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Abstract Numerical simulations of viscoplastic fluid
flows have provided a better understanding of funda-
mental properties of yield stress fluids in many appli-
cations relevant of natural and engineering sciences. In
the first part of this paper, we review the classical nu-
merical methods for the solution of the non-smooth vis-
coplastic mathematical models, highlight their advan-
tages and drawbacks, and discuss more recent numeri-
cal methods that show promises for fast algorithms and
accurate solutions. In the second part, we present and
analyze a variety of applications and extensions involv-
ing viscoplastic flow simulations: yield slip at the wall,
heat transfer, thixotropy, granular materials, combining
elasticity, with multiple phases and shallow flow approx-
imations. We illustrate from a physical viewpoint how
fascinating the corresponding rich phenomena pointed
out by these simulations are.

Introduction

The first model for fluids with plasticity has been intro-
duced at the end of the 19th century by Schwedoff [157]
for gelatin suspensions. Schwedoff was the forerunner to
a multitude of papers on variable viscosity effects in a
plethora of materials which were to occupy much of the
literature of the first half of the 20th century. In their his-
torical review, Tanner and Walters [165, p. 26] pointed
out that, during this period, ”there was a tendency to
label all anomalous behavior as manifestations of ’plas-
ticity’, with no clear idea as to what that meant”. The
work of Bingham [27,28] introduced some clarifications
and provided a great deal of information on measure-
ments for various systems, including gel-like materials
with a yield stress. While this mathematical model was
expressed for simple shear flow only, its extension to a
general three-dimensional flow was introduced in 1947
by Oldroyd [132], based on the von Mises criterion.

Numerically simulating the flow of a yield stress material
is not a straightforward task. Assuming that rheological
models with a threshold in terms of the norm of the
deviatoric part of the stress tensor, i.e., a von Mises cri-
terion, represent a satisfactory approximation of the ob-
servable behavior of a material, the mathematical non-
smoothness of these models and the indeterminacy of
the stress tensor below the yield stress threshold ren-
der the design of appropriate solution methods subtler
than for a simple purely viscous material. Over the past
40 years, essentially two families of solution methods
were suggested in the literature, the so-called regular-
ization approach and augmented Lagrangian algorithm.
The former solution method circumvents the aforemen-
tioned two problematic mathematical properties by sim-
ply modifying the constitutive equation such that it is
smooth and well determined regardless of the shear rate
magnitude, including zero. The latter solution method
introduces two additional new tensorial fields and solve
the whole problem as the minimization of a functional
with a step descent Uzawa algorithm. While the regular-
ization approach was very popular in the 80s and 90s, the
community has been progressively acknowledging over
the past 10 years that, although solving a slightly differ-
ent problem (the regularized problem) might be fine in
some flow configurations, it also leads to some questions
about the relevance of the computed solution, in particu-
lar in terms of the location of yield surfaces and the mod-
eling of the finite time decay property. While the aug-
mented Lagrangian algorithm and its variants solve the
actual yield stress model, their main drawback is their
prohibitive computational cost related to a rather slow
convergence rate. New active research directions over the
second decade of the 21st century aim at developing al-
gorithms for solving the initial, unregularized, problem
but with a faster convergence rate and lower computing
time. This will open up new perspectives in the numer-
ical simulation of yield stress fluid flows, in particular it
might eventually make simulation of three-dimensional
flows possible.
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Section 1 presents the viscoplastic flow problem and its
mathematical statement. Section 2 reviews the two main
algorithmic approaches: (i) regularization approach and
(ii) augmented Lagrangian algorithm. This section closes
by a review of recent strategies for fast-and-accurate
algorithms. Section 3 presents common extensions of
the conventional viscoplastic Bingham and Herschel-
Bulkley models: yield slip at the wall, non-constant coef-
ficients (granular materials, mixtures, thermal effects or
thixotropy), elasticity and shallow flow reduced models.

1 Problem statement

The total Cauchy stress tensor of a viscoplastic fluid is
expressed by σtot = −p I + σ where σ denotes its devi-
atoric part, and p is the pressure. The constitutive equa-
tion for a viscoplastic fluid writes:

σ = 2K |2D(u)|n−1D(u) + σ0
D(u)

|D(u)| if |D(u)| 6= 0

|σ| 6 σ0 if |D(u)| = 0
(1)

where σ0 > 0 is the yield stress, K > 0 is the consis-
tency, n > 0 is the power-law index, u is the velocity
field, D(u) = (∇u+∇uT )/2 is the rate-of-deformation
tensor, and, for any tensor τ = (τij), the notation |τ |
represents the following matrix norm:

|τ | =
√
τ :τ

2
=

1

2

∑
ij

τ2ij

 1
2

The 1/2 factor under the square root is only a conve-
nient convention: for a simple shear flow, γ̇ = |2D(u)|
coincides with the absolute value of the shear rate, oth-
erwise it would be counted twice. Note that when σ0 = 0
and n = 1, the model (1) reduces to the classical viscous
incompressible fluid. When σ0 > 0 and n = 1, we obtain
the tridimensional extension of the Bingham model, as
formulated by Oldroyd [132]. In the general case σ0 > 0
and n > 0, we obtain the tridimensional extension of the
Hershel-Bulkley model [93]. Note also that tacking the
norm of (1) leads to a simple scalar relation, suitable for
simple shear flows:

|σ| = K γ̇n + σ0

The conservation of momentum expresses:

ρ

(
∂u

∂t
+ (u.∇)u

)
− divσ +∇p = f (2)

where f denotes the external forces (e.g. the gravity) and
ρ is the constant density. Thus, the mass conservation
leads to:

divu = 0 (3)

The set of equations (1)-(3) is closed by some appropri-
ate initial and boundary conditions and the problem is
complete.

Note that the viscoplastic fluid is characterized by the
following property: the material starts to flow only if the
applied forces exceed the yield stress σ0. When σ0 > 0,
one can observe unyielded regions in the interior of the
fluid, where D(u) = 0, i.e. where the material behaves
as a solid. When σ0 increases, these unyielded regions
develop.

The mathematical analysis of this problem is an ongo-
ing work. In 1965, Mosolov and Miasnikov [120,121,122]
considered a variational formulation of the problem for
a Poiseuille flow with a general non-circular cross sec-
tion and studied qualitative properties of it. Existence
and uniqueness of the solution and the structure of the
flow were investigated, especially the shape of yield sur-
faces. In 1976, Duvaut and Lions [68] also provided a
theoretical analysis for Poiseuille flows and flows in a
reservoir. These authors investigated existence, unique-
ness and regularity of the solution for steady and non-
stationary flows. Existence and extra regularity results
on the problem with Dirichlet boundary conditions for
a driven cavity flow was also studied by Fuchs and Sere-
gin [79,80,81] (see also [82, chap. 3]). The expected reg-
ularity of the solution of the Bingham problem is still
an open question, but it seems unreasonable to hope for
a high regularity: in specific cases, such as Poiseuille or
Couette flows, the velocity is known to have a limited
regularity across the yield surface, separating yielded
and unyielded regions.

2 Algorithms for viscoplastic models

This section starts with an historical overview, followed
by a review of the two main solution methods available in
the literature: the regularization approach and the aug-
mented Lagrangian algorithm. A review of other recent
methods completes this section.

2.1 Overview

The first numerical resolution was performed in 1972
by Fortin [75] for a flow in a pipe with a square section,
based on a nonlinear relaxation method. The augmented
Lagrangian algorithm has been introduced in 1969 by
Hestenes [94] and Powell [138]. During the 1970s, this
algorithm became popular for solving optimization prob-
lems (see e.g. Rockafellar [143]). In 1980, Glowinski [84]
and then Fortin and Glowinski [76] proposed to apply
it to the solution of the linear Stokes problem and also
to other non-linear problems, including Bingham fluid
flows. In 1980, Bercovier and Engelman [22] proposed a
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regularization approach by introducing a viscosity func-
tion. In 1987, another viscosity function was proposed by
Papanastasiou [136]. During the 1980s and the 1990s, nu-
merical computations for Bingham flow problems were
dominated by the regularization approach, perhaps due
to its simplicity, while the augmented Lagrangian algo-
rithm did not supply yet convincing results for practi-
cal viscoplastic flow applications. In 1989, Glowinski and
le Tallec [85] revisited the augmented Lagrangian algo-
rithm, using new optimization and convex analysis tools,
such as subdifferential, but no evidence of the efficiency
of this approach to viscoplasticity was showed, while reg-
ularization methods became more popular in the 1990s
with the work of Mitsoulis et al [115] and Wilson and
Taylor [183]. In 2001, Saramito and Roquet [153,144]
showed for the first time the efficiency of the augmented
Lagrangian algorithm, especially when combined with an
auto-adaptive mesh technique for capturing accurately
yield surfaces, across which the solution looses some reg-
ularity. In the 2000s, this approach became mature and
a healthy competition developed between the regulariza-
tion approach and the augmented Lagrangian algorithm.
In 2003, Vola, Boscardin and Latché [179] obtained re-
sults for a driven cavity flow with the augmented La-
grangian algorithm while Mitsoulis et al [116] presented
computations for an expansion flow with the regulariza-
tion approach. In a series of papers, Frigaard et al [123,
78,141] pointed out some drawbacks of the regulariza-
tion approach. Finally, at the end of the 2000s decade,
the augmented Lagrangian algorithm became the most
popular way to solve viscoplastic flow problems [127,61]
because of its accuracy, despite the fact that the regu-
larization approach runs in general faster. The Rheolef

library, a free software developed by one of the authors of
this review article and supporting both the augmented
Lagrangian algorithm and an auto-adaptive mesh tech-
nique, is now widely used for various flow applications
(see e.g. [140,146,181,34]).

2.2 The regularization approach

The main idea of the regularization approach is to mod-
ify the problem in order to recover standard equations.
Let ε > 0 and set

σε = 2

(
K|2D(u)|n−1 +

σ0

(|2D(u)|2 + ε2)
1
2

)
D(u)

where ε is the regularization parameter. When ε = 0,
we recover the previous constitutive equation when
D(u) 6= 0. When ε > 0, the previous relation is well-
defined, even when D(u) = 0. Next, let us define the
following viscosity function, proposed by Bercovier and
Engelman [22]:

ηε (ξ) = Kξ
n−1
2 +

σ0

(ξ + ε2)
1
2

, ∀ξ ∈ R+

0

σ0

0 γ̇ = |2D(u)|

|σε|

ε = 0
ε = 10−2

ε = 10−1

0
0 γ̇

ηε(γ̇
2)

Figure 1 Regularization for viscoplastic fluids: (left) the
stress ; (right) the viscosity.

Others variants of the viscosity function has been pro-
posed: see e.g. Papanastasiou [136], Reyes and González
Andrade [56] and also [78] for a review and comparison
of them. With this notation, the previous relation writes:

σε = 2ηε
(
|2D(u)|2

)
D(u) (4)

When ε > 0, the fluid is a quasi-Newtonian one. By this
way, there is no more division by zero when D(u) = 0
and we know efficient algorithms to solve such quasi-
Newtonian fluid flow problems (see e.g. [151, chap. 2]).
Fig. 1 plots the stress and the viscosity function ver-
sus the shear rate. Replacing the expression (4) of the
stress in (2), we obtain, together with (3), a variant
of the incompressible Navier-Stokes equations with a
non-constant viscosity: this problem can be easily im-
plemented by using any existing softwares dedicated to
the solution of the Navier-Stokes equations.

The simplest way to solve the nonlinear set of equa-
tions is the Picard fixed point method (see e.g. [1]).
For instance, combined with a Chorin pressure projec-
tion algorithm to deal with the incompressibility con-
straint and with a staggered finite difference discretiza-
tion scheme, we obtain a popular approach, the so-called
simple method, that is widely used in computational
fluid dynamics and has been used for viscoplastic fluid
flows by Syrakos et al [162]. A more sophisticated way
is the Newton method, that offers the advantage of a
quadratic convergence rate of the residual terms. It was
also investigated by several authors [26,160,56,8]. These
two nonlinear methods lead to a succession of linear sys-
tem with a very bad condition number (the ratio of the
largest eigenvalue to the smallest eigenvalue), due the
large variations of the apparent viscosity ηε. For bidi-
mensional geometries or small to medium meshes, this
linear system could be solved by a direct solver, while
iterative solvers are required for large or tridimensional
meshes. This last issue, and related preconditioning tech-
niques, has been explored recently by Grinevich and Ol-
shanskii [91] and by Aposporidis et al [8,9].

A first weakness of the regularization approach is the
lack of general convergence results of the solution with
ε, denoted as (σε,uε) of the regularized problem to the
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original solution (σ,u) when ε −→ 0. In [86, p. 370]
there is a convergence result for the velocity field uε,
in the case of the Bingham model (n = 1) and for
the one-dimensional Poiseuille flow where the domain
of computation Ω is a circular pipe section (see [188]
for some generalizations). There is no convergence re-
sults available concerning the corresponding stress de-
viator σε and, from numerical experiences, there is no
evidence that this quantity converges to the solution σ
associated to the unregularized problem [78,141]: the
velocity vector converged while decreasing ε whereas
no convergence of the stress tensor is observed. Recall
that the computation of the stress tensor is crucial for
the determination of unyielded regions, characterized by
{x ∈ Ω, |σε(x)| < σ0}. Thus, we need a point-wise con-
vergence of σε to σ when ε tends to zero. Finally, reg-
ularized models may lead to an inaccurate prediction of
unyielded regions. From (4), observe that σε involves a
product of ηε and D(uε). There is an issue in unyielded
regions, where the fluid is in rigid motion, i.e. where
D(uε) tends to zero with ε. Recall that the velocity and
its gradient are convergent with ε. In that case, as the
viscosity ηε involves a division by |D(uε)|, this viscosity
tends to infinity, their product in the expression of σε
appears as indeterminate and there is no evidence that
this product tends here to some finite value.

A second weakness of this approach is the disappear-
ance of unyielded regions when tracked as D(u) = 0.
For instance, when solving the Poiseuille flow problem
with this modified model, the velocity is not constant
anymore at the center of the pipe. For the Couette flow,
there is no motionless unyielded region anymore and the
position of the yielded surface is difficult to determine.
Finally, with this modified problem, return to rest in fi-
nite time and quiescent state [127] cannot be captured:
the flow never fully stops when the load is lower than the
critical value. The finite time decay, quiescent state and
limit load analysis can not be established clearly. The
prediction of stability of building foundations in civil
engineering or mechanical robustness of engine parts be-
comes thus problematic. Also when trying to predict
natural hazards, such as landslides, mud flows, snow
avalanches or volcanic lava flows, the disastrous event
is always predicted, as the material can never be at
the rest on a slope under gravity forces. Nevertheless,
this approach remains simple to implement in existing
codes [115,166,129] and also useful when computations
do not aim at predicting accurately either unyielded re-
gions or a quiescent state. See also the review [117] in
the present journal volume for some applications of the
regularization approach. The next paragraph presents an
alternative approach that is able to address accurately
both unyielded regions and finite time decay to a quies-
cent state.

2.3 The Augmented Lagrangian algorithm

u

L(u, p, λ)

p, λ

Figure 2 Saddle-point problem formulation of a viscoplastic
fluid flow.

In this paragraph, we consider a steady problem and the
inertia term (u.∇)u is also neglected. It is a common
assumption, as many viscoplastic flows are slow. Here,
this assumption is done without loss of generality: the
inertia term can be reintroduced, e.g. as a right-hand
side in a time-dependent algorithm, and at each time
step, there is a stationary problem to solve, as considered
in this paragraph. See e.g. [182,105] for such a simple
explicit treatment of the inertia term, and [59,126] for a
more elaborated decoupled scheme.

The stationary and inertialess viscoplastic problem can
be equivalently rewritten as the minimization of the vis-
cous energy J defined by:

J(u) =

∫
Ω

K

1 + n
|2D(u)|1+n dx+

∫
Ω

σ0|2D(u)|dx

−
∫
Ω

f .udx

under the velocity divergence-free constraint and bound-
ary conditions. Pressure represents as usual the La-
grange multiplier associated to the velocity divergence-
free constraint. Here, a new independent variable δ, sat-
isfying δ = 2D(u), is introduced. The relation δ =
2D(u) is treated as a new constraint and is imposed
with a second Lagrange multiplier denoted as σ. This
notation is coherent, as σ coincides with the stress de-
viator. The situation is as follows:

constraint Lagrange multiplier
divu = 0 p
δ = 2D(u) σ

The Lagrangian functional is defined by:

L ((u, δ), (p,σ)) =

∫
Ω

K

1 + n
|δ|1+n dx+

∫
Ω

σ0|δ|dx

−
∫
Ω

f .udx−
∫
Ω

p divudx

+
1

2

∫
Ω

σ : (2D(u)− δ) dx+
r

2

∫
Ω

|2D(u)− δ|2 dx
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Here, r > 0 is an augmentation parameter and when
r 6= 0 the Lagrangian is called the augmented La-
grangian. Then, the corresponding saddle-point problem
is equivalent to the previous minimization problem. It
is solved by a specific constant step descent algorithm
(Uzawa) with respect to the stress σ: this is the so-called
augmented Lagrangian algorithm. See e.g. [151, chap. 3]
for a recent and detailed presentation of this algorithm.

ux ux

uy

p
σxx, σyy

σxy σxy

σxy σxy

uy

puσ and γ

Figure 3 Some commonly used discretizations for the
stress-velocity-pressure mixed formulation. From top to bot-
tom: P1,disc−P2−P1 and P0−P1−P1 finite elements ; staggered
finite difference scheme.

There is mainly two methods in use for the discretization
of the continuous problem: the finite element and the
finite difference methods (see Fig. 3). Mixed finite ele-
ments were proposed by Roquet and Saramito [144] with
the Taylor-Hood P2−P1 approximation for the velocity-
pressure pair and linear discontinuous approximation of
the tensor variables (see also [146,34]). Stabilized mixed
finite elements was used by Vola et al [179,110] with the
stabilized mini-element P1−P1 for the velocity-pressure
pair and piecewise constant approximation of the tensor
variables (see also [186]). The finite difference (some-
times called finite volume) method was used by Vinay et
al [177] (see also [127,87,105,185,182]) with staggered
grids: components of velocities and tensor components
are not located at the same grid position, as shown on
Fig. 3. Recently, Muravleva and Olshanskii [125,134] ex-
plored a non-staggered finite difference scheme, where all
velocity and stress components are located at the same
grid position.

The first advantage of the augmented Lagrangian algo-
rithm is its ability to compute an accurate prediction
of yield surfaces, especially when combined with mesh

Figure 4 Flow of a viscoplastic fluid around a moving cylin-
der: zoom on the adaptive mesh (from [144]).

adaptation [153,144] (see also Fig. 4). This combina-
tion is now used for practical applications (see e.g. [180,
147]). Also, the quiescent state (limit load analysis) is
well-predicted [153,127,181]. Second advantage, the al-
gorithm reduces simply to a succession of Stokes-like
subproblems with constant viscosity coefficients: these
subproblems are easier to solve than the subproblems of
the regularized approach, with very high viscosity vari-
ations.

The main drawback of the augmented Lagrangian al-
gorithm is the computing time required to obtain the
solution: the next paragraph reviews some alternative
approaches for solving more efficiently the unregularized
viscoplastic problem.

2.4 Others unregularized approaches

While the regularization approach is relatively fast, at
least when solved by a Newton algorithm, the accurate
prediction of yielded surfaces could be problematic [78,
61]. Conversely, the augmented Lagrangian algorithm
is able to predict accurately the location of yield sur-
faces [144] but its computing time is generally larger.
Except the augmented Lagrangian algorithm, in the 20th
century, few unregularized approaches were known [23,
163] and were only valid for a very limited range of appli-
cations. Recently, several attempts have been proposed
to design fast and accurate algorithms for the resolution
of the unregularized viscoplastic problem.

In 2010, Reyes and González Andrade [54,55] pro-
posed a semi-smooth Newton algorithm combined with a
Tikhonov regularization of the problem. Nevertheless, a
few years later [56, p. 44], this approach has been found
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to be equivalent to a new variant of the regularization ap-
proach, as presented in section 2.2. The existence of com-
mercial libraries dedicated to large optimization prob-
lems has been explored in 2015 by Bleyer et al [30]. The
authors claimed that their approach ”does not require
any regularization of the viscoplastic model”, despite the
fact that the used commercial library is based internally
on an interior point method, i.e. a Newton method on
a regularized problem combined with a continuation on
the regularization parameter (see e.g. [35, chap. 11]). Fi-
nally, the point-wise convergence of the stress tensor and
the related accuracy of unyielded regions predicted by
this approach have not yet been addressed.

In 2014, Aposporidis et al [9] proposed a Picard fixed
point algorithm for a new reformulation of the unregu-
larized viscoplastic problem. At each iteration, the lin-
ear system is solved by an iterative solver and the solver
is accelerated by an efficient preconditioning technique
based on a regularization of the reformulated problem.
In 2015, Chupin and Dubois [47] proposed a Chorin-like
projection scheme combined with a Picard fixed point
algorithm. In 2015, Treskatis et al explored an accelera-
tion of the augmented Lagrangian algorithm [168] based
on the fast iterative shrinkage-thresholding algorithm
(fista).

One of the most efficient algorithms to solve nonlinear
problems is the Newton method, due to its super-linear
convergence properties. Applying the Newton method to
the unregularized viscoplastic problem leads to a singu-
lar Jacobian matrix. This difficulty has been recently ad-
dressed by using the trusted region algorithm [167], that
regularizes the Jacobian matrix but loses the superlinear
convergence of the method. In 2016, Saramito [152] ad-
dressed directly the singularity of the Jacobian matrix
in the Newton method in order to preserve the superlin-
ear convergence. Fig. 5 plots the residue of the equations
versus the computing time: observe the spectacular im-
provement of convergence for the solution of an unregu-
larized viscoplastic problem.

Table 1 summarizes these various recent approaches and
compares them in terms of their asymptotic convergence
rate: there is actually three classes of algorithms for the
unregularized problem. The more classical approach, the
augmented Lagrangian, shows a polynomial convergence
rate of the residual term rn ≈ n−α where n is the itera-
tion number and α is a constant. Plotting r versus n in
log-log scale, as on Fig. 5, shows an asymptote with slope
α ≈ 0.9. The fista acceleration [168] replaces α by 2α
while the convergence remains polynomial. Both Picard
fixed point [9] and trust-region [167] methods improve
this asymptotic convergence as rn = exp(−αn). The
most efficient algorithm is certainly the Newton one [152]

with a quadratic convergence rn = α (rn−1)
2

(see also
Fig. 5).

10−10

10−5

1

10−1 1 10 102 103

residue

0.9

tcpu(sec.)

augmented Lagrangian
Newton

Figure 5 Comparison between the Newton method and
the augmented Lagrangian algorithm (AL) for the Herschel-
Bulkley viscoplastic problem (from [152]).

3 Extensions of the model

This section reviews various extensions of the conven-
tional viscoplastic Bingham and Herschel-Bulkley mod-
els. Many viscoplastic fluids slips at the wall with a
yield slip and corresponding slip models share some
analogies with yield stress models (paragraph 3.1). Mod-
els with non-constant yield stress and consistency co-
efficients that depend on shear rate and pressure are
commonly used for granular models (paragraph 3.2).
Thixotropy (paragraph 3.3) suppose also a dependence
of these coefficients on a material field, thermal effects
(paragraph 3.4) introduce a dependence on tempera-
ture, while mixtures use a dependence on volume frac-
tion (paragraph 3.5). Tacking into account the elastic-
ity of the material leads to elastoviscoplastic models
(paragraph 3.6). Finally, Shallow-flow approximations
are commonly used for environmental and industrial ap-
plications when the vertical/horizontal aspect ratio of
the flow is small (paragraph 3.7).

3.1 Yield slip boundary conditions

Slip occurs in the flow of two-phase systems, such as
polymer solutions, emulsions, and particle suspensions,
because of the displacement of the disperse phase away
from solid boundaries. There is, close to the wall, a thin
layer of fluid of lower viscosity than that of the bulk
material, so that the shear amplitude is much larger in
this layer than in the rest of the flow domain. This phe-
nomenon appears to be more pronounced when the ma-
terial possesses a yield stress, such as pastes. In practical
viscoplastic flow problems such as concrete pumping, it
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efficiency convergence rate methods and contributors

slow power-law rn = n−α augmented Lagrangian [144] ; fista [168]

medium linear rn = exp(−αn) Picard fixed point [9] ; trust-region [167]

fast quadratic rn = α (rn−1)2 Newton [152]

Table 1 What is fast and slow ? Asymptotic convergence of various unregularized algorithms.

Figure 6 Slip at the wall for a pipe flow of a Bingham fluid
with a square section (from [145]).

also seems that a no-slip boundary condition is not a
satisfactory model. The fluid slips when the tangential
stress exceeds a critical value σs, called the yield slip,
and, otherwise the fluid sticks to the wall. This critical
value may be considered as an intrinsic characteristic of
the material and its relation to the wall. The slip bound-
ary condition at the wall reads:

u.n = 0

σnt = −cfut − σs
ut

|ut|
when ut 6= 0

|σnt| 6 σs when ut = 0

where ut = u− u.n denotes the tangential velocity,
σnt = σn− σnn.n is the shear stress, σnn = (σn).n
the normal stress, n the outward unit normal at the wall,
and cf > 0 is a friction coefficient. We observe that for
σs = 0, we obtain the classical linear slip boundary con-
dition: the fluid slips for any non-vanishing shear stress.
For σs > 0, boundary parts where the fluid sticks can
be observed. As σs becomes larger, these stick regions
develop.

Observe the analogy between the yield slip equation and
the yield stress fluid constitutive equation (1). This anal-
ogy has been exploited in 1991 by A. Fortin et al [74],
who proposed an augmented Lagrangian algorithm for
yield slip at the wall. In 2008, Roquet and Saramito [145]
applied a similar approach to the Poiseuille flow of a vis-
coplastic fluid with a square cross section (see Fig. 6).
Five flow regimes were identified in a master curve: full
slip, full stick, partial slip and stick at the wall, block
translation and stopped material.

In 2014, Damianou et al [51] investigated the time-
dependent problem and the stopping time for a Poiseuille
flow with a circular [51] or square [50] cross section with
yield slip at the wall by using the regularization approach

for both the viscoplastic model and the yield slip equa-
tion [49].

3.2 Models for dense granular material

Figure 7 Comparison between the µ(I) continuum model
(red line) and contact dynamics simulations (grains) for a
column collapse (initial and final state). The grains are col-
ored in the initial heap, which allows one to track the dis-
placement (from [108]).

Early concepts to explain the behavior of granular flows
were introduced in 1954 by Bagnold [11], who identified
many of the features of granular media. At the begin-
ning of the 20th century, from the collective work of the
French research group GDR milieux divisés [114,104],
emerged for the first time a constitutive equation for the
flow of dense dry granular materials, considered as a liq-
uid. The deviatoric part σ of the Cauchy stress tensor
is expressed by

σ = 2 ηapp(p, |2D(u)|) D(u)

where the apparent viscosity ηapp depends on the pres-
sure p and the shear rate γ̇ = |2D(u)| as

ηapp(p, γ̇) =
µ(I) p

γ̇
, µ(I) =

µsI0 + µdI

I0 + I
and I =

d γ̇√
p/ρ

The inertial number I represents the square root of the
Savage [154] or Coulomb [7] number while I0 is a dimen-
sionless number, d is the grain diameter and µd > µs are
frictions parameters for large and small I, respectively.
This constitutive equation, often called µ(I)-rheology,
extended previous ideas introduced by Savage and Hut-
ter [154,155] and Ancey et al [7]. The µ(I)-rheology, was
first used in numerical simulations in 2011 by Lagrée et
al [108]: these authors compared the solution with re-
sults of two-dimensional contact dynamics discrete sim-
ulations for the granular column collapse benchmark (see
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Fig. 7) and concluded that the constitutive equation is
able to describe accurately the collapse for a large range
of aspect ratios of the column. The unbounded apparent
viscosity when D(u) tends to zero was treated by bound-
ing it numerically and the whole system was solved by a
Chorin’s like decoupled projection algorithm. Chauchat
and Médale [39,40] proposed a regularization approach,
inspired by those of Bercovier and Engelman [22] for
the Bingham model, and then solved the whole sys-
tem by a Newton algorithm. Following Bleyer et al [30],
Daviet and Bertails-Descoubes [53], for solving the µ(I)
model, used recently the interior point algorithm (i.e.
a Newton method for a regularized problem combined
with a continuation on the regularization parameter,
see [35, chap. 11] and comments section 2.4). In 2015,
Ionescu et al [103] addressed for the first time the un-
regularized µ(I) model and proposed an augmented La-
grangian algorithm, extending those presented in [144]
for the Bingham model. These authors observed that the
µ(I)-rheology coincides with an extension of the Bing-
ham model (1) with non-constant viscosity and yield
stress coefficients:

σ = 2 η(p, |2D(u)|)D(u) + σ0(p)
2D(u)

|2D(u)| if |D(u)| 6= 0

|σ| 6 σ0(p) if |D(u)| = 0

with

σ0(p) = µsp and η(p, γ̇) =
(µd − µs)p
I0
√
p

d
√
ρ

+ γ̇

Note that a simplified pressure-dependent (Coulomb-
like) yield stress model is the Drucker-Prager model [64]:

σ0(p) = σ0 + µsp and η(p, γ̇) = η0

where σ0 and η0 are constants. Ionescu et al [103] found
that the µ(I)-rheology and Drucker-Prager models give
very similar results for the granular column collapse
benchmark. Simultaneously, in 2015, Barker et al [16]
showed that the µ(I) model could be mathematically ill-
posed in some cases and then could develop Hadamard
instabilities. In 2016, these authors proposed a well-
posed variant [17]:

µ(I) =
µsI0 + µdI + αI2

I0 + I

where α > 0 is a stabilization parameter.

3.3 Thixotropy

The literature on thixotropic materials is extremely vast,
but every thixotropic material is not necessarily a vis-
coplastic material and some of them are purely vis-
cous. Cement slurries, drilling muds, cosmetics and per-
sonal care products, waxy crude oils, fire fighting foams

are among many examples of thixotropic viscoplastic
materials. Viscoplasticity is often related to a particu-
lar micro-structure of the material: jamming, colloidal
forces, soft chemical bonds, fibers orientation, etc. This
micro-structure evolves over short times to breakdown
when the material is subjected to a certain stress or
strain load [45,88,18,124,48,135]. Conversely, it evolves
over long times to recovery when left to rest. This micro-
structure is generally described by a scalar field, denoted
λ, that indicates the level of structuring of the mate-
rial [97,57,58]. A zero value represents a fully broken
down material and a value of 1 or +∞, depending on
the model, represents a fully structured material. In the
vast majority of models, the yield stress σ0 is a function
of the field λ and hence evolves with time and stress or
strain rate.

In the late 50s, Moore [119] suggested an unsteady
advection-reaction equation for the structure field λ,
that covers a wide range of thixotropic materials. Moore
depicted the material micro-structure as composed of a
number of links with the rheological behavior of the ma-
terial a function of the number of links formed. Moore
interpreted the structure field λ as the ratio of formed
links to the total number of potential links. Hence when
λ = 0, all links are destroyed and when λ = 1 all links are
formed. In the popular Houska model [97] (see also [60,
182,87]), the reaction term comprises a shear rate de-
pendent breakdown term and a recovery term:

∂λ

∂t
+ u.∇λ = a(1− λ)− bλγ̇m

where λ takes its values in [0, 1] and γ̇ is the generalized
shear rate. Also, a, b and m are the three experimen-
tally measurable constants of the model. Note that a
has the dimension of the inverse of time, thus 1/a rep-
resents the time scale of recovery. In many models, re-
covery is associated to Brownian rearrangement of the
micro-structure. Here, m is a power-law index. When
m = 1, b represents the magnitude of shear induced
structure breakdown and is dimensionless. Other mod-
els as e.g. [65,66], may include a shear induced recovery
but are conceptually very similar as far as the advection-
reaction equation for the structure field is concerned.
Following Moore, consistency and yield stress of the ma-
terial are function of the structure field λ. For instance,
Houska [97] suggested a linear dependence as follows:

K = K̄0 + λK̄1 and σ0 = σ̄0 + λσ̄1

where K̄0 and σ̄0 denote consistency and yield stress
of the fully broken down material, respectively, and
K̄0 + K̄1 and σ̄0 + σ̄1 denote consistency and yield
stress of the fully recovered material, respectively.
The Houska model contains thus seven parameters
(a, b,m, K̄0, K̄1, σ̄0 and σ̄1) that are all measurable ex-
perimentally [38,92].
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Note that the main issue in solving a thixotropic vis-
coplastic flow problem arises from the two-way coupling
of the momentum conservation equation and the con-
stitutive equation via the λ equation: the momentum
conservation with u depends on λ through K and σ0
and λ depends on u through the advection term u.∇λ
in the equation above. In 2009, Wachs et al [182,87]
solved this coupled time-dependent set of equations by
a decoupled approach, where the reaction term is treated
explicitly, i.e. at the previous time step. Each time step
reduces to an explicit computation for λ and a station-
ary viscoplastic subproblem. When the micro-structural
changes do not occur too fast, this approach allows large
time steps, otherwise the time step should be decreased
as the scheme is conditionally stable. When solving the
stationary viscoplastic subproblem with an augmented
Lagrangian algorithm, it is conceivable to also update λ
during iterations without loosing the usual robust con-
vergence properties. In 2011, Negrão et al solved this
coupling by a combination of semi-explicitness and New-
ton algorithm [128].

1

10−1

10−2

10−4 10−210−3 10−1 1

Bd

no restart zone

restart zone

χ∗

Figure 8 Combined effects of thixotropy and compress-
ibility for the restart of the weakly compressible flow in a
pipeline filled with a viscoplastic and thixotropic material
(from [182]). The Bingham number is set to a value larger
than the classical restart limit. χ∗ and Bd are dimensionless
numbers for compressibility and thixotropy, respectively.

Among the various flow configurations of interest to the
viscoplastic community, the start up flow of a thixotropic
and viscoplastic material in a pipe has received a signif-
icant attention (see [158,37,182,87,128,3] and the ref-
erences therein). In fact, it is representative of the in-
dustrial problem of restarting the flow of a waxy crude
oil in a pipeline, a major and costly issue for oil and gas
companies. Combined to additional weakly-compressible
effects, the flow exhibits different mechanisms to restart.
In particular, compressibility combined to thixotropy en-
able the flow to restart and recover steady flowing con-
ditions for a pressure drop lower than the classical esti-
mate derived from a simple force balance, a remarkable

property. The ability to restart can hence be mapped in
a compressibility number-thixotropy number space, as
illustrated in Fig. 8 and explained in [182].

3.4 Thermal effects

Viscoplastic fluid flows with heat transfer lead to a
rich variety of flow patterns and unconventional dynam-
ics. From the early ages of viscoplastic fluid flows, re-
searchers got interested in heat transfer for obvious prac-
tical reasons in industrial processes and flows. Some of
the earliest references on an analytical work on heat
transfer in Bingham fluid flows dates, to the best of our
knowledge, from the late 50s [156,184,67,46]. Assuming
the Boussinesq approximation ρ = ρ0(1− β(Θ −Θr))
holds, the most general non-isothermal viscoplastic fluid
flow problems reads as follows:

σ = 2K(Θ) |2D(u)|n−1D(u)

+σ0(Θ)
2D(u)

|2D(u)| if |D(u)| 6= 0

|σ| 6 σ0(Θ) if |D(u)| = 0

ρ0Cp

(
∂Θ

∂t
+ (u.∇)Θ

)
− div k∇Θ − σ :D(u) = 0

ρ0

(
∂u

∂t
+ (u.∇)u

)
− divσ +∇p = −ρ0gβ(Θ −Θr)

divu = 0

with suitable initial and boundary conditions. Here, Θ
denotes the temperature field, ρ0 the reference density
at the reference temperature Θr, Cp the heat capacity, k
the thermal conductibility and β the thermal expansion
coefficient at constant pressure.

Thermal effects as a result of significant temperature
gradients manifest in a fluid flow with a growing level
of complexity depending on the dependence or indepen-
dence of material properties with temperature as follows:

i) consistency K, yield stress σ0 and density ρ are inde-
pendent of temperature. The heat transfer regime is
forced convection. The specificity of viscoplastic heat
transfer stems from the convection term in the en-
ergy equation as the convecting velocity field is a vis-
coplastic velocity field. Momentum and energy con-
servation equations are one-way coupled only [131,
31],

ii) consistency K, yield stress σ0 and density ρ are still
independent of temperature but temperature gradi-
ents develop in the flow as a result of energy dissipa-
tion [156]. This is also referred to as viscous heating
or heat generation. This situation has not received
a large attention in the literature although it should
lead to interesting temperature distribution. In fact,
in a yield stress fluid flow, unyielded regions, by defi-
nition, do not dissipate energy, as D(u) = 0 in these
regions,
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iii) consistency K or yield stress σ0 are temperature-
dependent. The heat transfer regime is forced con-
vection but now momentum and energy conserva-
tion equations are two-way coupled through the tem-
perature dependence of the constitutive equation.
In particular, the spatially variable yield stress as a
function of temperature distribution can disturb the
shape of yield surfaces [177,87],

iv) density ρ is temperature-dependent but this depen-
dence is assumed to be weak such that the Boussi-
nesq approximation is valid. The heat transfer regime
is free (also called natural) convection over which an
additional buoyancy term in the momentum equa-
tion drives motion [187,174,175,176,171,172,130,98,
105]. Unsteady buoyancy-driven flows of a viscoplas-
tic material can lead to a very unusual and remark-
able intermittent behavior [106].

In the aforementioned papers, a decoupled semi-explicit
scheme is proposed for the time-dependent problem, i.e.,
at tn+1:

1. solve the momentum equation with Θn = Θ(tn),
2. solve the energy equation with un+1 = u(tn+1).

Vinay et al [177] proposed a fully explicit loose-coupling
scheme (see also [87,105,106]) while Huilgol and Kefay-
ati developed an operator splitting scheme [98]. The re-
sulting schemes are conditionally stable and the time
step should be chosen small enough for the scheme to
converge accurately. Although this scheme is sufficient
for most applications, it is possible to develop an un-
conditionally stable scheme. In 2010, Turan et al [171,
172] propose a fully implicit time-dependent scheme with
an inner fixed point loop. Note also that for computing
the steady-state solution only, it is interesting to avoid
a long time evolution of a time-dependent problem. In
that case, strongly coupled schemes with an inner loop
of fixed-point or Newton methods are particularly well
suited.

Two problems have received a broad attention from the
community: (i) heat transfer from an obstacle in a vis-
coplastic fluid flow [131,130,31] and (ii) natural convec-
tion in a differentially heated cavity [174,175,176,171,
172,98,105,106]. The former problem is relatively sim-
ple and has been investigated mostly for steady-state
flows with a regularization approach. It may however
lead to intricate boundary layer problems and provides
industrially valuable correlations of the Nüsselt number
(dimensionless heat transfer coefficient) as a function of
Reynolds and Bingham numbers. The latter problem is
richer by essence and exhibits the usual unique features
of a viscoplastic flow, i.e., existence of a critical Bingham
Bcr for flow onset and finite time decay for Bingham
number B 6 Bcr. This problem has been investigated
both with a regularization method [174,175,176,171,
172] and with an augmented Lagrangian algorithm [98,

Figure 9 Thermal plumes in a locally heated natural con-
vection flow of a Bingham fluid in a cavity (from [106]). (a-
d) time evolution of dimensionless velocity magnitude and
yielded surface as a white line ; (e-h) dimensionless temper-
ature. Flow is heated from a narrow zone at the left of the
bottom wall, left wall is a symmetry wall, other walls are
solid walls.

105,106]. These works all qualitatively agree with each
other, although discrepancies exist in the definition and
the value of Bcr. In a recent paper, Karimfali et al [105]
determined Bcr from augmented Lagrangian simulations
and showed that this computed value matches the ana-
lytically derived conductive limit. They also proved finite
time decay and unconditional stability of the static limit,
both analytically and computationally. Slightly chang-
ing the boundary conditions of the problem by heating
the bottom wall locally leads to intricate intermitten-
cies called thermal plumes for specific ranges of B and
other dimensionless numbers, observed both at the ex-
perimental level [52] and at the simulation level [106],
and illustrated in Fig. 9.

Finally, very few simulation works investigated a
temperature-dependent yield stress fluid flow problem
and reported the effect of a spatially variable yield stress
on the convergence of the selected solution algorithm
(regularization or augmented Lagrangian). In [177] and
Fig. 10, the convergence of the augmented Lagrangian
algorithm is plotted as a function of the imposed tem-
perature difference in the flow, which in turn indicates
the amplitude of yield stress variations over the flow do-
main. It is quite obvious that the convergence rate is
markedly affected.
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Figure 10 Convergence of the augmented Lagrangian al-
gorithm as a function of the imposed temperature difference
∆Θ in the flow in a temperature-dependent yield stress fluid
flow in a pipeline (from [177]). The higher ∆Θ is, the larger
the amplitude of spatial variations of yield stress in the flow
domain.

3.5 Two-phase flows

Many complex fluids also exhibit multiple phases, both
in nature and in industry as e.g. bubbly flows, multi-layer
flows and particle-laden flows. Restricting the scope to
two phases only, flows of interest can be classified into
two families: (i) fluid/fluid flows either liquid/liquid or
gas/liquid, and (ii) fluid/solid flows. Even if the fluid
phase (respectively two fluid phases) is (respectively are)
Newtonian, handling the co-existence of two phases in
the flow require a particular numerical treatment.

The most popular numerical modeling for fluid/fluid
flows are arbitrary Lagrangian-Eulerian/mesh de-
forming methods [83,164,4] volume-of-fluid [95,5,96,
169,112], level set [161,159,129] or front track-
ing [173,178]. For fluid/solid flows there are arbitrary
Lagrangian-Eulerian/mesh deforming methods [83],
lattice-Boltzmann [107,139], immersed boundary [118]
and fictitious domain with distributed Lagrange multi-
plier [185,181].

Similarly to the case of thixotropy or thermal effects,
semi-implicit and decoupled scheme are deemed to be
sufficient to compute solutions of satisfactory accuracy
for many applications. This is probably true for flow con-
figurations with an imposed external motion but more
questionable to compute finite time decay and limit of
stationary flows. In the case of suspensions and emul-
sions, if a force balance has to be solved for the mo-
tion of each individual droplet, bubble or particle, de-
coupled schemes might not be sufficient. In fact, it has
been recently emphasized for the case of a single rigid
particle settling in a yield stress fluid that a more so-

phisticated solution algorithm of the implicit or at least
semi-implicit type is required to properly compute finite
time decay and critical Bingham number beyond which
motion is fully suppressed [181].

Multi-layer and displacement flows have received a lot of
attention in the literature in relation to their broad scope
of applications in industry as e.g. well drilling and ce-
ment slurry placement in oil and gas [164,5,96] or mold-
ing in polymer processing [62]. Hormozi et al [96] in-
vestigate the stability of multi-layer viscoplastic channel
flows and establish the stability properties of the flow.
They are then capable of writing stable complex shapes
of Newtonian fluid injected in a Bingham channel flow
and advected along the channel. Note that these com-
putations are performed with a decoupled scheme and a
volume-of-fluid method.

Figure 11 Original flow features characterized by free sur-
face undulations and stress invariant zigzag pattern at the
foot of a slender slumping column made of a viscoplastic ma-
terial (from [112]).

A second class of problems that motivated various nu-
merical works is free-surface flows as slumping flows (and
in particular dam breaks, see also Section 3.2) and ex-
trusion flows. Slumping flows are model problems rele-
vant of a large range of geophysical applications [112]
as well as industrial processes [178,4]. In dam breaks,
contrary to a Newtonian fluid that should theoretically
slump infinitely if surface tension is neglected, viscoplas-
tic materials stop at a finite run-out distance. This has
important implications for hazard assessment (landslides
and avalanches) and industrial safety (spill of a contami-
nated or dangerous fluid). Both in [178] and [112], a sim-
ple decoupled scheme is deemed to perform well. Fig. 11
illustrates the original flow features unveiled by numer-
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ical simulations of Liu et al [112] of a slender slumping
column made of a viscoplastic material.

The third class of problems that has been extensively
studied over the past 20 years is the gravity-driven mo-
tion of dispersed droplet/bubble or solid particle in an
otherwise quiescent yield stress fluid [144,131,130,31,
159,170,139,61,169,113,181]. Actually, numerical works
can be sorted into two sub-categories: (i) methods that
really treat freely-moving droplet/bubble or solid par-
ticle, and (ii) methods in which the problem is formu-
lated in the droplet/bubble/particle frame of reference
or as the flow past a motionless droplet/bubble/particle.
Methods of the former sub-category can be applied
to single droplet/bubble/particle flows or steady multi-
droplet/bubble/particle flows while methods of the lat-
ter sub-category are more general. For instance, the
flow past a fixed obstacle has been extensively stud-
ied as a model problem for suspension flows [20,29,
189,144,131,130,31] and has provided some valuable
insight into dimensionless drag and heat transfer co-
efficients and the shape of unyielded regions around
the droplet/bubble/particle. The freely moving multi-
droplet/bubble/particle problem has not been examined
yet from a computational viewpoint, although novel re-
sults were recently published on the accurate modeling of
finite time decay in the single-particle case (see Fig. 12).
With the convergence rate of solution algorithms cur-
rently available to solve viscoplastic fluid flows (both reg-
ularization and augmented Lagrangian), the computing
cost associated to the solution of a viscoplastic fluid flow
with multiple freely moving droplets/bubbles/particles
is yet too prohibitive, even on massively parallel super-
computers.

3.6 Elastoviscoplastic models

The viscoplastic constitutive equation (1) writes equiv-
alently (see e.g. [149] or [151, chap. 5]):

max

(
0,
|σ| − σ0
K|σ|n

) 1
n

σ = 2D(u)

In 2007, Saramito [149,150] proposed to take into accout
the elasticity of the material with a time-dependent con-
stitutive equation:

1

G

2
σ + max

(
0,
|σ| − σ0
K|σ|n

) 1
n

σ = 2D(u) (5)

where G is the elastic modulus and
2
σ denotes the

Gordon-Schowalters derivative [89], which is a general-
ization of the frame-invariant Oldroyd derivative [133] of
the tensor σ:

2
σ =

∂σ

∂t
+ (u.∇)σ −W (u)σ + σW (u)

− a (D(u)σ + σD(u))

where W (u) = (∇u−∇uT )/2 is the vorticity tensor
and a ∈ [−1, 1] is a parameter of the derivative.

This model has been first used for liquid foam by Ched-
dadi et al for Couette flows [44,43] and flows around a
cylinder [42]. The set of equations is solved by a sec-
ond order in time operator splitting scheme [41], the
so-called θ-scheme [148], previously developed for vis-
coelastic fluid flow problems. Fig. 13 shows that there is
very good quantitative agreement between calculations
and experiments: the model captures quantitatively the
fore-aft asymmetry and the overshoot of the velocity af-
ter the obstacle, located at x = 0. This overshoot of the
velocity is often called the negative wake, in the con-
text of a moving obstacle in a yield stress material at
rest (i.e. ux is then replaced by −ux). Observe also on
Fig. 13, that the Bingham model always predicts a fore-
aft symmetry and no overshoot of the velocity: this is in
disagreement with experimental observations on several
yield stress materials such as liquid foams and carbopol
solutions. Fraggedakis et al [77] obtained a quantitative
agreement between experiments with carbopol solutions
around an obstacle and numerical simulations with the
elastoviscoplastic model (5): loss of the fore-aft symme-
try and formation of the negative wake.

In 2010, a regularized approach for solving the elastovis-
coplastic model (5) was proposed by Park and Liu [137]
and results were compared to carbopol experiments for
an oscillatory pipe flow. Comparisons between elasto-
viscoplastic model predictions and experiments in large
amplitude oscillatory shear (LAOS) were performed by
McKinley et al [69,63]. In 2011, Belblidia et al [21] also
combined the elastoviscoplastic model (5) with a reg-
ularization approach and performed computations in a
contraction-expansion geometry. Souza-Mendes [57,58]
combines both a regularized approach of viscoplasticity
with elasticity and thixotropy (see section 3.3).

3.7 Shallow-flow approximations

Time-dependent three-dimensional simulations of free
surface flows are motivated by industrial and environ-
mental applications, e.g. for the numerical prediction of
many natural hazards, such as avalanches, landslides,
volcanic lava, mud or debris flows (see also Section 3.2
and Section 3.5). Generally, there is a large ratio be-
tween the two horizontal scales and the flow height,
and this would require very large meshes. The develop-
ment of reduced viscoplastic models for shallow flows is
a less prohibitive computational cost approach: a three-
dimensional problem reduces to a two-dimensional prob-
lem and the free surface is directly handled by a height
field that appears as an additional unknown in the re-
duced model.

For Newtonian fluids, this problem was first motivated
by hydraulic engineering applications. In 1887, Barré
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Figure 12 Return to rest in finite time for a rectangular particle settling in a viscoplastic material (from [181]). The
fluid/particle system has been initially assigned a Newtonian motion and the yield stress increase abruptly from 0 to a value
beyond the stationary limit. Blue regions are unyielded regions.
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Figure 13 Flow around a circular obstacle, velocity along
the axis (from [42]). Comparison between Bingham model
(dashed line), elastoviscoplastic model (solid line) and liquid
foam experiment (closed squares)

de Saint-Venant [19] introduced the shallow water ap-
proximation for fast Newtonian flows, driven by iner-
tia terms while viscous effects are neglected. More re-
cently, in 1982, Huppert [99] investigated slower New-
tonian flows and the effect of viscous terms heuristi-
cally, neglecting inertia terms, stating that the flow is lo-
cally one dimensional and invoking the depth-integrated
mass conservation equation, in order to get a nonlin-
ear equation of the free-surface height. The technique
has been revisited with the more general asymptotic ex-
pansion method: it leads to the same governing equa-
tion at zeroth expansion order, but provides a more gen-
eral theoretical framework for the derivation of reduced
models. But only the more complex non-Newtonian case
approaches the complexity of both manufacturing pro-
cesses (concretes, foods) and environmental applications.
Concerning slow Bingham fluids, shallow-flow approxi-
mations were first studied in 1990 by Liu and Mei [111],

based on a rigorous asymptotic expansion. The Liu and
Mei approach was revisited in 1999 by Balmforth and
Craster [13] and extended [12] to the axisymmetric case,
with application to volcanic lava domes. At the begin-
ning of the 21th century, this approach became mature:
see [14,6] for some reviews on this subject during this
period. Since 2010, many new ideas were developed in
several directions: let us review them.

For granular materials, and based on an heuristic deriva-
tion, Savage and Hutter [155] developed reduced mod-
els. These ideas were revisited in 2014 by Gray and Ed-
wards [90] with a depth-averaged version of the µ(I)-
rheology. In 2016, Fernández-Nieto et al [71] extended
this shallow model as a multi-layer model that allows to
compute three-dimensional profiles of the velocity in the
directions along and normal to the slope [10].

For fast flows, such as debris and mud flows on mountain
slopes, Laigle and Coussot [109,142] derived in 1997 a re-
duced model, with both inertia and viscoplastic effects.
Viscoplastic effects are estimated from the friction at
the bottom. In 2009, assuming a compressible material,
Bresch et al [36,2] derived a reduced viscoplastic model
that also includes inertia effects, and the set of equa-
tions was solved by an augmented Lagrangian algorithm.
This approach was next revisited in the incompressible
case in terms of asymptotic analysis [72,73]. In 2010,
Ionescu [100] proposed an augmented Lagrangian algo-
rithm for the shallow incompressible viscoplastic model
with inertia terms.

While most computations were performed on uniform
slopes, practical predictions of natural hazard require to
take into account general tridimensional and complex
topographies (see e.g. [24]). In 2003, Bouchut et al [32,
33] proposed a new approach for topography in shal-
low flow models, that relaxed most restrictions, such as
slowly varying topographies (small curvatures). In 2013,
Ionescu [101,102], considering Bingham and Drucker-
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Prager models, extended this approach with an elegant
formulation based on surface differential operators (sur-
face gradient and divergence) and also included iner-
tia effects. In 2014, Fernández-Nieto [70] studied well-
balanced schemes with wet or dry fronts for a viscoplas-
tic model with both topography and inertia effects.

Figure 14 Shallow-flow simulation of the volcanic lava flow
predicted flow final deposit represented over the topography,
with a color map showing the flow height h (from [25]). The
contour of the observed deposit zone provided by the Volcano
Observatory of Piton de la Fournaise is represented by a thin
white line.

Shallow viscoplastic models with thermal coupling was
studied by Balmforth et al [15] for lava domes and by
Bernabeu et al [25] for lava flows on complex tridimen-
sional topographies (See Fig. 14).

Conclusion

Viscoplastic models are widely used in science and en-
gineering to investigate the flow dynamics of fluids with
a yield stress. We have presented an extremely large va-
riety of simulation results: many flow geometries, with
slip at the wall, with heat transfer, with thixotropy, with
elasticity, with multiple phases and for shallow flows.
The corresponding rich phenomena observed in these
flows are fascinating from a physical viewpoint.

From the simple Bingham model to the most ad-
vanced extensions that include temperature dependence,
thixotropy or elasticity below the yield stress, the main
challenge in numerical simulation remains the treat-
ment of the non-smoothness of the Bingham or Herschel-
Bulkley viscoplastic constitutive equation. Hence, the
current research direction still pertains to developing
new algorithms for the solution of the viscoplastic flow

problem with a smaller computational cost while main-
taining an accurate description of yield surfaces, at
least as accurate as those provided by the augmented
Lagrangian algorithm. The revival of augmented La-
grangian methods over the past 10 years and the progres-
sive recognition that they are more accurate than regu-
larization has created a new interest of the viscoplastic
community to compute more reliable viscoplastic flow so-
lutions. A simple multi-dimensional Bingham flow prob-
lem is a perfect toy problem to test the new family of un-
regularized approaches that has been recently suggested
in the literature: fista, Picard fixed point and Newton
methods. These different methods all show promises for
accelerated convergence, at least for flows in a simple
geometry. The next step is now to examine how they
perform in more complex geometries and if they can be
even further accelerated.

Computational scientists interested in viscoplastic fluid
flow simulations call for faster solution algorithms that
preserve the accurate resolution of yield surfaces that
the classical augmented Lagrangian method guarantees.
Combined to new advances in high performance com-
puting on large supercomputers, the milestone of three-
dimensional numerical simulation of viscoplastic fluid
flows as a standard should be attainable in the next few
years.
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Pitkäranta stabilized Galerkin scheme for creeping flows
of Bingham fluids. SIAM J. Numer. Anal., 42(3):1208–
1225, 2005.

111. K. F. Liu and C. C. Mei. Approximation equations
for the slow spreading of a thin Bingham plastic fluid.
Phys. Fluids A, 2(1):30–36, 1990.

112. Y. Liu, N. J. Balmforth, S. Hormozi, and D. R. He-
witt. Two–dimensional viscoplastic dambreaks. J. Non-
Newt. Fluid Mech., in press, 2016.

113. A. Maleki, S. Hormozi, A. Roustaei, and I. A.
Frigaard. Macro-size drop encapsulation. J. Fluid
Mech., 769:482–521, 2015.

114. GDR Midi. On dense granular flows. Eur. Phys. J. E,
14(4):341–365, 2004.

115. E. Mitsoulis, S. S. Abdali, and N. C. Markatos. Flow
simulation of Herschel-Bulkley fluids through extrusion
dies. Can. J. Chem. Engrg., 71:147–160, 1993.

116. E. Mitsoulis and R. R. Huilgol. Entry flows of Bing-
ham plastics in expansions. J. Non-Newt. Fluid Mech.,
122:45–54, 2004.

117. E. Mitsoulis and J. Tsamopoulos. Numerical simula-
tion of complex yield stress fluid flows. Rheol. Acta,
submitted, 2016.

118. R. Mittal and G. Iaccarino. Immersed boundary meth-
ods. Annu. Rev. Fluid Mech., 37:239–261, 2005.

119. F Moore. The rheology of ceramic slips and bodies.
Trans. British Ceramics Soc., 58:470–494, 1959.

120. P. P. Mosolov and V. P. Miasnikov. Variational methods
in the theory of the fluidity of a viscous-plastic medium.
J. Appl. Math. Mech., 29(3):545–577, 1965.

121. P. P. Mosolov and V. P. Miasnikov. On stagnant flow
regions of a viscous-plastic medium in pipes. J. Appl.
Math. Mech., 30(4):841–853, 1966.

122. P. P. Mosolov and V. P. Miasnikov. On qualitative sin-
gularities of the flow of a viscoplastic medium in pipes.
J. Appl. Math. Mech., 31(3):609–613, 1967.

123. M. A. Moyers-Gonzalez and I. A. Frigaard. Numerical
solution of duct flows of multiple visco-plastic fluids. J.
Non-Newt. Fluid Mech., 127:227–241, 2004.

124. A. Mujumdar, A. N. Beris, and A. B. Metzner. Tran-
sient phenomena in thixotropic systems. J. Non-Newt.
Fluid Mech., 102:157–178, 2002.

125. E. Muravleva and M. A. Olshanskii. Two finite-
difference schemes for calculation of Bingham fluid flows



18 Pierre Saramito, Anthony Wachs

in a cavity. Russ. J. Numer. Anal. Math. Modelling,
23(6):615–634, 2008.

126. L. Muravleva. Uzawa-like methods for numerical mod-
eling of unsteady viscoplastic Bingham medium flows.
Appl. Numer. Math., 93:140–149, 2015.

127. L. Muravleva, E. Muravleva, G. C. Georgiou, and
E. Mitsoulis. Numerical simulations of cessation flows
of a Bingham plastic with the augmented Lagrangian
method. J. Non-Newt. Fluid Mech., 165:544–550, 2010.

128. C. O. R. Negrão, A. T. Franco, and L. L. V. Rocha.
A weakly compressible flow model for the restart of
thixotropic drilling fluids. J. Non-Newt. Fluid Mech.,
166(23):1369–1381, 2011.

129. K. D. Nikitin, M. A. Olshanskii, K. M. Terekhov, and
Y. V. Vassilevski. Numerical method for the simula-
tion of free surface flows of viscoplastic fluid in 3D. J.
Comput. Math., 29:605–622, 2011.

130. N. Nirmalkar, A. Bose, and R. P. Chhabra. Free convec-
tion from a heated circular cylinder in Bingham plastic
fluids. Int. J. Thermal Sci., 83:33–44, 2014.

131. N. Nirmalkar, R. P. Chhabra, and R. J. Poole. Laminar
forced convection heat transfer from a heated square
cylinder in a Bingham plastic fluid. Int. J. Heat Mass
Transf., 56(1):625–639, 2013.

132. J. G. Oldroyd. A rational formulation of the equations
of plastic flow for a Bingham fluid. Proc. Cambridge
Philos. Soc., 43:100–105, 1947.

133. J. G. Oldroyd. On the formulation of rheological equa-
tions of states. Proc. R. Soc. Lond. A, 200:523–541,
1950.

134. M. A. Olshanskii. Analysis of semi-staggered finite-
difference method with application to Bingham flows.
Comput. Meth. Appl. Mech. Engrg., 198:975–985, 2009.

135. G. Ovarlez, Q. Barral, and P. Coussot. Three-
dimensional jamming and flows of soft glassy materials.
Nature Mat., 9:115–119, 2010.

136. T. C. Papanastasiou. Flow of materials with yield. J.
Rheol., 31:385–404, 1987.

137. Y. S. Park and P. L.-F. Liu. Oscillatory pipe flows of a
yield-stress fluid. J. Fluid Mech., 658:211–228, 2010.

138. M. J. D. Powell. A method for nonlinear constraints
in minimization problems, pages 283–298. Academic
Press, London, 1969.

139. Prashant and J. J. Derksen. Direct simulations of spher-
ical particle motion in Bingham liquids. Comput. Chem.
Engrg., 35(7):1200–1214, 2011.

140. A. Putz and I. A. Frigaard. Creeping flow around par-
ticle in a Bingham fluid. J. Non-Newt. Fluid Mech.,
165(5–6):263–280, 2010.

141. A. Putz, I. A. Frigaard, and D. M. Martinez. On the
lubrication paradox and the use of regularisation meth-
ods for lubrication flows. J. Non-Newt. Fluid Mech.,
163:62–77, 2009.

142. D. Rickenmann, D. Laigle, B. W. McArdell, and
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157. T. Schwedoff. La rigidité des liquides. In Congrès Int.
Physique, Paris, volume 1, pages 478–486, 1900.

158. J. Sestak, M. E. Charles, M. G. Cawkwell, and
M. Houska. Start-up of gelled crude oil pipelines. J.
Pipelines, 6(1):15–24, 1987.

159. J. P. Singh and M. M. Denn. Interacting two-
dimensional bubbles and droplets in a yield-stress fluid.
Phys. Fluids, 20(4):040901, 2008.

160. D. N. Smyrnaios and J. Tsamopoulos. Squeeze flow
of Bingham plastics. J. Non-Newt. Fluid Mech.,
100(1):165–189, 2001.

161. M. Sussman, P. Smereka, and S. Osher. A level set ap-
proach for computing solutions to incompressible two-
phase flow. J. Comput. Phys., 114:146–159, 1994.

162. A. Syrakos, G. C. Georgiou, and A. N. Alexandrou. Per-
formance of the finite volume method in solving regu-
larised Bingham flows: inertia effects in the lid-driven
cavity flow. J. Non-Newt. Fluid Mech., 208:88–107,
2014.

https://hal.archives-ouvertes.fr/hal-01228347/document
https://hal.archives-ouvertes.fr/hal-01228347/document


Progress in numerical simulation of yield stress fluid flows 19

163. P. Szabo and O. Hassager. Flow of viscoplastic fluids
in eccentric annular geometries. J. Non-Newt. Fluid
Mech., 45(2):149–169, 1992.

164. P. Szabo and O. Hassager. Displacement of one New-
tonian fluid by another: density effects in axial annular
flow. Int. J. Multiphase Flow, 23(1):113–129, 1997.

165. R. I. Tanner and K. Walters. Rheology: an historical
perspective. Elsevier, 1998.

166. D. L. Tokpavi, A. Magnin, and P. Jay. Very slow flow
of Bingham viscoplastic fluid around a circular cylinder.
J. Non-Newt. Fluid Mech., 154(1):65–76, 2008.

167. T. Treskatis, M. A. Moyers-Gonzalez, and C. J. Price.
A trust-region SQP method for the numerical approx-
imation of viscoplastic fluid flow. submitted, 2015.
http://arxiv.org/pdf/1504.08057.pdf.

168. T. Treskatis, M. A. Moyers-Gonzalez, and C. J. Price.
An accelerated dual proximal gradient method for ap-
plications in viscoplasticity. J. Non-Newt. Fluid Mech.,
in press, 2016.

169. M. K. Tripathi, K. C. Sahu, G. Karapetsas, and O. K.
Matar. Bubble rise dynamics in a viscoplastic material.
J. Non-Newt. Fluid Mech., 222:217–226, 2015.

170. J. Tsamopoulos, Y. Dimakopoulos, N. Chatzidai,
G. Karapetsas, and M. Pavlidis. Steady bubble rise
and deformation in Newtonian and viscoplastic fluids
and conditions for bubble entrapment. J. Fluid Mech.,
601:123–164, 2008.

171. O. Turan, N. Chakraborty, and R. J. Poole. Laminar
natural convection of Bingham fluids in a square enclo-
sure with differentially heated side walls. J. Non-Newt.
Fluid Mech., 165(15):901–913, 2010.

172. O. Turan, R. J. Poole, and N. Chakraborty. Aspect ratio
effects in laminar natural convection of Bingham fluids
in rectangular enclosures with differentially heated side
walls. J. Non-Newt. Fluid Mech., 166(3):208–230, 2011.

173. S. O. Unverdi and G. Tryggvason. A front-tracking
method for viscous, incompressible, multi-fluid flows.
J. Comput. Phys., 100(1):25–37, 1992.

174. A. Vikhansky. Thermal convection of a viscoplastic liq-
uid with high Rayleigh and Bingham numbers. Phys.
Fluids, 21(10):103103, 2009.

175. A. Vikhansky. On the onset of natural convection of
Bingham liquid in rectangular enclosures. J. Non-Newt.
Fluid Mech., 165(23):1713–1716, 2010.

176. A. Vikhansky. On the stopping of thermal convection
in viscoplastic liquid. Rheol. Acta, 50(4):423–428, 2011.

177. G. Vinay, A. Wachs, and J.-F. Agassant. Numerical
simulation of non-isothermal viscoplastic waxy crude oil
flows. J. Non-Newt. Fluid Mech., 128(2):144–162, 2005.

178. D. Vola, F. Babik, and J.-C. Latché. On a numerical
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