging kernels (e.g., Pijpers &
Thompson 1992, 1994). As a leitmotiv, we shall focus on the case
of global-scale S-wave tomography and report on the obtained to-
mographic results (i.e. model estimation and appraisal) in the 400–
1710 km depth range, where our data coverage is the most relevant.

2 BACKUS-GILBERT INVERSION

In the following, we aim at applying the Backus-Gilbert approach
to large-scale, linear and discrete tomographic problems. Without
loss of generality, we shall assume a local model parametrization.

2.1 Preamble

2.1.1 Linear model estimation and appraisal

Using matrix notations, a linear forward problem can be written as:

d = Gm + n , (1)

where d = (di)1≤i≤N denotes the data vector, n = (ni)1≤i≤N
the noise in the data, m = (mj)1≤j≤M the true model parameters,
and G = (Gij) the sensitivity matrix of size N × M . Having
in mind the tomographic application in Sect. 3, we consider in this
Sect. 2 that the model parameters represent 3-D velocity anomalies,
with respect to a 1-D reference model, and that the data are time-
residuals. In this study, we shall assume that the noise n has zero
mean, and that the data covariance matrix, Cd, can be expressed as:

Cd = diag
(
σ2
di

)
, 1 ≤ i ≤ N . (2)

One aims at estimating a model solution, m̃ = (m̃j)1≤j≤M , which
can be expressed as a linear combination of the data:

m̃ = G†d , (3)

where the matrix G† denotes some generalized inverse operator
(e.g., Snieder & Trampert 1999). The model estimate m̃ can be
related to the true model m as follows:

m̃ = Rm + G†n , (4)

where R denotes the model resolution matrix, defined as:

R = G†G . (5)

In the case where the resolution matrix R is not the identity IM ,
the Eq. (4) shows that the model estimate m̃ results both from the
imperfect ability to recover the true model m even with error-free
data (i.e. the term Rm) and from the propagation of data errors into
the solution estimate (i.e. the term G†n). The appraisal problem
consists in estimating and analysing both the resolution matrix R
and the model covariance matrix, Cm̃, defined as:

Cm̃ = G†Cd(G†)T (6)

where (·)T is the transpose operator. In the rest of this Sect. 2, we
shall consider that the data vector d and the sensitivity matrix G
have been scaled by the data errors σdi .

2.1.2 Damped least-squares

The least-squares approach consists in finding a model solution that
minimizes the data misfit. However, there is an infinity of solutions
with the same data misfit. Thus, to remove the non-uniqueness of
the solution, the damped least-squares (DLS) problem consists in
finding a model that minimizes both the data misfit and the model
‘complexity’. This may be achieved by minimizing the quantity:

||d−Gm̃||2 + Θ2||m̃||2 = min , (7)

where || · || denotes the L2-norm, commonly used to measure the
model complexity (i.e. zeroth-order Tikhonov regularization), and
Θ ∈ R+ is a regularization parameter that controls the damping
of the model norm. For simplicity reasons, the model parametriza-
tion is assumed to consist in orthonormal basis functions in this
Sect. 2.1.2, such that the norm of the discretized model m̃, involved
in Eq. (7), is equal to the norm of the continuous model m̃(r). The
choice of an adequate value for Θ is not an easy one. In the DLS
approach, one has to specify the generalized inverse to compute
the model resolution and covariance. In the case of zeroth-order
Tikhonov regularization, the generalized inverse can be written as:

G†DLS =
{

GTG + Θ2IM
}−1

GT , (8)

where {·}−1 denotes the inverse operator. Methods based on Sin-
gular Value Decomposition can be used to evaluate G†DLS, though
powerful computational resources are required for large-scale prob-
lems (e.g., Boschi 2003; Soldati & Boschi 2005; Ritsema et al.
2007, 2011). Note that the generalized inverse G†DLS depends on
Θ, so do the model estimate, the resolution matrix, and the model
covariance. Thus, the resolution matrix RDLS = G†DLSG does not
represent how resolvable by the data is the true model, but how
resolvable is the ‘damped’ true model. As the effect of damping
may differ for different model parameters, this may complicate the
physical interpretation of the DLS model estimate based on RDLS.

2.2 Backus-Gilbert and the SOLA method

Without loss of generality, we shall consider that the local model
parametrization consists in ‘nodes’. The node k will correspond to
the k-th model parameter, and r(k) will denote its spatial location.

2.2.1 Usual Backus-Gilbert formulation

Rather than seeking an estimate m̃k for each individual true model
parameter mk, the heart of Backus-Gilbert (B-G) is to seek a
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weighted average of the true parameters, hereafter denoted as m̂k,
localized around the location r(k). Taking advantage of the linear-
ity of the forward problem and of the averaging process, the model
estimate m̂k can be expressed as a linear combination of the data:

m̂k =

N∑
i=1

x
(k)
i di , (9)

where the N unknown coefficients x(k)i can be viewed as the ana-
logue of the k-th row of the generalized inverse operator in Eq. (3).
For each node k, the B-G approach consists in directly estimating
the N coefficients x(k)i , from which it is straightforward to obtain
the model estimate m̂k with its corresponding variance σ2

m̂k
and

averaging kernel A(k)(r). The model variance σ2
m̂k

is given by:

σ2
m̂k

=

N∑
i=1

(
x
(k)
i σdi

)2
. (10)

Since the data have been scaled by their errors, the model variance
simplifies to

∑
i(x

(k)
i )2. The estimate m̂k can be expressed as:

m̂k =

M∑
j=1

(
N∑
i=1

x
(k)
i Gij

)
mj +

N∑
i=1

x
(k)
i ni , (11)

where, on the right side, the first term corresponds to a weighted
averaging over the true model parameters and the second term to
the propagation of data errors. The Backus-Gilbert point-of-view is
that for error-free data the estimate m̂k can be expressed as:

m̂k =

∫
A(k) (r)m (r) d3r =

M∑
j=1

(
VjA(k)

j

)
mj , (12)

where A(k) (r), hereafter A(k) for short, is the corresponding av-
eraging kernel (also referred to as the resolving kernel). The con-
tinuous kernel A(k) is defined from its M discretized values A(k)

j ,
using the same interpolation rule as for the model interpolation (see
Eq. (25)). The term Vj corresponds to the ‘volume’ associated to
the j-th node of the local parametrization (see Eq. (26)). The M
components A(k)

j are related to the N coefficients x(k)i :

A
(k)
j =

1

Vj

N∑
i=1

x
(k)
i Gij , (13)

and can be interpreted as the k-th row of a resolution matrix R̂:

R̂kj = VjA(k)
j , 1 ≤ j ≤M . (14)

We wish that (12) be an unbiased averaging, that is:
∑
j R̂kj must

be equal to one, such that m̂k =
∑
j R̂kjmj represents a true phys-

ical averaging over the true model parameters (e.g., Nolet 2008).
Thus, the averaging kernel A(k) is imposed to be ‘unimodular’:∫
A(k) (r) d3r =

M∑
j=1

VjA(k)
j = 1 . (15)

For each model estimate m̂k, we wish that all the elements R̂kj ,
i.e. the elements A(k)

j , be almost zero if the nodes k and j are spa-
tially distant beyond the local resolving length at spatial position
r(k). In the presence of data errors, the B-G method consists in
constructing the most peak-shaped resolving kernel A(k), peaked
around r(k), while moderating at most the propagation of data er-
rors into the model estimate. Thus, one aims at minimizing both the
spatial spread of A(k) and the model variance σ2

m̂k
. These are two

opposite aims: the well-known trade-off between resolution and
variance. Let W (k) ∈ R+ be a number that represents the spatial
spread of the kernel A(k), and η ∈ R+ be a trade-off parameter.
Thus, for a given value of η, one seeks the set of N coefficients
x
(k)
i that minimizes the following quantity:

W (k) + η2σ2
m̂k

= min , [s.t. unimodular] , (16)

where [s.t. unimodular] means ‘subject to the constraint of unimod-
ular averaging kernel, i.e. Eq. (15)’. Usually, W (k) is defined as:

W (k) =

∫
J(k) (r)

[
A(k) (r)

]2
d3r , (17)

where the function J(k) is designed to favor a peak-shaped kernel
A(k) around the spatial position r(k). This means giving any con-
tribution to the integral of [A(k)]2 away from r(k) a large weight.
For this purpose, it is common practice to use (e.g., Nolet 1985):

J(k) (r) ∝ |r− r(k)|4 . (18)

This minimization problem, i.e. Eqs. (16)-(18), leads to solving for
x(k) the following set of normal equations:(

Ĝ
(k)
(

Ĝ
(k)
)T

+ η2IN
)
x(k) = 0N , [s.t. unimodular] , (19)

where the matrix Ĝ
(k)

and the column-vector x(k) are defined as:

Ĝ
(k)

=

(
|r(j) − r(k)|2√

Vj
Gij

)
, x(k) =

(
x
(k)
i

)
, (20)

with 1 ≤ i ≤ N , and 1 ≤ j ≤ M . The method of Lagrange
multipliers can be used to solve (19) for every node k. Since the
matrix Ĝ

(k)
depends on the spatial location r(k) of the considered

node k, it has to be recomputed for each one of the M nodes. For
large-scale tomographic problems, as we are interested in, this is a
significant computational drawback of the usual B-G formulation.

2.2.2 The SOLA method

We introduce and adapt to seismic tomography the SOLA method
(e.g., Pijpers & Thompson 1992, 1994), an alternative B-G ap-
proach used in helioseismic inversions (e.g., Pijpers 1997; Rabello-
Soares et al. 1999; Jackiewicz et al. 2012). The key idea is to spec-
ify an a priori ‘target form’ for the averaging kernelA(k). Let T (k)

denotes such a target kernel. Rather than minimizing the spread
of A(k), as in the usual B-G formulation, one aims at minimizing
the integrated squared difference betweenA(k) and T (k). Pijpers &
Thompson (1992) termed this alternative the ‘SOLA’ (Subtractive
Optimally Localized Averages) method, though Larsen & Hansen
(1997) suggest that it may have been rediscovered independently
by different authors (e.g., Louis & Maass 1990; Pijpers & Thomp-
son 1992). The SOLA minimization problem can be written as:∫ [

A(k) (r)− T (k) (r)
]2
d3r + η2σ2

m̂k
= min, [s.t. unimodular]

(21)

where the target kernel T (k) (r), hereafter T (k) for short, is defined
from its M components T (k)

j using the same interpolation rule as

for the model interpolation. The components T (k)
j result from the

projection onto the model parametrization of the ‘true’ target ker-
nel T (k)

true (r), hereafter T (k)
true for short. Let S(k) be the spatial domain

where T (k)
true is constant inside and zero outside. If T (k)

true was a 3-D
ball centred in r(k), its radius would correspond to the minimum
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resolving length that could, at best, be expected in r(k). The mini-
mization problem (21) leads to solving the set of normal equations:(

ĜĜ
T

+ η2IN
)
x(k) = Ĝt(k), [s.t. unimodular] , (22)

where the matrix Ĝ and the column-vector t(k) are defined as:

Ĝ =

(
1√
Vj
Gij

)
, t(k) =

(
T

(k)
j

√
Vj
)
, (23)

with 1 ≤ i ≤ N , and 1 ≤ j ≤ M . Though such systems are usu-
ally solved using Lagrange multipliers, Nolet (1985) reports that
this may lead to an ill-conditioned system of linear equations, and
proposes an alternative, more stable approach based on the LSQR
algorithm (e.g., Paige & Saunders 1982; Grunberg 2006), that we
adopt in this study (see App. A1). Computationally speaking, the
most important point is that the matrix Ĝ does not depend on the
spatial location r(k); no need to recompute it for every node k.

3 GLOBAL TOMOGRAPHY WITH THE SOLA METHOD

Using the SOLA method, we aim at estimating isotropic 3–D varia-
tions of shear-velocities in the mantle, with respect to the radial ref-
erence model iasp91 (Kennett & Engdahl 1991), and are interested
in quantitatively analysing the model resolution and uncertainty.

3.1 Statement of the tomographic problem

Innovative theoretical developments on the finite-frequency be-
haviour of the propagation of body waves (e.g., Dahlen et al. 2000;
Tromp et al. 2005) have recently received increasing attention in
seismic tomography (e.g., Montelli et al. 2004a; Sigloch et al. 2008;
Zaroli et al. 2010; Tian et al. 2011; Mercerat et al. 2014; Schuberth
et al. 2015; Zaroli et al. 2015). In this study, we shall exploit a
globally distributed set of finite-frequency shear-wave delay-times,
which consists in S and SS seismic phases measured at 22 s central
period (Zaroli et al. 2010); that is a subset of the data used in Zaroli
et al. (2015). The corresponding forward problem is linear:

di =

∫
Ki (r)m (r) d3r + ni , (24)

with di the i-th delay-time, ni the noise in di, m the ‘true’ model,
and Ki the i-th finite-frequency sensitivity kernel (Dahlen et al.
2000);Ki is numerically computed as in Zaroli et al. (2013). In this
work, the total number of data is N = 79 765, and the whole man-
tle is parametrized by M = 38 125 parameters. We shall refer to
m̃DLS as the tomographic model obtained from the DLS inversion
of the same data set. For the purposes of this study (i.e. estimating
model uncertainties), the data errors σdi that were used in Zaroli
et al. (2015) are increased by 30% such that the reduced chi-square
(e.g., Nolet 2008) is one for m̃DLS.

In this study, we use the same local model parametrization as
detailed in Zaroli et al. (2015). To make this paper self-contained,
it is briefly summarised in the following. First, the mantle is radi-
ally divided into 18 spherical layers. The minimum radial resolv-
ing length that may potentially be achieved, at best, corresponds
to the width of each layer. Here, it gradually varies from 100 km
at the surface, 130 km in the transition-zone, and up to 200 km in
the lower-mantle. Laterally, each layer is spanned with Delaunay
triangulations whose spatial distributions are optimized according
to ray density (see Fig. 1). The parameterization is then made up of
spherical triangular prisms; let Tp denotes the p-th prism. The three

vertices on the top of each prism were referred to as ‘nodes’ in
Zaroli et al. (2015). The minimum lateral resolving length that may
potentially be achieved, at best, corresponds to the nodes spacing:
∼200–1000 km (see Fig. 1). From hereon, the spatial location of
the j-th node is defined as: r(j) = (r̄(j), θ(j), φ(j)), where θ(j) and
φ(j) are the co-latitude and longitude of node j, respectively, and
r̄(j) is the ‘middle radius’ of the layer to which node j belongs to.
The spatial locations of the three nodes of a given prism correspond
to three model parameters. It is convenient to index the parameters
with respect to the prism Tp, that is:mTpq , with q = {1, 2, 3}. Each
parametermTpq can be mapped back to its globally indexed, unique,
parameter mj , such as: (Tp, q) → j. The continuous model is lin-
early related to the model parameters as follows:

m (r) =

3∑
q=1

b
Tp
q (r)m

Tp
q , ∀r ∈ Tp , (25)

where bTpq denote barycentric coordinates. With our irregular grid,
the volumetric term Vj associated to the j-th node is given by:

Vj =
∑

(Tp,q)→j

∫
r∈Tp

b
Tp
q (r) d3r , (26)

and the elements of the sensitivity matrix G can be expressed as:

Gij =
∑

(Tp,q)→j

(∫
r∈Tp

Ki (r) b
Tp
q (r) d3r

)
, (27)

where
∑

is a sum over all pairs (Tp, q) satisfying to (Tp, q)→ j.

3.2 Target kernels and trade-off parameters

Our model parametrization has been tuned to the heterogeneous
body-wave data coverage. Indeed, ray density may often be con-
sidered as a proxy for the local resolving length (e.g., Vasco et al.
2003). In this study, we report that some suitable form for a true
target kernel T (k)

true is that of a 3-D spheroid corresponding to the
minimum lateral and radial resolving lengths that could potentially
be expected in r(k) with our irregular parametrization. This choice
ensures that, for every node k, the estimation of the model (m̂k)
and of its appraisal (A(k) and σm̂k ) be constrained by several data.
Such a spheroid-shape target kernel T (k)

true is centred in r(k); its hor-
izontal and vertical radii are respectively defined as:

L(k)
H =

1

#Nk

∑
j∈Nk

Djk , L(k)
V = |Z(k)

+ −Z(k)
− | , (28)

with Nk the set of natural-neighbor nodes with respect to k, Djk
the distance between j and k, #Nk the cardinality of Nk, and Z(k)

+

and Z(k)
− the top and bottom depth of the layer to which node k

belongs to, respectively. The spatial domain S(k) over which such
a target kernel T (k)

true is defined can be expressed as:{
(x, y, z) ∈ R3,

x2

(L(k)
H )2

+
y2

(L(k)
H )2

+
z2

(L(k)
V )2

≤ 1

}
, (29)

where (x, y, z) denote coordinates with respect to the local carte-
sian frame naturally associated to the node k. The spatial variations
of L(k)

H within the 400–1710 km depth range are shown in Fig. 1.
Following Pijpers (1997), we choose to impose that the projected
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target kernel T (k) be unimodular, that is:

∫
T (k) (r) d3r =

M∑
j=1

VjT (k)
j = 1 , (30)

though this constraint is not strictly necessary. Therefore, with our
irregular grid, theM components T (k)

j can simply be expressed as:

T
(k)
j =

V−1
j

∑
(Tp,q)→j

∫
r∈Tp∩S(k) b

Tp
q (r) d3r∑M

j=1

(∑
(Tp,q)→j

∫
r∈Tp∩S(k) b

Tp
q (r) d3r

) , (31)

where integrals are computed using Riemann sums.
To solve the SOLA minimization problem (21), one has to de-

fine some relevant value for the trade-off parameter η, such that
a suitable compromise can be found between minimizing both∫

[A(k) − T (k)]2 (i.e. good model resolution) and σ2
m̂k

(i.e. small
model variance). Since the value of η is free to differ for every
node k, one should write η(k). In the presence of data noise, a po-
tentially serious drawback of OLA methods may be the necessity
to find at most M relevant values for the M trade-off parameters
η(k) (e.g., Parker 1994). An option could be to estimate η(k) from
the analysis of the monotonically decreasing curve of trade-off be-
tween

∫
[A(k) − T (k)]2 and σ2

m̂k
(e.g., Backus & Gilbert 1968;

Pijpers & Thompson 1994). Ideally, this trade-off curve could be
L-shaped, making almost straightforward to design an automatic
criterion (e.g., Hansen & O’leary 1993) to find some relevant com-
promise between resolution and variance. After having computed
and visualized several of those trade-off curves, we report that some
of them may be far from being L-shaped (i.e. no sharp corner).
Moreover, computing all these trade-off curves would computa-
tionally be very expensive, since for every node k one has to solve
the system (22) as many times as the number of tested values for
η(k). Last, but not least, though in the DLS approach one can see if
some value for the damping parameter does lead to a globally co-
herent tomographic model, in OLA methods since only one node k
is treated at a time one cannot see if a particular value for η(k) is
globally coherent. Trampert (1998) summarizes the previous issues
by recognizing that: “being practically difficult to implement in the
presence of data errors, resulted in the Backus-Gilbert method not
finding many applications in seismic tomography”.

An important finding of this study is to report that globally
coherent tomographic images can be obtained from SOLA inver-
sions (see Fig. 2), by simply using for all the nodes in the z-th layer
the same ‘constant’ value C(z) for the corresponding trade-off pa-
rameters η(k). In practice, our strategy has been to consider all the
nodes in the z-th layer, to test a few different constant values C(z),
and to retain the one giving for us the most appealing tomographic
solution at that depth. Finally, the same constant value CLM has
been retained for all the nodes in the lower-mantle (660–1710 km
depth), and another constant value CTZ = 3

4
×CLM for those in the

transition zone (400–660 km depth).
A more comprehensive study on how to choose appropriate

target kernels and trade-off parameters will be the subject of future
work. For instance, one could wonder what was the actual influ-
ence of having used such spheroid-shape target kernels, explicitly
tuned to the irregular data coverage, on the very reduced number
of different trade-off parameters finally used here? Though there is
some ‘subjectivity’ in the SOLA method, note that different choices
would result in different solutions, all of them corresponding to
physical interpretations with respect to the true model parameters.

3.3 Tomographic results

We aim at presenting the obtained SOLA model and its appraisal;
we shall focus on the 400–1710 km depth range, where the spatial
coverage of our data is the most relevant.

3.3.1 Model

Fig. 2 presents our global-scale S-wave tomographic model, m̂sola,
which has been built using the alternative SOLA formulation of the
B-G method. A detailed analysis or physical interpretation of this
model is beyond the scope of this study; that will be the subject of
future work. In the author’s opinion, this first SOLA model is ‘visu-
ally appealing’. To share this opinion with the reader, Fig. 3 shows a
visual comparison between this SOLA model (m̂sola) and an equiv-
alent DLS model (m̃DLS, see Sect. 3.1); only the inversion approach
differs. First, the two models are shown in Figs. 3(a)–(b) within the
transition zone, at 530–660 km depth. Though the two models look
similar, significative differences can easily be spotted. As an ex-
ample, the reader may focus on the complex system of subducted
slabs (positive velocity anomalies) related to the subduction regions
of New-Hebrides-Fiji, Tonga-Kermadec and Hikurangi. Similarly,
the models are shown in Figs. 3(c)–(d) at 1310–1510 km depth, fo-
cussing on the Farallon subduction system. The slab fragments F1
and F2, pointed out in Fig. 3(d), will be discussed in Sect. 3.3.3.
In general, seismic features appear to be ‘smoother or better fo-
calised’, and with ‘higher amplitudes’, in the SOLA model than
in the DLS model. A quantitative comparison between these two
models, m̂sola and m̃DLS, is beyond the scope of this study. For in-
stance, one could also add some subjective smoothing constraints
to the DLS solution. However, note that the inherent smoothness of
the SOLA model naturally results from the averaging kernels them-
selves. In the same line, note that the overall smaller amplitudes in
the DLS model, compared to the SOLA one, are probably due to
the imposed constraint of model norm damping. Finally, it is our
view that the SOLA inversion flowchart, as described in Sects. 2.2
and 3.2, does lead to a ‘globally coherent’ tomographic model, the
first one to be based on the Backus-Gilbert approach.

3.3.2 Appraisal

As mentioned in Sect. 2.2, in the B-G approach a reduction in the
model uncertainty σm̂k is obtained by spatially enlarging the re-
solving kernel A(k). Fig. 4 shows the model uncertainty σm̂k ob-
tained with the SOLA method, at four depths ranging from the tran-
sition zone to the mid lower-mantle. This model uncertainty is com-
prised within the interval 0.05–0.25 % in the whole 400–1710 km
depth range. As expected, the spatial variations of the model un-
certainty are almost similar to those of the ray-density driven target
kernels, see Figs. 1(a,c,e,g) and 4. As a remark, the uncertainties
σm̂k merely represent the propagation of data errors. They do not
take into account the error due to the fact that, in practice, the av-
eraging kernel A(k) cannot reproduce the form of the target kernel
T (k) ‘perfectly’. Following Backus & Gilbert (1970) and Pijpers
& Thompson (1994), future work could aim at estimating an upper
bound to the systematic error due to this effect.

We report that the unimodular condition is fully respected for
the resolving kernels A(k) obtained with the SOLA method, since
their volumetric integral, theoretically equal to one, is always com-
prised within the interval 1±2×10−8. As a remark, this unimodu-
lar constraint cannot be imposed on the rows of the DLS resolution
matrix, RDLS, which may also complicate physical interpretations
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based on RDLS (e.g., Nolet 2008). Moreover, we report that the re-
solving kernels are not significantly oscillating (i.e. no prominent
side lobes, see Fig. 5), which confirms that suitable forms for the
target kernels have been used (e.g., Pijpers & Thompson 1994).
Keeping in mind the trade-off between model variance and resolu-
tion, one may look at Fig. 4 and intuitively guess what are at first
order the spatial variations of the model resolution. However, as
warned by Parker (1994): “we should always plot [the resolving
kernels]”. Indeed, as will be discussed in Sects. 3.3.3 and 4.2, some
of the resolving kernels may potentially be smeared or leaked in
complex ways, requiring us to analyse them through 3-D visual
plots to comprehensively apprehend the spatial model resolution.

3.3.3 Examples

In the following, we aim at illustrating the importance of the model
appraisal when it comes to physical interpretations of global-scale
tomographic models. We focus on two seismic features present in
our SOLA model, and discuss them in the light of their estimated
resolution and uncertainty.

First, we aim at demonstrating whether or not is resolved a
prominent slow-velocity feature, located South-West from Hawaii
in the 810–960 km depth layer. A zoom-in of our SOLA model is
shown in Fig. 5(left), on which the negative velocity anomaly is
contoured with a black solid line. Inside this contour is depicted
with a green dot a particular node k, whose model estimate and
uncertainty are: m̂k = −0.87 %, and σm̂k = 0.10 %. The target
kernel T (k) is shown in Fig. 5(left). Its form is that of a spheroid
centred in r(k), at 885 km depth, with horizontal and vertical radii:
L(k)
H = 300 km, and L(k)

V = 150 km. The resolving kernel A(k) is
also shown in Fig. 5(left) at different depths ranging from the near
surface to the mid lower-mantle. Clearly, the shape of A(k) is com-
plex and not confined into a small region near r(k). That is, A(k)

is obliquely spread out from the deep lower-mantle to the near sur-
face, below the Hawaii island. Since A(k) defines a volume where
different seismic heterogeneities cannot be distinguished, the con-
toured slow-velocity feature imaged at 885 km depth is not resolv-
able by the data. The most likely scenario to explain this contoured
feature is that of a negative velocity anomaly located right below
the Hawaii island, which would have been spread out down into
the lower-mantle. The best candidate surely is the shallow part of
the Hawaii hotspot, whose the seismic signature is visible on all
the tomographic images within the 400–1110 km depth range, see
Figs. 2(a)–(e). Though an experienced geophysicist would probably
argue, solely based on the tomographic images, that this contoured
feature is an artifact due to the strongly anisotropic ray path ge-
ometry in the middle of the Pacific, the B-G approach has allowed
us to more quantitatively point out this artifact. Note that resolving
kernels with such a complex shape clearly require some 3-D visual
inspection to fully apprehend them.

In this second example, we are interested in the Farallon sub-
duction system (positive velocity anomalies). A zoom-in within
the 1310–1510 km depth layer is shown in Fig. 3(d). In addition to
the main subducted slab beneath eastern North-America, one may
identify at least two detached slab fragments located further to the
West, denoted F1 and F2 as in Zaroli et al. (2015). The Farallon
system also takes place at shallower and deeper depths. In particu-
lar when looking at Figs. 2(f)–(h), note that: 1) F1 could potentially
be connected with some fast-velocity material upward (at least at
1110–1310 km depth); 2) F2 seems to ‘suddenly’ appear at 1310–
1510 km depth offshore California; 3) F1, F2, and the main slab all

seem to collapse together at 1510–1710 km depth. Such a complex
Farallon system in the mid lower-mantle has not been so sharply
imaged in previous ‘global’ scale tomographic models (e.g., Mas-
ters et al. 1996; Van der Hilst et al. 1997; Montelli et al. 2004b;
Houser et al. 2008; Ritsema et al. 2011; French & Romanowicz
2014; Moulik & Ekström 2014). However, the features F1 and
F2 have recently been imaged, and even physically interpreted, in
some ‘regional’ scale (multi-frequency) P-wave tomographic stud-
ies (Sigloch et al. 2008; Sigloch 2011; Sigloch & Mihalynuk 2013).
It has therefore been proposed that F1 could correspond to the deep
root in lower mantle of the Cascadia subduction system, and F2
be related to some intra-oceanic subduction. In the aforementioned
regional tomographic studies, only checker-board tests were used
to assess the model resolution, and no quantification of the model
uncertainty was performed. As the reader may have guessed, we
are now interested in demonstrating whether for instance F2 is or
not resolved, in our case. In Fig. 5(right), a zoom-in of our SOLA
model is shown; F2 is contoured with a black solid line. Inside this
contour is depicted with a green dot a particular node k; the model
estimate and uncertainty are: m̂k = 0.85 %, and σm̂k = 0.18 %.
The target kernel T (k) is shown in Fig. 5(right). Its form is that of
a spheroid centred in r(k), at 1410 km depth, with horizontal and
vertical radii: L(k)

H = 200 km, and L(k)
V = 200 km. The resolv-

ing kernel A(k) is shown in Fig. 5(right) within the 1110–1710 km
depth range. Note thatA(k) is confined into a small enough volume
near r(k), with respect to the size of F2. Thus, the local resolving
length, both laterally and radially, is small enough to claim that F2
is ‘resolvable’ by the data. Furthermore, since the uncertainty σm̂k

is almost five times smaller than the model estimate m̂k, one can
conclude that F2 is ‘resolved’ given the data and their errors.

4 PERSPECTIVES

We aim at discussing some future work perspectives related to the
use of the SOLA method in seismic tomography.

4.1 New tomographic applications

Future work would naturally consist in applying the SOLA method
to other linear or linearized tomographic problems, such as, but not
limited to: ambient noise tomography (e.g., Zigone et al. 2015),
surface-wave tomography (e.g., Debayle & Ricard 2012), body-
wave tomography (e.g., Sigloch 2011), normal-mode tomography
(e.g., Resovsky & Ritzwoller 1999), and joint tomography (e.g.,
Ritsema et al. 2011; Zaroli et al. 2015; Koelemeijer et al. 2016).
Significantly increasing the number of data and model parame-
ters will require more processors and computer memory than the
limited computational resources used in this work (see App. A3).
However, with modern computational facilities (e.g., High Perfor-
mance Computing Clusters, Graphics Processing Units, memory
prices decreasing with time), the SOLA method should be appli-
cable to linear and discrete tomographic problems of much larger
size than faced in this study. As a final remark, though the Backus-
Gilbert theory has been developed for linear problems, note that
Snieder (1991) extended the theory to weakly non-linear problems.

4.2 Visualizing the spatial model resolution

The shape of some resolving kernelsA(k) may be complex and thus
require 3-D visual inspections (see Sect. 3.3.3 and Fig. 5(left)). It
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may not be very convenient to show in a single paper all the M re-
solving kernels plotted in a 3-D fashion. From our experience, the
shape of many resolving kernels approximately resembles that of
an ellipsoid (see Fig. 5(right)). Let E(k) denotes such an ellipsoid,
corresponding to node k. For simplicity reasons, let us assume that
E(k) be centered in r(k), though its center of mass could be a free
parameter. Thus,E(k) may simply be characterized by four param-
eters: its major and minor horizontal radius, a(k) and b(k), respec-
tively; its vertical radius c(k); the azimuth ψ(k) of its major hori-
zontal axis. Future work could consist in automatically estimating
these four parameters for all the resolving kernels whose the shape
is ellipsoidal; one could then visualize through global-scale 2-D
plots the radial resolving length, c(k), and the direction-dependent
lateral resolving length, given by (a(k), b(k), ψ(k)). Some criterion
would be needed to automatically discriminate non-ellipsoidal ker-
nels; only those complex ones would remain to be 3-D visualized.

4.3 SOLA tomography using a parameter-free approach

To go beyond this ‘discrete’ study, one could aim at applying the
SOLA method to tomographic problems in a ‘parameter-free’ man-
ner, closer to the philosophy of Backus & Gilbert (1967), that is
without introducing any model parametrization. Thus, the averag-
ing kernel is expressed as A(k)(r) =

∑N
i=1 x

(k)
i Ki(r), and one

has to solve the ‘continuous’ system ofN equations (1 ≤ i′ ≤ N ):

N∑
i=1

x
(k)
i

∫
Ki(r)Ki′(r)d3r + η2x

(k)

i′ =

∫
T (k)(r)Ki′(r)d3r ,

(32)

subject to the unimodular condition
∑N
i=1 x

(k)
i

∫
Ki(r)d3r = 1.

Pijpers & Thompson (1994) show that (32) corresponds to solv-
ing a linear system Hx(k) = v(k), where the symmetric matrix
H is of order N + 1 and mainly contains a large number of inte-
grals of pairs of sensitivity kernels,

∫
Ki(r)Ki′(r)d3r, which now

have to be calculated. The vector v(k) mainly contains the integrals∫
T (k)(r)Ki′(r)d3r, which also need to be computed. In our view,

one should keep the target kernel T (k) tuned to some proxy for the
local resolving length (e.g. ray density). Though the computational
cost to solve (32) could be challenging, when considering a large
number of data and of points r(k), the advantages would be that: 1)
A given, subjective finite-dimensional parametrization would not
have to be introduced; 2) The shape of the resolving kernel A(k)

would be fully captured, thus improving the model estimation and
the quantitative assessment of its resolution and uncertainty.

5 CONCLUSION

To push further the physical interpretations of tomographic models,
the appraisal problem has now become as important as the model
estimation. As we have seen, the Backus-Gilbert (B-G) method can
solve ‘all at once’ the linear problems of model estimation and ap-
praisal. Furthermore, one key advantage of B-G is that its solution
refers to the true model, while the damped least-squares (DLS) so-
lution, often used in tomographic studies, refers to the ‘damped’
true model – hence making its physical interpretation with respect
to the true model more complicated.

In this study, we have introduced and adapted to linear and dis-
crete tomographic problems the SOLA method, an alternative B-G

formulation which retains all its advantages, but is more computa-
tionally efficient and versatile in the explicit construction of aver-
aging kernels. We have focused on the case of global-scale S-wave
tomography, and have presented the first SOLA tomographic model
of the Earth’s mantle, globally coherent within the 400–1710 km
depth range. In particular, when compared to an equivalent DLS
model, the seismic features in our SOLA model generally appear
to be ‘smoother or better focalised’, and with ‘higher amplitudes’.
To illustrate the appraisal of our SOLA model, we have shown that
a small-scale slab fragment (F2), related to the complex Farallon
subduction system, is resolved given the data and their errors.

Finally, since over the past few decades “the Backus-Gilbert
theory has received more citation than actual application” (Parker
1994), the main result of this study is to have shown that the SOLA
variant of the B-G method can successfully be applied to large-
scale, linear and discrete tomographic problems.
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Figure 1. Spatial distribution of all the nodes (green dots) in the 400–1710 km depth range. The depths are, in km: a) 400–530; b) 530–660; c) 660–810; d)
810–960; e) 960–1110; f) 1110–1310; g) 1310–1510; h) 1510–1710. The black-to-white colorscale shows the corresponding variations of L(k)

H (see Sect. 3.2).
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Figure 2. Global S-wave tomographic model (m̂sola) obtained from using the alternative SOLA formulation of the Backus-Gilbert method. The depths are, in
km: a) 400–530; b) 530–660; c) 660–810; d) 810–960; e) 960–1110; f) 1110–1310; g) 1310–1510; h) 1510–1710. The colorscale bounds are indicated in each
panel. In panels (a)–(b), the dashed lines denote the tectonic plate boundaries and the gray stars represent some hotspots (e.g., Anderson & Schramm 2005).
Positive velocity anomalies are emphasised with black contour lines if larger than some threshold: 0.3% in panels (a)–(e), 0.25% in (f), and 0.2% in (g)–(h).
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Figure 3. Visual comparison of tomographic models derived from: (a, c) Damped least-squares (DLS) inversion (m̃DLS); (b, d) SOLA inversion (m̂sola).
The comparison is focussed on: (a, b) several active subduction zones in the transition zone, at 530–660 km depth; (c, d) the ancient and complex Farallon
subduction system taking place in the mid lower-mantle, at 1310–1510 km depth. Black contour lines and gray stars/dashed-lines are the same as in Fig. 2.
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Figure 4. Examples of the model uncertainties σm̂k
obtained in this study using the alternative SOLA formulation of the Backus-Gilbert method. Results are

shown for several layers from the transition zone to the mid lower-mantle. The depth ranges are, in km: a) 400–530; b) 660–810; c) 960–1110; d) 1310–1510.
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Figure 5. Examples of two resolving (averaging) kernels A(k) obtained in this study using the alternative SOLA formulation of the Backus-Gilbert method
(see Sect. 3.3.3). (Left) Resolution analysis of the contoured slow-velocity feature at 885 km depth. (Right) Resolution analysis of the contoured fast-velocity
feature F2 at 1410 km depth. Are also shown the corresponding zoom-ins of the SOLA model m̂sola, same colorscales as in Fig. 2, and the target kernels T (k).
The spatial locations of the two nodes (k) are depicted with green dots. Each number represents the middle depth, in km, of one layer of the parametrization.
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APPENDIX A: NUMERICAL CONSIDERATIONS

A1 SOLA using LSQR

Though systems such as (22) are usually solved using Lagrange
multipliers, in this study we rather use the alternative LSQR ap-
proach proposed by Nolet (1985), as detailed in the following.

First, let the column-vector c be:

c = (ci)1≤i≤N , ci =

M∑
j=1

Gij . (A.1)

Thus, the unimodular constraint, i.e. Eq. (15), can be rewritten as:

cTx(k) = 1 . (A.2)

One has to solve for x(k) the following SOLA system of equations:(
Ĝ

T

ηIN

)
x(k) =

(
t(k)

0N

)
, [s.t. cTx(k) = 1] . (A.3)

Using Eq. (A.2), one element of the vector x(k) – e.g. its first ele-
ment x(k)1 – can be expressed in terms of the others. Let us consider
the three column-vectors:

x̂(k) =
(
x
(k)
i

)
2≤i≤N

, ĉ =

(
ci
c1

)
2≤i≤N

, e1 = (δi1)1≤i≤N ,

(A.4)

assuming c1 6= 0 and δ being the Kronecker symbol, such that:

x
(k)
1 = c−1

1 − ĉTx̂(k) . (A.5)

Let us also consider the matrix B defined as:

B =

(
−ĉT
IN−1

)
, (A.6)

so that the vector x(k) can be written in function of x̂(k), that is:

x(k) = Bx̂(k) + c−1
1 e1 . (A.7)

Finally, the SOLA system (A.3) can be rewritten into a system of
normal equations to be solved for x̂(k) using the LSQR algorithm:(

Q(η)

ηIN−1

)
x̂(k) =

(
y(k,η)

0N−1

)
, (A.8)

where Q(η) is a matrix, of size (M + 1)× (N − 1), and y(k,η) is
a column-vector, which are defined as:

Q(η) =

(
Ĝ

T
B

−ηĉT

)
, y(k,η) =

(
t(k) − c−1

1 Ĝ
T
e1

−c−1
1 η

)
.

(A.9)

Thus, for a given trade-off parameter η, the LSQR algorithm itera-
tively converges to the solution x̂(k,η), such that:

x̂(k,η) = arg min
x̂(k)∈RN−1

: ||y(k,η) −Q(η)x̂(k)||2 + η2||x̂(k)||2 ,

(A.10)

where || · || denotes the L2-norm. Computationally speaking, the
most important point is that the matrix Q(η) does not depend on the
spatial location r(k); thus, no need to recompute it for every node
k. Since the vector y(k,η) depends on r(k), it has to be recomputed
for each node k; this task is computationally cheap. The last row of
Q(η) and last element of y(k,η) both depend on η.

A2 Matrix sparsity

In global body-wave tomography, the matrix Ĝ is highly sparse.
Matrix sparsity may be a very useful property in terms of storage,
efficiency of algorithms, memory footprint, etc. Though only 2.2%
of all the elements of Ĝ are non-zero, the density varies from 0.2%
and up to 6.4% for individual rows of Ĝ. The system (A.8) involves
computing the matrix Q(η); except for its last row, its elements are:

Q(η)
µ, ν = −ĉνĜ1, µ + Ĝν+1, µ , (A.11)

with 1 ≤ µ ≤M , and 1 ≤ ν ≤ N−1. TheM elements Ĝ1, µ rep-
resent the first row of Ĝ. All the elements of ĉ are non-zero. Thus,
the total density of Q(η) may vary from 2.4% to 8.6% depending
upon the density of the first row of Ĝ. Preserving at most the spar-
sity of Q(η) is crucial, especially as we plan to increase the number
of data and parameters in future inversions (see Sect. 4.1). To opti-
mize the sparsity of Q(η), we find the sparsest row of Ĝ and switch
it with the original first row of Ĝ, such that the total density of Q(η)

is 2.4%. To be consistent, the analogous operation is performed on
the data vector d (i.e. switch of d1).

A3 Computational facilities

Our computational facilities consist in P = 20 processors, Intel
Xeon E5-4657L 2.40 GHz. As mentioned in Sect. 3.2, our strategy
is to consider all the M (z) nodes belonging to the z-th layer, and
to use the ‘same’ constant value C(z) for the corresponding trade-
off parameters. Since the LSQR algorithm can independently be
applied to every node k, we partition the M (z) nodes into P sub-
sets, each one containing M (z)/P nodes. For algorithms needs,
and to reduce the disk input-output utilisation per process, the ma-
trix Q(η) is stored twice on every processor, corresponding to a total
of 6.4× P = 128 Go memory. LSQR is used in a sequential fash-
ion for each subset of nodes. The P subsets are treated in parallel
on all the P processors. In our case, it takes about t ' 3 min (CPU
time) to run 100 LSQR iterations for a single node k. We report
that 100 iterations were sufficient for convergence needs; further
iterating did not significantly change the model estimation, resolu-
tion and variance. Thus, computing the M solution vectors, x̂(k,η),
takes about: t×M/P ' 4 days (CPU time).

This paper has been produced using the Blackwell Scientific Publications
GJI LATEX2e class file.


