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The following extended abstract is a highlight of [7].

A common concern in all evolutionary studies is the validity of the methods and results.
Results relate to events that were supposed to occur in a deep past (up to 4 billion years) and they
have no other trace today than the present molecules used by comparative methods.

As we cannot travel back in time to verify the results, there are several ways to assess the
validity of molecular evolution studies: theoretical considerations about the models and methods
(realism, consistency, computational complexity, robustness, model testing, ability to generate
a statistical support or a variety of the solutions) [23], coherence with fossil records [25], or
ancient DNA [11], or empirical tests when the solution is known, on experimental evolution [17]
or simulations. Each method has its caveats. Models for inference have to adopt a compromise
between realism, consistency and complexity. Ancient DNA is rarely available, usually not in
an assembled shape. Fossils are also rare and provide a biased sampling of ancient diversity.
Experimental evolution is expensive, time- consuming and limited in the number of generations it
can provide.

Simulation is the most popular validation tool. Genome evolution can be simulated in silico
for amuch higher number of generations than in experimental evolution,much faster and at a lower
cost. All the history can be recorded in details, and comparedwith the inference results. A problem
with simulations, however, is that they necessarily oversimplify genome evolution processes.
Moreover, very often, even if they are designed to be used by another team for inference [4, 15, 14,
10, 22], they encode the same simplifications as the inference methods. For example, only fixed
mutations are generated because only these are visible by inference methods; selection is tuned
to fit what is visible by the inference methods; genes are often evolutionary units in simulations
because they are the units taken for inference. Everything is designed thinking of the possibilities
of the inference methods.

This mode of ad-hoc simulation has been widely applied to test estimators of rearrangement
distances, and in particular inversion distances [9, 12, 5, 21, 6]. The problem consists in comparing
two genomes and estimating the number of inversions (a rearrangement that reverses the reading
direction of a genomic segment) that have occurred in the evolutionary lineages separating them.
To construct a solution, conserved genes or synteny blocks are detected in the two genomes, and
a number of inversions explaining the differences in gene orders is estimated. A lot of work has

*. Intervenant

- 79 -



Priscila Biller et al.

consisted in finding shortest scenarios [13]. Statistical estimations need amodel. The standard and
most usedmodel depicts genomes as permutations of genes and assumes that an inversion reverses
a segment of the permutation, taken uniformly at random over all segments. When simulators
are designed to validate the estimators, they also use permutations as models of gene orders, and
inversions on segments of this permutations, chosen uniformly at random. Estimators show good
performances on such simulations, but transforming a genome into a permutation of genes is such
a simplification from both parts that it means nothing about any ability to estimate a rearrange-
ment distance in biological data [8].

We propose to use simulations that were not designed for validation purposes. It is the case, in
artificial life, of in silico experimental evolution [18], and in particular of the Aevol platform [19,
3]. Aevol contains, among many other features, all what is needed to test rearrangement inference
methods. The genomes have gene sequences and non coding sequences organized in a chro-
mosome, and evolve with inversions, in addition to substitutions, indels, duplications, losses,
translocations. Rearrangements are chosen with a uniform random model on the genome, which
should fit the goals of the statistical estimators, but is different from a uniform random model on
permutations [8].

We tested 10 different estimators of inversion distance found in the literature, one shortest
path estimator and 9 statistical estimators on 18 different datasets generated by Aevol. The dif-
ference with ad-hoc simulations is striking. Whereas good results were largely reported for ad-hoc
simulations, most estimators completely fail to give a close estimate in a vastmajority of conditions.
As soon as the true number of events exceeds about n/3 (where n is the number of genes), most
estimators significantly underestimate the true value. This highly contrasts with the claimed
performances of these estimators. For example the shortest path estimator is supposed to have
great chance of giving the right value up to n/2 [16], while all statistical estimators have been
tested on simulations and reported to give the right value far above n [9, 20, 12, 5, 21, 2, 6, 8].

We argue, based on the differences in performances of some estimators, that our datasets are
not artefactually difficult (nor purposely made difficult), and that the poor results encountered
here are susceptible to reflect real results on biological data. Indeed part of the failure of the
estimators can be explained by this ignorance of intergene sizes, because the only one handling
intergene sizes performs significantly better. We investigated this further in [8].

Part of the discrepancy between the true value and the estimated value still remains unex-
plained. The complexity of the real scenarios probably blurs the signal that estimators are able to
capture. But again, this complexity is not a specificity of Aevol, and is probably encountered in
biological data. So by this simple experiment we can worry that none of the existing estimators of
rearrangement distance would be able to produce a plausible value on real genomes.

We tested only the estimation of the number of inversions. But only with the runs we have
already computed, a lot more can be done: estimation of the proportion of translocations (transpo-
sition of a block of DNA at an other locus) as in [1], or estimating both inversions and duplications
as in [24]. For the moment the sequences are made of 0s and 1s, which is not a problem to
study gene order, but can be disturbing for sequence analyses. This way of coding sequences is on
another hand a good sign that Aevol was not developed for benchmarking purposes. In a close
future, nucleotidic and proteic sequences with the biological alphabet will be added to extend the
benchmarking possibilities of the model.

Also we worked with only one lineage, and compare only two genomes here (final versus
ancestral), because Aevol currently evolves only one population at a time. A useful addition will
be speciation processes, in order to be able to compare several genomes.

As a final note, we would like to point out the singular kind of interdisciplinarity experimented
in this study. Obviously communities from comparative genomics and artificial life have to work
together in order to make such results possible. But, on the opposite, these results are only
possible because both communities first worked in relative isolation. If they had defined their
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working plans together, spoke to each other too often or influenced each other’s way of thinking
evolutionary biology, the work would have lost some value. Indeed, what makes the difficulty here
for comparative genomicists is that they have to infer histories on data for which they have no
stranglehold on the processes, just as for biological data, but on which they also have the correct
answer, just not as for biological data.
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