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Robust Adaptive Detection of Buried Pipes using GPR
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Abstract

Detection of buried objects such as pipes using a Ground Penetrating Radar (GPR)
is intricate for three main reasons. First, noise is important in the resulting im-
age because of the presence of several rocks and/or layers in the ground, highly
influencing the Probability of False Alarm (PFA) level. Also, wave speed and
object responses are unknown in the ground and depend on the relative permit-
tivity, which is not directly measurable. Finally, the depth of the pipes leads to
strong attenuation of the echoed signal, leading to poor SNR scenarios. In this
paper, we propose a detection method: (1) enhancing the signal of interest while
reducing the noise and layer contributions, and (2) giving a local estimate of the
relative permittivity. We derive an adaptive detector where the signal of interest is
parametrised by the wave speed in the ground. For this detector, noise is assumed
to follow a Spherically Invariant Random Vector (SIRV) distribution in order to
obtain a robust detection. We use robust maximum likelihood-type covariance
matrix estimators called M-estimators. To handle the significant amount of data,
we consider regularised versions of said estimators. Simulation will allow to es-
timate the relation PFA-Threshold. Comparison is performed with standard GPR
processing methods, showing the aptitude of the method in detecting pipes having
low response levels with a reasonable PFA.

Keywords: GPR, buried pipes, adaptive detection, covariance matrix, non
Gaussian, regularised covariance matrix estimator.
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1. Introduction

Ground Penetrating Radar (GPR) imaging involves transmitting an electro-
magnetic wave at several spatial positions and receiving subsoil retro-diffusion
waves to form images [1, 2]. In particular, GPR can be used to detect buried ob-
jects like landmine, pipes, etc. Most GPR acquisition devices transmit a Ricker
wavelet of small duration leading to a large bandwidth [1]. The penetration of
the electromagnetic wave in the ground, and therefore the capability of detecting
buried objects, will be linked to the frequency. In most applications, the GPR is
composed of a monostatic antenna with a given sub-aperture, though more elab-
orate radar systems can be used. For instance, a stepped frequency signal is used
in [3]. In this case, the data size is too large and a compressive sensing strategy
has been developed to form the image. Another example is [4] where the authors
propose a GPR based on a Multiple-Input Multiple-Output (MIMO) radar with
multipolarisation. These new degrees of freedom allow to obtain a better resolu-
tion in the final image. In this paper, we will consider a monostatic Radar system
which transmits a Ricker wavelet.

Several papers on buried objects detection using a GPR are devoted to land-
mine detection, which are objects located close to the ground. In this case, the re-
sponse of the ground, called clutter, is very strong and leads to a high false alarm
rate. A Kalman filter has been used in [5] to perform the detection/localisation.
An improvement of this paper by using a particle filter is given in [6]. An ap-
proach based on a correlation method has been developed in [7] to remove the
clutter. A method based on hidden Markov model has been recently proposed
in [8]. All these methods have good performances because even if the Signal to
Noise Ratio (SNR) is weak due to the clutter, the response of the landmine is
also strong. In this case where the signal level is high enough, an inverse prob-
lem approach is a reliable method both to identify and reconstruct the target, as
in [9, 10]. This is also the case when using GPR systems [11]. However in our
case, the buried objects are located deeper in the subsoil and their response levels
decrease quickly, shifting the problem towards a detection issue rather than iden-
tification. Thus, we have to find other strategies. In particular, we know that the
response of the buried objects is close to an hyperbola due to the displacement
of the radar. Using this information, some algorithms have been developed based
on pattern recognition [12], Hough transform [13], etc. In particular, a standard
method in GPR processing is to perform a coherent combination of radar traces,
called Migration [1], in order to obtain a single target point for each buried object.
This approach is also used in the Synthetic Aperture Radar (SAR) [14] config-



uration where the raw data is also composed of several hyperbola which are the
responses of all scatterers located in the ground. But in SAR, the speed of the
electromagnetic wave is known whereas in GPR applications, the wave speed is
unknown and multiple layers could be present and be located between the ground
and the buried objects. Several approaches are used to estimate the dielectric and
the layer parameters of the subsoil, see for instance [15, 16]. In [17], the link
between an estimation error on the dielectric constant and the depth localisation
is shown. The problem of subsurface layers is also encountered in the domain
of Through-the-Wall SAR [18] where the clutter can be removed for example by
a subspace projection [19]. But this last method could be deficient in our case
because this subspace operation removes a part of the hyperbola and then still re-
duces the response of the buried pipe. Therefore, the standard operation in GPR
prospecting to detect pipes within layer interfaces is to perform a subspace projec-
tion by means of the Singular Value Decomposition (SVD), followed by the mi-
gration algorithm. However, the response of the objects remains weak and leads
to poor detection. In addition, this method requires an estimate of the relative
permittivity value €.

In this paper, we develop an algorithm in order to detect and to locate buried
pipes located between 1 and 3 meters underground by taking into account the es-
timation of the dielectric constant. For this derivation, we are based on the radar
detection/estimation framework initially given in [20]. The proposed detector de-
pends on a signal of interest, this being the theoretical response of a buried pipe.
This signal is concatenated in a vector denoted steering vector by analogy with ex-
isting work in the SAR domain [21], [22], [23]. This steering vector is built from
the theoretical hyperbolas and the known transmitted signal. It is parametrised by
the position in the ground and the local relative permittivity which are unknown.
In practice, a noise corrupts the received signal. This noise is a combination of
the electronic noise, clutter (the responses of the different subsurface layers) but
also small buried objects such as rocks. If we consider that the noise is modelled
by a Gaussian vector of zero mean and of an unknown covariance matrix, we can
derive the corresponding adaptive detector from the Generalised Likelihood Ratio
Test (GLRT) [24]. An easier approach is denoted by the "2-Step" GLRT [25]:
the GLRT is first derived by assuming that the covariance matrix is known and
its true value is replaced by its Maximum Likelihood Estimator (MLE), which is
the so-called Sample Covariance Matrix (SCM) in the detector. Unfortunately,
the Gaussian distribution seems to be inadequate in this configuration: the clut-
ter or the presence of small objects, denoted in the following outliers, tends to
create signals with strong heterogeneity. In this case, it is well known in sev-
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eral applications, such as radar, finance, etc., that the Gaussian distribution is not
adapted. A family of statistical distributions that is well adapted for this kind
of modelling would be the Real Elliptic Symmetric (RES) distributions. Here,
a a survey is available in [26] for the complex case. In this paper, we are inter-
ested in a sub-family of RES, the Spherical Invariant Random Vector (SIRV) [27]
where the random vector is the product of a Gaussian vector and a positive num-
ber, called the texture. In this configuration, the derivation of the detector leads
to the well-known Normalised Matched Filter (NMF) [28], [29]. In this detec-
tor, an estimate of the covariance matrix replaces the true covariance matrix to
obtain the Adaptive NMF (ANMEF). For this estimation, we can derive the MLE
of the covariance matrix of a SIRV, denoted the Tyler’s estimator [30], [31], [32],
[33]. This estimator is well-known to be robust to strong heterogeneity and out-
liers. Nevertheless, a recent paper [34] shows that it could be suffering from bad
estimation for some specific outliers. The authors recommend to use another es-
timate of the covariance matrix in the family of the M-estimators [35], [26]: the
Huber’s estimator [36], [37], [38] which is the combination of the SCM and the
Tyler’s estimator. In the paper, we will compare both the Tyler’s and the Huber’s
estimators.

A major problem in adaptive detection comes from the estimation of the co-
variance matrix. This estimation needs a set of K independent and identically
distributed (i.i.d.) data without the desired signal (here the response of a buried
object), denoted secondary data. Moreover the number of data could be significant
because a correct estimation needs K = 2N where N is the data size [39]. In our
configuration, the data size is really high (around 100) and it is impossible to have
a set of secondary data. Several strategies exist to reduce the needed number of
secondary data. For example, if the clutter is known to be low-rank and this rank
is known, the covariance matrix can be replaced by an orthogonal projector [40],
[41]. In most cases, the covariance matrix is known to have a particular structure
which allows to reduce the number of variables we wish to estimate [42], [43],
[44]. But the most common approach is to regularise the estimation: this intro-
duces a bias, but lead in general to great performances even when only a small set
of secondary data is available. The drawback is the choice of the regularisation
parameter: for the SCM, Ledoit and Wolf [45] have proposed a strategy which is
adapted to array processing in [46]. Several papers are devoted to the regularised
version of the Tyler’s estimator. The existence of the estimator as a function of
the parameter of regularisation is proven in [47, 48]. An optimal parameter of
regularisation is proposed in [49]. For the Huber’s estimator, the existence has
been proven in [49], but no criteria has been defined to estimate the optimal value.
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One of the most important properties of those estimators is that they have a con-
stant false alarm rate (CFAR) for a set threshold value, regardless of the noise
power. Therefore, we propose in this paper to estimate the optimal regularisation
parameter by choosing the value which ensures the most stable CFAR behaviour,
by means of simulations. The corresponding detectors will be tested on simulated
data and real data provided by the company ENGIE.

To summarise, this paper proposes the derivation of a robust adaptive detector
where the dielectric constant has to be estimated and which needs a small set of
secondary data in order to detect buried pipes, in the presence of subsurface layers
and outliers. This detector allows to detect pipes with a low response level and
to remove the subsoil layers and other noise contributions in the resulting image.
It also provides a local estimation of the dielectric constant and finally keeps a
CFAR behaviour regardless of the noise statistics.

This paper is organised as follows. Section 2 presents the signal model. The
robust adaptive detector is derived in Section 3. In particular, we study the dif-
ferent regularised estimators by means of simulations. In Section 4, the proposed
approach is tested on real data and compared to standard processing techniques.
Section 5 draws some conclusions from this study.

The following convention is adopted: italic indicates a scalar quantity, lower
case boldface indicates a vector quantity and upper case boldface a matrix. No-
tation 7 denotes the transposition operator. E [] is the expected value operator.
N(a,M) is a real Gaussian vector with mean a and covariance matrix M. The
N x N-identity matrix is denoted Iy. [A];; is the element of matrix A at row ¢,
column j.

2. Signal modelling
2.1. GPR Signal modelling

In the following, we consider a GPR moving along a wu-axis, parallel to the
ground (y-axis) and at a height h from it. At every position u,,, the radar emits
a signal e(t) in the ground. This signal is reflected by P scatterers in the ground,
characterised by their reflection coefficients a, € [-1; 1], p € [1; P] which
represent the quantity of signal backscattered towards the radar. The echo of the
signal on one scatterer p positioned at (y,, z,) and received by the radar is ex-
pressed as a time-delayed version of the emitted signal:

Tm,p(t) = Qapc (t - Tm<yp7 ZP)) ) (1)



where 7, is the time taken by the signal to travel from the radar to the scatterer
and back. For a general configuration where the soil is composed of L layers, each
of dielectric constant ¢, and the radar is not in a direct contact with the ground,

Tm(y, 2) is [1]:

9 L
Tm<y7 Z) = C_() (dm,air(y7 Z) + Z \/E_;dm,l<y7 Z)) ) (2)
=1

where d,,; and d,,, . are respectively the distances travelled (single travel) by the
wave through the layer [ and the air.
The radar then receives the sum of all P echoes from the scatterers:

rm(t) = Zf:ﬂnm,p(t)a
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GPR systems usually return digital data to analyse, we thus consider that the
imaged scene is divided in IV, X N, pixels, each considered as a potential scatterer,
and observe the received signals over N discrete time samples ¢;,i € [1; N7].
We create a vector a € RMN:, a = [a;...q,...an,n.|", containing all the
reflection coefficients arranged in lexicographic order, and build a set of matrices
H,, ¢ RV7*NyN: with the element at line ¢ and column p:

[Hm]ip =e(t; — Tm(ypa zp))- “4)

We then express the sampled version of the received signal 7, by the radar at
position u,,:
r, = H,a. ®))

By concatenating all the H,,, matrices into H € RNTM>NyN=
T 71T
H-[HT .. HT]"

and the vectors 7, into r € RV™™ ¢ = [r; ... 7|7, we get the full GPR scan
image formation problem:
r = Ha. (6)

This formulation of the problem opens prospects in terms of optimisation so-
lutions, like minimising the cost function ||r — Hal|?>. However, such inver-
sion method is sensitive to noise and has a high computational cost. One can
try to regularise the problem by invoking the inherent sparsity in the image (only
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few pipes or scatterers buried) leading to ¢; optimisation problems, minimising
|r — Hal|*+ \|la||; for instance. Such sparsity-driven techniques, among others,
have been successfully used in SAR reconstruction [50], but some pipes response
are too close to noise level and are blurred by the regularisation, rendering the pro-
cess destructive. In addition, the apparent simplicity of the post-migration image
geometry makes finding a suitable discriminating sparsity basis difficult. One can
also resort to compressive sensing techniques as in [51, 3] when there is a high
redundancy of information in the data, for instance when acquired with a stepped-
frequency GPR. This redundancy is however not present in our case. Thus other
approaches to the buried object detection problem are needed, and we propose a
new method based on statistical tests for detection.

2.2. Detection problem

Because the GPR antenna emits signals with a wide beam pattern, buried ob-
jects in the ground can backscatter signals from different radar positions. As a
consequence, hyperbolic shapes appear on the scan image. Thus, trying to detect
a buried pipe at a particular position (y, z) in the ground is equivalent to check-
ing the presence of a reflection hyperbola near the sampled position. To do that,
we sample the pixels around the position (y, z) while following the shape of the
hyperbola, determined by the delays of the backscattered signals received by the
radar from the tested position, 7,,,(y, z). This process is summarised in fig. 1. To
reduce the complexity of the whole detection algorithm in terms of variables, we
consider a simplified ground model in (2), where there is only one layer of dielec-
tric constant €', and the radar is in direct contact with the ground (d,;. = 0). More
complex models can be used in the computation of 7,,(y, ) if needed, without
having to modify the sampling approach.

This sampling can be formalised in matrix form. From the signal 7, the signal
x to be tested is extracted by means of a selection matrix T, , , € {0; l}NXMNT,
unique to each position (y, z). This matrix is built as follows: if the i component
of the tested vector x is set to be the j'* component of r then [T, .];; = 1,
otherwise [T, , .];; = 0. We have:

m6/7y7’z = T€,7y7zr. (7)
This signal x. ,, . is then tested under two hypotheses: either it contains only

noise m, which characteristics are defined in the next subsection, or it is a set
pattern p, called steering vector, multiplied by a scaling factor a. , . and with

added noise n.
{ Hy : oy, =mn,

Hy @ @oy. = aoy.p+n.
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In the following, to limit variable cluttering in the equations, we will denote =
Tey.and a = ag .

The steering vector p is built as if being the vector  sampled from the ideal
theoretical reflection hyperbola. To limit the size of the steering vector, we only
sample the most representative points of the Ricker wavelet, being the extrema
(the central and the two peripheral peak values), as shown in fig. 1.

Along the vector x, we sample a set of secondary data {x }, x following the
same procedure, for positions located at the same depth z than x, while respecting
a safe zone along the y-axis to prevent any signal being inadvertently sampled
in this secondary set. It will be used in later sections to estimate the noise 1
characteristics.

2.3. Noise modelling

To derive the detector corresponding to the solution of problem (8), we have to
propose a modelling for the noise 1, n;, € RY. In the paper, we will consider two
cases: Gaussian and SIRV noise models to take into account to the heterogeneity
of the data.

Gaussian modelling. In this case, the noise n follows a zero-mean Gaussian pro-
cess N (0, R) where R is the covariance matrix. We assume that this covariance
matrix is unknown. We also assume that the secondary data {x} x follow a
zero-mean Gaussian process N (0, 0R) where R is the same covariance matrix
and o is an unknown deterministic parameter. This last parameter allows to model
a difference of power between the data under test and the secondary data. Nev-
ertheless, this assumes that the power for all secondary data is the same, which
is not realistic in many applications and in particular for GPR images. Therefore,
we propose another modelling in the following paragraph.

SIRV modelling. We consider that the power can be different between data x;, and
the data under test. In such a situation, it is common to model the corresponding
clutter by a SIRV [52]. A SIRV is a non-homogeneous Gaussian random vector
with random power. The SIRVs [27] n, iy, are respectively the product of positive
random variables 7, 7, called the texture, and N-dimensional vectors g, g, which
follow independent Gaussian processes N (0, R):

n = J7g,
ng = \/T_kgk-

In the sequel, for identifiability issue, we consider Tr(R) = N.

)



3. Detection

To derive a detector solving the problem (8), we can resort to the GLRT frame-
work. The goal is to maximise the following Likelihood Ratio Test (LRT) for the
Gaussian case [20]:

max L(x|H,)
oc€RT RERNXN gcR,e/’cR+

max  L(x|Hy)

oc€RT RERN XN

A_:

(10)

where L(x|H;) is the density of probability of the data « under H, or H;. For the
SIRV case, we consider that the textures are unknown deterministic variables and
therefore, the LRT is written as follows:

max L(x|H,)
TaTkER+7R€RNXN GGR,€/€R+

max L(z|Hy)

7,7,ERT RERN XN

A:

(11

Therefore, two solutions exist for the detection. The first one is to solve the previ-
ous LRT by integrating the secondary data {x }, and to resort the GLRT as in [24].
But this solution is quite difficult to apply to the SIRV case, so the common pro-
cedure is first to derive the detector by assuming that the covariance matrix R
is known, and then replace it by an appropriate estimator of the covariance ma-
trix. In [25], the performances of the two approaches are shown to be close for a
Gaussian modelling.

3.1. Derivation of the detector with known R

When the covariance matrix is assumed to be known, the derivation of both
LRT (10) and (11) leads to the same detector [29], [53], [28] which is here
parametrised by the dielectric constant ¢’

p'R 'af

A= . 12
B TR )@ R ) .

We recall that the parameter ¢’ governs the transformation T, . which allows to
build the data vector « from the raw data r. Finally the detector is compared to a
threshold to decide either hypothesis [, or Hy:

H,
A< (13)

Hy
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The decision threshold 7 is often set by fixing a Probability of False Alarm (PFA).
For this setting, it is usual if possible to compute the distribution of the detector
which allows to have the theoretical relation PFA as a function of the threshold.
For the NMF of Eq. (12), the relation is known [29]:

n=1—PFA~-T. (14)

When the distribution is not available, we have to estimate the relation threshold-
PFA by means of Monte Carlo trials.

3.2. Plug-in of the covariance matrix estimator

In this section, we present different estimators of the covariance matrix. The
problem addressed in this paper is that the number of secondary data available /K
can be inferior to the data size /V, leading the inversion in Eq. (12) to be incon-
sistent. Therefore, it is necessary to develop a strategy for efficient estimation in
presence of a small number of secondary data. Since, we do not assume any struc-
ture (low-rank, Toeplitz) for the covariance matrix, we propose to use shrinkage
estimators of the covariance matrix which have deserved great interest these last
years in the signal processing community. First, we consider the Gaussian case in
the following section.

3.2.1. Gaussian case

In this case, the most effective method is to replace the true covariance matrix
by its Maximum Likelihood Estimators (MLE), the Sample Covariance Matrix
(SCM):

K
L1
R= ?;wkw;‘f. (15)

In the under-sampled case, the seminal paper [45] proposes the following estima-
tor: ~ .
R =R+ al, (16)

where J and « have to be estimated. In this paper, the estimation of the shrinkage
parameters is performed by minimising the following MSE [46]:

MSE(R) = E[||R - R|]. (17)
In this case, we have:

~ _ . A~ ﬁ A~

@ = mn [”nfwn? ) ”} , (18)

B - - %7



where

1 K 4 1 PRI2
== et — = R)|7,

>
|

>
\

3.2.2. SIRV case
In the over-sampled configuration (when K > N), the MLE of the covariance
matrix is called the Tyler’s estimator (or Fixed Point Estimator) and is:

a:ka:k
20
KZ e (20)

Since the matrix depends on an implicit function, we have to resort an iterative
algorithm to compute the solution:

~ a:m
Ry = Z — 21)

mkR zck

This algorithm is known to converge towards to the correct solution [54].

Nevertheless, this estimator is inconsistent in under-sampled configuration
when K < M. In this case, we can add an additional diagonal loading as ini-
tially proposed in [55]. Therefore, the convergence is not ensured and a choice of
the parameter of the diagonal loading has to be considered. In [48], [56], it has
been proven that the following equation:

K
R=(1—a)ﬂzm’“—m£+a1 (22)
K “ :c;fR—lmk

admits an unique solution for @ € [max(0,1 — %), 1]. The following algorithm
allows to reach this solution:

N&E  zal
Roy=01-a)=Y —Z Lol (23)
K kZ; xf R x,

This last result involves a parameter selection which ensures the convergence, but
with no guarantee of optimality. In [49], by minimising the following MSE:

1
MSE = E[|R 'R, — NTr(R‘lRa)IHQ] (24)
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where R,, is a clairvoyant estimator of R:

R,=(1- al, 25
o) TR 1wk (25)
we can obtain an estimator:
NTr(R) -1
P r(R) : (26)
NTr(R)— 1+ K(N+1)(N"'Tr(R~2) — 1)

where R is any solution of (23) with o € [maz(0,1 — £).1].

The Tyler’s estimator is known to be robust to the statistic of the noise and the
presence in the secondary data of outliers. Nevertheless, in a recent paper [34],
the authors proved that the Tyler’s estimator is sensitive to data contamination for
some specific configurations. In this case, it could be preferable to use the M-
estimators of the covariance matrix which are defined by the following implicit

function:
o1 E .
o (;c;{ R*lwk) apaxl @7)
k=1

where 1/ depends on the pdf of the texture. In practice as in this paper, its pdf is
assumed to be unknown. In that case, one can resort to M-estimators [35], [36],
[26] and use a new functional that is not related to the texture pdf. For example,
we have the Huber’s estimator:

K
1 A
e Z U <:BfR_1:1:k) x,xr (28)
k=1
where )
1, fort <c
u(t) = { AJt, fort > c? 29
with ¢ > 0.

As for the Tyler’s estimator, we can build an under-sampled version of this
estimator [49]:

K
. 1 .
== Z u <w£R’1sck) xx; + al. (30)
k=1
The following iterations
| K
R, ., = 74 Z U (a:;‘fR,;l:I;k) wkaz;‘f + ol 3D
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allow to reach an unique solution for any « and for any initial value R, [49]. For
the best of our knowledge, the literature has not provide a method for computing
optimal value «. In the following, we propose to estimate an optimal value by
minimising the PFA or maximising the PD.

3.2.3. Adaptive detectors

When an estimation of the covariance matrix is computed, it can be plugged
into the NMF detector (12) which leads to an Adaptive NMF (ANMF), denoted
A. As said before, it is interesting to derive the distribution of the detector in
order to set the threshold for a given PFA. For the SCM, this distribution has
been derived in [57] for the Gaussian case and an approximate distribution has
been proposed in [38] for CES case. Unfortunately, such a distribution is really
difficult to compute when shrinkage estimators of the covariance matrix are used
in the ANMF.

Therefore, we propose in the following subsection to estimate the relation
PFA-threshold by means of Monte Carlo trials for all ANMF built from a shrink-
age estimator of the covariance matrix (SCM, Tyler and Huber). We will also
compute the PD as a function of the SNR. Moreover, we will estimate the param-
eter of the shrinkage for the Huber’s estimator by choosing the value that ensures
a CFAR behaviour regardless of noise heterogeneity.

3.3. Simulation

We consider the three adaptive detectors: Ago Mo ATyler and A Huber DUilt by
replacing in the NMF of Eq. (12) the true covariance matrix by the regularised ver-
sions of the SCM (16), the Tyler’s estimator (22) and the Huber’s estimator (30),
along with the limit cases AWhite and AOracle- These limit cases are such that
R = I for the white noise hypothesis and, for Oracle case, R is the real co-
variance matrix of the generated noise. The simulation consists in successive
Monte-Carlo trials, in order to estimate the PFA as a function of the threshold and
the PD as a function of the SNR for the various estimators.

The simulation is set up with a SIRV noise, the Gaussian vector having a
widely-used covariance matrix model of Toeplitz form [R];; = pl"~/|, where we
have considered p = 0.9. The texture factor generated follows a gamma law
(v, %) parameter v = 2 leads to a near-Gaussian noise whereas parameter
v = 0.1 yields a more impulsive noise. The steering vector has size N = 153
corresponding to the sampling of 3 signal points on 51 columns of a GPR im-
age, 25 on each side of the tested position. The number considered for secondary
data is K = 40. Both PFA and PD values were estimated by averaging over
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100000 MC trials. PD values are given for fixed threshold values corresponding
to PFA = 1072 for each estimator. For each SNR value, the corresponding scaling
factor a from Eq. (8) has been computed as:

a = +/SNR Tr(R), (32)

this value being valid only if the steering vector p has been normalised, ||p|| = 1.

Fig. 2 shows the PFA-Threshold and PD-SNR graphs for Huber’s estimator
when the regularisation parameter o = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9. The graphs
show that in the near-Gaussian case, there is little variability in terms of probabil-
ity of detection, but a strong regularisation parameter value gives a slightly better
PFA, for a fixed threshold value. The same observation holds true for the impul-
sive noise case: there is still little variability in the probability of detection for
several « values, but this time, the PFA versus threshold curves are reversed. Low
a values give stable PFA-Threshold values in both near-Gaussian and impulsive
noise cases, appearing as a good choice for cases where the noise model is not
known.

Fig. 3 shows the PFA-Threshold and PD-SNR graphs for all estimators respec-
tively for v = 2 and v = 0.1. The SCM estimator is given with the regularisation
parameters computed as in Eq. (18), Huber’s estimator is given with o« = 0.75,
and Tyler’s estimator is computed with « = 1 — 0.9% and o of Eq. (26) (we set
£ = 1—a). The regularised estimators show good results. Though Tyler’s estima-
tor with § = 0.9% has a higher PFA in near Gaussian noise, it still gives the best
probability of detection, greatly outperforming the others for the more impulsive
SIRV noise. On the other hand, Tyler’s estimator regularised with the optimal ¢,
of Eq. (26), appearing as "Tyler opt" on the graphs, yields results close to the white
noise limit case. This is explained by that & is close to 1 in our case, leading to
an estimated covariance matrix R that is close to the identity matrix Iy. On the
contrary, the SCM estimator with optimal parameter values performs really well
in the near-Gaussian case, and still give acceptable results in the impulsive noise
case.

4. Numerical simulations on real data

In this section, we apply the three regularised detectors and the white noise
limit case to real world data. We also compare them with standard GPR image
processing migration method, with and without SVD preprocessing. The migra-
tion is performed using the Backprojection algorithm (BP) [14], ¢ = 5, and the
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SVD preprocessing removes the first 4 singular values in the images. For all other
estimators, parameters are kept identical to the previous statistical simulations,
N = 153, K = 40. The SCM is computed with regularisation parameters from
Eq. (18), Huber’s estimator is computed with o = 0.25, and Tyler’s for § = 0.9%.
The white noise case will help in showing the relevancy of the covariance matrix
estimation.

Two GPR radargrams are used, acquired over a test site containing pipes of
various size and materials buried in sand. Image 0039.RAD (fig. 4a) has 156 radar
positions. Image 0028.RAD (fig. 4b) has 225 radar positions. The radar sampling
step 1s 2.5 cm, both images have 512 time samples per position with a sampling
frequency of 20 GHz and an emitted Ricker wavelet signal having peak frequency
at 500 MHz. The first image contains two pipes, the second has five, and both
images also contain a layer interface reflection visible between 5 and 10 ns on
fig. 4 which is due to soil compaction. Pipes position and characteristics are given
in table 1.

On figs. 5 and 6, the raw migrated image shows the necessity of a preprocess-
ing in order to remove the layer which would, otherwise, raise the false alarm rate.
While the SVD preprocessing improves the resulting migrated image, all ANMFs
succeed better in removing the layer, with a lower residual level. This also proves
the relevancy of the covariance matrix estimation as opposed to the white noise
case. Huber’s estimator shows some difficulties in the lower part of images. This
may be due to zero-paddings performed to handle non-existent samples, and those
null samples would lead the "normal" secondary data to be considered as outliers
by the estimator. Finally, the ANMF with SCM and Tyler’s estimators return sim-
ilar results, sign that the data here is closer to Gaussian and without outliers, but
also that there is no loss of performance in considering a more complex noise
model.

Figs. 7 and 8 show the detection results for the migrated images and ANMFs.
The threshold value is computed as a percentage of the maximum value of the im-
age T'hres = nmax(IM). In fig. 7, we used a threshold of = 0.5, corresponding
to the limit of detection of all pipes by at least one method. We used in fig. 8, a
value of 7 = 0.37 corresponding to the limit of detection of four pipes (pushing
the detection to 5 pipes would require a very small threshold value, leading a too
high PFA for all detection results). Results show that the ANMFs have a slightly
higher false alarm rate but give better results in terms of detection with four pipes
detected in fig. 8d out of five, and two out of two in fig. 7d while the migration
methods detect only two in fig. 8a and three pipes in fig. 8b, and one in figs. 7a, 7b.
To further confront the methods, one could choose a threshold ensuring the same
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detection rate for all estimators and migrations and then compare the PFA levels.

One observation on the results is the dual detection responses for certain pipes,
whatever the method (see figs. 7 and 8). This is not yet fully explained at this time,
but it can be due to that the corresponding pipe responses involve one Ricker
wavelet followed by another but reversed and shifted "shadowed" Ricker wavelet.
One should also note that this experiment was conducted for a single available
ground fill type, though the CFAR behaviour of the detectors should ensure con-
sistent results for other heterogeneous/textured ground compositions that follow
SIRV property.

5. Conclusion

In this paper, we developed a robust adaptive method in order to detect and lo-
calise buried pipes situated under several subsurface layers. This detector is based
on the ANMEF and the estimation of the dielectric constant of the subsoil. In the
derivation, the SIRV noise model was chosen in order to take into account data
heterogeneity and the eventual presence of outliers (due to thermal noise, clutter
from the subsurface layers and small rocks) in the data. Moreover, since the sam-
ple support for the estimation of the covariance matrix is small, we proposed to use
regularised versions of the M-estimators. In simulated data, we evaluate the rela-
tion PFA-threshold for different ANMF detectors. In particular, we investigated
the impact of the regularisation parameters on both PFA and PD. Application on
real data and performance comparison with standard migration processes showed
the interest of the approach in particular to detect buried pipes having very weak
responses.

Future work will deal with a more elaborate modelling of the response of the
buried pipe. For example, the width and/or the type of pipe could be integrated
into the steering vector by using the subspace approaches of [21], [22] and [23].
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x=[xf .xf]" e RV

Figure 1: Sampling process for the vector x: red lines represent the samples along the different
columns of the image, which are then assembled in the vector . Only three values are sampled
per column to limit the size of the data vector, the latter being the central and two peripheral peak
values.

Table 1: Pipe characteristics in both datasets.

Dataset | 0039.RAD | 0028.RAD

Material PE Steel PE PE PE Castiron Steel
Diameter (mm) 110 20 160 20 63 118 160
Position (m) (2;0.84)  (3;0.84) (1;1) 2;1) @331 4;1) 5;1)
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Figure 2: Huber’s estimator performance curves for different values of . (a) PFA versus Thresh-
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Figure 5: Adaptive detection for image 0039.RAD by using the following estimators: (a) Migra-
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N =153, K = 40. Approximate pipe locations are indicated by red squares.

27



Detection image (BP) Detection image (BP SVD)

1 1
0.8 0.8
~05 05
() [}
g 062 £ 063
N > N >
1 'aO) 1 E
£ 1 T S 1 ©
53 043 & 04
o s =
1.5 0.2 15 0.2
0 0
1 2 3 4 5 1 2 3 4 5
Crossrange -y (m) Crossrange -y (m)
(2) (b)
Detection image (White Noise) ) Detection image (SCM) ]
0.2 0.2
0.4 08 0.4 08
0.6 g Eo06 g
E 06§ % 06F
, 0.8 5 0.8 5
= ’ RS 1 ]
o 04 % Q 0.4 %
(5] J3 [0) 7
o a
Q42 Q42
1.4 0.2 1.4 0.2
1.6 1.6
0 0
1 2 3 4 5 1 2 3 4 5
Crossrange -y (m) Crossrange -y (m)
(© (d)
Detection image (Huber) y Detection image (Tyler) ;
0.2 0.2
0.4 08 0.4 08
0.6 2 EO06 g
, 0.8 5 0.8 5
£ Pg
) 043 o 0.4 3
o a
Q42 Q42
1.4 0.2 1.4 0.2
1.6 1.6
0 0
1 2 3 4 5 1 2 3 4 5
Crossrange -y (m) Crossrange -y (m)
(e ®
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Figure 8: Image 0028.RAD: detection results of the proposed ANMFs as opposed to a standard
migration. (a) Migration (b) Migration with preprocessing (c) White noise hypothesis (d) SCM
(e) Huber (f) Tyler. Threshold is fixed at 37% of max value in each image. Approximate pipe
locations are indicated by red squares.
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