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Abstract

In digital topology, it is well-known that, in 2D and in 3D, a set X ⊆
Zn is digitally well-composed (DWC), that is, does not contain any critical
configuration, iff its immersion in the Khalimsky grids Hn is well-composed
in the sense of Alexandrov (AWC), that is, its topological boundary is a
disjoint union of discrete (n− 1)-surfaces. This report shows that this is still
true in n-D, n ≥ 2, which is of primary importance since today 4D signals
are more and more frequent. This means that the usual digital subsets of
Zn that are DWC can be immersed in Hn and the connected components of
their boundaries will be discrete surfaces. Conversely, if any subset verifies
that its immersion is AWC, we will know that this set is DWC. Note that
the correctness of this proof is still not verified.

Keywords: well-composed, discrete surfaces, critical configurations,
digital topology
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List of Symbols

• basics:

– n is the dimension of the space,

– B = {e1, . . . , en} is the canonical basis of Zn,

– xi is the ith coordinate, i ∈ J1, nK, of x ∈ Rn,

– # denotes the cardinal operator,

• neighborhoods and connectivity:

– N2n(p) is the 2n-neighborhood of p in Zn,

– N ∗2n(p) is the 2n-neighborhood of p minus p in Zn,

– N3n−1(p) is the (3n − 1)-neighborhood of p in Zn,

– N ∗3n−1(p) is the (3n − 1)-neighborhood of p minus p in Zn

• blocks and antagonism:

– B(A) is the set of blocks in the space A,

– F = (f 1, . . . , fk) ⊆ B is the family of vectors associated to a
block,

– S(z,F) is the block associated to z and to the family F ,

– S ∈ B(A) is a block in A,

– k is the dimension of a block S associated to F = (f 1, . . . , fk),

– antagS(p) is the antagonist in the block S to p ∈ S,

• interval values:

– intvl(a, b) is the interval value [min(a, b),max(a, b)] of the values
a, b ∈ R,
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– Span(V ) is the span of the (finite) set of values V ⊂ R,

– Ja, bK is the discrete interval [a, b]∩Z with a, b ∈ Z such that a ≤ b,

– ConvHull(A) is the convex hull of the set A ⊆ Rn,

•
(Z
2

)n
as a poset:

– 1 (x) is the set of integral coordinates of x ∈ (Z/2)n,

– 1
2

(x) is the set of half coordinates of x ∈ (Z/2)n,

• ordered sets:

– R is a binary relation,

– O represents a set or arbitrary elements,

– |O| = (O, αO) is the set O supplied with its order relation αO,

– α is the topological closure operator,

– α�(x) = α(x) \ {x}, ∀x ∈ O,

– αX = α ∩X ×X,

– α(X) =
⋃
x∈X α(x),

– β is the topological opening operator, the inverse of α,

– β�(x) = β(x) \ {x}, ∀x ∈ O,

– βX = β ∩X ×X,

– β(X) =
⋃
x∈X β(x),

– θ = α ∩ β is the neighborhood,

– θ�(x) = θ(x) \ {x}, ∀x ∈ O,

– θX = θ ∩X ×X,

– θ(X) =
⋃
x∈X θ(x),

– ρ(h) is the rank of the face h ∈ O,

– ρ(|O|) is the rank of the order |O|,

• from (Z/2)n to Khalimsky grids:

– Hn denotes the Khalimsky grids of dimension n,

– Hn
k , k ∈ J0, nK, denotes the elements of Hn of dimension k,
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– Z : H1 → (Z/2) is the topological isomorphism between H1 and
(Z/2),

– Zn : Hn → (Z/2)n is the topological isomorphism between Hn and
(Z/2)n,

– H is the inverse of the topological isomorphism Z,

– Hn is the inverse of the topological isomorphism Zn,

– UH1 is the topology of H1,

– U(Z/2) is the topology associated to (Z/2) as an isomorph of H1,

– UHn is the topology of Hn,,

– U(Z/2)n is the topology associated to (Z/2)n as an isomorph of Hn

• Khalimsky grids:

– a ∧ b = sup(α(a) ∩ α(b)) is the infimum between a and b,

– a ∨ b = inf(β(a) ∩ β(b)) is the supremum between a and b,

– dim(f) is the dimension of the face f ∈ Hn,

• relative to the proof:

– X ⊆ Zn is a subset of Zn

– Y = Zn \X is a subset of Zn

– X = Hn(X) ⊆ Hn
n is the isomorph of X into the Khalimsky grids,

– Y = Hn(Y ) ⊆ Hn
n is the isomorph of Y into the Khalimsky grids,

– IMM(X) = Int(α(X)) is the immersion of X into Hn

– N = ∂IMM(X) is the topological boundary of IMM(X)

– CC(N) are the connected components of N ⊆ Hn,

– z∗ = Hn(p) ∧ Hn(p′) is a critical point when X ∩ S(p, p′) is a
primary/secondary critical configuration,

– (Pk) ≡
{
∀z ∈ N ∩Hn

n−k, |β�N(z)| is a (n− 2− dim(z))− surface
}
.,

– (P ′k) ≡
{
∀z ∈ N ∩Hn

n−k, |β�N(z)| is connected
}
.,

– I is the family of indices s.t. {Fi}i∈I = CC(|β�N(z)|),
– {Fi}i∈I are the connected components of |β�N(z)|,
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– S(z) ≡ Zn(β(z) ∩Hn
n) is the block centered at z ∈ Hn,

– T (u) is the set of (dim(z) + 1)-faces included into α(u) ∩ β�(z),

– T (Fi) is the set of (dim(z) + 1)-faces of Fi,

– a =
∨

t∈T (F1)

t and b =
∨

t∈T (F2)

t are the “characteristical points”.
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Chapter 1

Introduction

A subset X ⊂ Zn which is digitally well-composed (DWC) has many nice
topological properties: its connectivities are globally and locally equivalent,
they do not lead to topological paradoxes such as the connectivity paradox
of Rosenfeld, and so on. However, they do not own continuity properties
since they are defined in Zn. Nevertheless, in 2D and 3D, it is well-known
that when we immerse them into the Khalimsky grids, they are well-compo-
sed in the sense of Alexandrov (AWC), that is, the connected components
of their topological boundaries are discrete surfaces, which is a very strong
topological property. Unfortunately, this relation between the DWCness of
a set and the AWCness of the immersion of this set has not yet been proven
to be true in n-D, n ≥ 4. This paper states that this equivalence is true in
any finite dimension.

The plan of this report is the following: we recall the background in
matter of digital topology necessary to define DWCness, then we recall the
background in matter of Khalimsky grids and orders necessary to define
AWCness. After that, we expose a sketch of the proof, such that the reader
will be able to follow the reasoning of the next part: the complete proof.
Then we conclude.

Let us note that the correctness of this proof is still not verified, and then
should be read with prudence.
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Chapter 2

Digital topology and DWCness

In this chapter we recall the minimal background in digital topology necessary
to define n-D DWCness for sets and images.

2.1 Mathematical Basics in n-D

Let B = {e1, . . . , en} be the (orthonormal) canonical basis of Zn. We use the
notation xi, where i belongs to J1, nK, to determine the ith coordinate of the
vector x ∈ Zn. We recall that the L1-norm of a point x ∈ Zn is denoted
by ‖.‖1 and is equal to

∑
i∈J1,nK |xi| where |.| is the absolute value. Also, the

L∞-norm is denoted by ‖.‖∞ and is equal to maxi∈J1,nK |xi|.
For a given point x ∈ Zn, the set of the 2n-neighborhood in Zn is noted

N2n(x) and is equal to {y ∈ Zn ; ‖x− y‖1 ≤ 1}. In other words,

N2n(x) = {x} ∪ {x− e1, x+ e1, . . . , x− en, x+ en}.

An element of the 2n-neighborhood of x ∈ Zn is called a 2n-neighbor of x
in Zn. The starred 2n-neighborhood of x ∈ Zn is noted N ∗2n(x) and is equal
to N2n(x) \ {x}. Two points x, y ∈ Zn such that x ∈ N ∗2n(y) or equivalently
y ∈ N ∗2n(x) are said to be 2n-adjacent.

Then, for a given point x ∈ Zn, the set of the (3n − 1)-neighborhood is
noted N3n−1(x) and is equal to {y ∈ Zn ; ‖x− y‖∞ ≤ 1}. In other words,

N3n−1(x) =

x+
∑
i∈J1,nK

λie
i ; λi ∈ {−1, 0, 1},∀i ∈ J1, nK

 .
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An element of the (3n−1)-neighborhood of x ∈ Zn is called a (3n−1)-neighbor
of x. The starred (3n − 1)-neighborhood of x ∈ Zn is noted N ∗3n−1(x) and is
equal to N3n−1(x) \ {x}. Two points x, y ∈ Zn such that x ∈ N ∗3n−1(y) or
equivalently y ∈ N ∗3n−1(x) are said to be (3n − 1)-adjacent.

Let x, y be two points in Zn and X be a subset of Zn. A (finite) 2n-
path (respectively a (finite) (3n−1)-path) joining x to y into X is a sequence
(p0 = x, p1, . . . , pk−1, pk = y) such that for any i ∈ J0, kK, pi belongs to X and
such that for any i ∈ J0, k−1K, pi+1 ∈ N ∗2n(pi) (respectively pi+1 ∈ N ∗3n−1(pi)).
Such paths are said to be of length k.

A subset X of Zn such that its cardinal Card(X) is finite is said to be
a digital set. A (digital) set X ⊂ Zn is said 2n-connected (respectively
(3n − 1)-connected) iff for any couple of points x, y ∈ X, there exists a 2n-
path (respectively a (3n − 1)-path) joining them into X. A subset C of X
which is 2n-connected (respectively (3n−1)-connected) and which is maximal
in the inclusion sense, that is, there is no subset of X which is greater than C
and which is connected, is said to be a 2n-component (respectively a (3n−1)-
component) of X.

A point x ∈ Zn is said to be 2n-connected (respectively (3n−1)-connected)
to a set Y ⊆ Zn iff there exists a point y ∈ Y such that x and y are 2n-
neighbors (respectively (3n − 1)-neighbors). Two sets X, Y ⊆ Zn are said to
be 2n-connected (respectively (3n− 1)-connected) iff there exists x ∈ X such
that x and Y are 2n-connected (respectively (3n − 1)-connected).

The set of connected components of a digital set X ⊆ Zn based on the ξ-
connectivity, ξ ∈ {2n, 3n− 1}, is denoted by CCξ(X). Assuming that a point
x ∈ Zn belongs to a set X ⊂ Zn, the connected component of X based on
the ξ-connectivity, ξ ∈ {2n, 3n− 1}, is denoted by CCξ(X, x); in the contrary
case, CCξ(X, x) = ∅.

2.2 n-D DWCness

Now, we recall our definition of digital well-composedness for sets in Zn, that
we call in this way because it is based on patterns called “k-dimensional
critical configurations”, k ∈ J2, nK, and these patterns can only occur in
subsets of Zn. So let us introduce the basic mathematical background which
will allow us to generalize the notion of well-composedness based on critical
configurations to dimension n ≥ 2.
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Figure 2.1: 2D, 3D and 4D blocks.

Like usual, B = {e1, . . . , en} is the canonical basis of Zn.

Definition 1. Given a point z ∈ Zn and a family of vector F = (f 1, . . . , fk) ⊆
B, we define the block of Zn associated to the couple (z,F) in this way:

S(z,F) =

z +
∑
i∈J1,kK

λif
i
∣∣ λi ∈ {0, 1}, ∀i ∈ J1, kK

 .

A subset S ⊂ Zn is called a block of Zn iff there exists a couple (z,F) ∈
Zn×P(B) such that S = S(z,F). Note that a block of Zn which is associated
to a family F ∈ P(B) of cardinal k ∈ J0, nK is said to be of dimension k, what
will be denoted by dim(S) = k. Figure 2.1 shows 2D, 3D and 4D blocks. We
can remark that their dimension does not depend on the space they lie in.
We will denote the set of blocks of Zn by B(Zn).

Using this notion of blocks, we can define antagonism.

Definition 2. Two points p, q ∈ Zn belonging to a block S ∈ B(Zn) are said
to be antagonist in S iff their distance equals the maximal distance using the
L1 norm between two points into S. In other words, two points p and q in
Zn are antagonist in S ∈ B(Zn) iff p, q ∈ S such that:

‖p− q‖1 = max{‖x− y‖1 ; x, y ∈ S},

and in this case we write that q = antagS(p) or equivalently p = antagS(q).

The antagonist of a point p in a block S ∈ B(Zn) containing p exists
and is unique. Sometimes we will use the notation S(p, q) where p, q ∈ Zn

11



Figure 2.2: In the raster scan order: the white points are 1-antagonists,
2-antagonists, 3-antagonists, and 4-antagonists.

are (3n − 1)-neighbors to indicate the block in B(Zn) such that p and q are
antagonist in this block.

Also, two points which are antagonist in a block of Zn of dimension k ∈
J0, nK are said k-antagonist. In this case, k of their coordinates differ, and
they differ from a value 1, the other coordinates being equal. Two points
which are 0-antagonist are equal, two points which are 1-antagonist in a block
of Zn are 2n-neighbours, and two points which are n-antagonist in a block
S ∈ B(Zn) are (3n−1)-neighbors. See Figure 2.2 for different possible couple
of antagonists (in white) in a 4D space.

Now we are able to define critical configurations of dimension k ∈ J2, nK
in a n-D space:

Definition 3. A set of two points {p, q} ∈ Zn such that p and q are an-
tagonist in a block S ∈ B(Zn) of dimension k ∈ J2, nK is called a primary
critical configuration of dimension k. Any set equal to a block S ∈ B(Zn) of
dimension k ∈ J2, nK minus two points which are antagonist into S is called
a secundary critical configuration of dimension k. More generally, a critical
configuration (of dimension k ∈ J2, nK) is either a primary or a secondary
critical configuration (of dimension k).

In other words, the set of primary critical configurations can be written

12



Figure 2.3: The white points on the left draw a 2D primary critical con-
figuration, and the white points on the right draw a secundary 2D critical
configuration.

Figure 2.4: The white points on the left draw a 3D primary critical con-
figuration, and the white points on the right draw a secundary 3D critical
configuration.

as following:

{{p, antagS(p)} ; S ∈ B(Zn), p ∈ S, dim(S) ≥ 2} ,

and the set of the secondary critical configurations can be written in this
way:

{S \ {p, antagS(p)} ; S ∈ B(Zn), p ∈ S, dim(S) ≥ 2} .
Figures 2.3, 2.4 and 2.5 depict 2D, 3D, and 4D critical configurations.

There comes our definition of digitally well-composed sets:

13



Figure 2.5: The white points on the left draw a 4D primary critical con-
figuration, and the white points on the right draw a secundary 4D critical
configuration.

Definition 4. A (digital) set X ⊂ Zn is said digitally well-composed or
DWC iff it does not contain any critical configurations, that is, for any block
S ∈ B(Zn), the restriction X∩S is neither a primary nor a secundary critical
configuration.

Obviously, this definition is self-dual, since a set X ⊂ Zn contains a
primary (respectively a secondary) critical configuration in the block S ∈
B(Zn) iff its complement Xc contains a secondary (respectively a primary)
critical configuration in this same block S.

We can reformulate digital well-composedness based on 2n-paths in di-
mension 2, 3, but also in dimension n ≥ 4 as showed by our n-D theorem:

Theorem 1. A set X ⊂ Zn is digitally well-composed iff, for any block
S ∈ B(Zn) and for any couple of points (p, antagS(p)) such that they belong
to X ∩ S (resp. S \ X), p and antagS(p) are 2n-connected in X ∩ S (resp.
in S \X).

2.2.1 Well-composed gray-level n-D images

Now let us recall the definition of threshold sets, coming from the cross-section
topology [20, 9, 7, 8]. Let u : Zn → R be an image, and let be λ ∈ R a given
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threshold, a large upper threshold set is defined as:

[u ≥ λ] = {x ∈ Zn ; u(x) ≥ λ},

a strict upper threshold set is defined as:

[u > λ] = {x ∈ Zn ; u(x) > λ},

a large lower threshold set is defined as:

[u ≤ λ] = {x ∈ Zn ; u(x) ≤ λ},

and a strict lower threshold set is defined as:

[u < λ] = {x ∈ Zn ; u(x) < λ}.

Definition 5 (n-D DWC images). A digital image u : Zn → R is said digi-
tally well-composed or DWC iff for every threshold λ ∈ R, all the threshold
sets of u are DWC.

2.2.2 Characterizing DWC real-valued n-D images

Like exposed in [10], there exists a characterization for gray-level digitally
well-composed images defined on bounded hyperrectangles. It is the natural
extension of the characterization of Latecki for 2D images in [17].

Proposition 1. Let n ≥ 2 and s ≥ 1 be two integers and H be a bounded
hyperrectangle in Zn. A real-valued image u : D ⊂ Zn → R is digitally well-
composed iff for any block S ∈ B(D) such that dim(S) ≥ 2 and for any couple
of points (p, p′) ∈ S × S such that p′ = antagS(p), the following relation is
true:

intvl(u(p), u(p′)) ∩ Span{u(p′′)
∣∣ p′′ ∈ S \ {p, p′} } 6= ∅.

15



Chapter 3

Axiomatic Digital Topology
and AWCness

Our sources in matter of Combinatorial Topology and of Piecewise Linear
Topology in this chapter are mainly: [12, 6, 1, 11, 14, 1, 4, 2, 18, 11].

3.1 Topology

Definition 6 (Topological spaces [15, 1]). Let X be a set of points, and let
U be a set of subsets of X such that:

• X, ∅ ∈ U , (TO1)
• any union of any family of elements in U belongs to U , (TO2)
• any finite intersection of any family of elements in U belongs to U . (TO3)

Then U is said to be a topology, and the couple (X,U) is called a topological
space. The elements of X are called the points of (X,U), and the elements
of U are called the open sets of (X,U). We will abusively say that X is a
topological space, assuming it is supplied with its topology U .

An open set which contains a point of X is said to be a neighborhood of
this point.

Definition 7 (Closed sets and Closure [1]). Let (X,U) be a topological space,
and let S be a subset of X. A set S ⊆ X is said closed iff it is the complement
of an open set in X. The intersection of all the closed sets in X containing M
is denoted by Clo(X,U)(S) and is called the closure of S. When no ambiguity
is possible, we will abusively denote it Clo(S).
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Proposition 2 (Properties of the closure [1]). Let (X,U) be a topological
space, and let S, T be subsets of X, then:

• Clo(S ∪ T ) = Clo(S) ∪ Clo(T ),

• S ⊆ Clo(S),

• Clo(∅) = ∅.

Definition 8 (Interior [1]). Let (X,U) be a topological space. A point p in
X is said to be an interior point of S relatively to the topology U iff there
exists U ∈ U such that p ∈ U ⊆ S. The set of all the interior points of a set
S ⊆ X is denoted by Int(X,U)(S).

Note that the interior of a set S ⊆ X is an open set in X.

Definition 9 (Topological boundary [1]). Let (X,U) be a topological space.
The boundary of a set S ⊆ X is Clo(S) \ Int(X,U)(S).

Definition 10 (Relative topology [12]). Let (X,U) be a topological space and
let S be a subset of X. We call relative topology induced in S by U the set
of all the sets which can be written U ∩ S where U ∈ U . A set which is open
in the relative topology of S is said to be a relatively open set.

Definition 11 (Connectedness [12]). Let (X,U) be a topological space. A
set S ⊂ X is said to be connected iff there is no decomposition S = T1 ∪ T2
such that T1 ∩ T2 = ∅, both T1, T2 6= ∅, and relatively open sets with respect
to S.

Proposition 3 (Union of non disjoint connected sets [1] (p.14, Prop. 3.13)).
Let (X,U) be a topological space. Let A,B be two connected subsets of X. If
A ∩B 6= ∅, then A ∪B is connected.

Definition 12 (Components [1]). Let p a point of a topological space (X,U).
The union of all connected sets containing p is connected, is the largest con-
nected set in (X,U) containing p, and is called the component of the point
p in (X,U). We denote it CC(X, p) where X represents abusively (X,U).

Proposition 4 (Continuous functions). A function f mapping a topological
space (X,U) to (Y,V) is said to be continuous iff for any set U ⊆ Y which
is open in Y , its inverse image:

f−1(U) ≡ {x ∈ X ; f(x) ∈ U}

is open in X.
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Proposition 5 (Image of a connected set). The image by a continuous map-
ping of a connected topological space is a connected topological space.

3.2 Regular open/closed sets

Let T be a topological space. Then, IntT denotes the interior operator and
CloT the closure operator in this topological space.

Definition 13. A set X subset of a topological space T is said to be a regular
open set iff X = IntT (CloT (X)).

Definition 14. A set X subset of a topological space T is said to be a regular
closed set iff X = CloT (IntT (X)).

3.3 T0-spaces and Alexandrov Spaces

Definition 15 (Degenerate sets [1]). Let (X,U) be a topological space. A set
M ⊆ (X,U) is said to be degenerate if it consists of only one point.

Definition 16 (T0 Axiom and T0-spaces [3, 15, 1].). We say that a topolog-
ical space (X,U) verifies the T0 axiom of separation iff it for any two dif-
ferent points in X, at least one has a neighborhood not containing the other,
or equivalently iff two distinct degenerate subsets of X have distinct closures
in (X,U) . A topological space which verifies the T0 axiom of separation is
said to be a T0-space.

Definition 17 (Discrete Spaces [4]). A topological space (X,U) is said dis-
crete iff the intersection of any family of open sets of X is open in X, or
equivalently iff the union of any family of closed sets of X is closed in X.

Definition 18 (Alexandrov Spaces [12]). A discrete T0-space is said to be
an Alexandrov space.

Proposition 6 (Smallest open/closed sets [12]). Let (X,U) be an Alexandrov
space. For any point P ∈ X, there exists a smallest neighborhood of P is
X:

OP =
⋂

U∈U s.t. P∈U

U.
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Due to the symmetry of Alexandrov spaces, there exists also a smallest closed
set containing P :

CP =
⋂

U closed in X s.t. P∈U

U.

Alexandrov spaces get some interesting properties [12]:

Theorem 2. Let (X,U) be an Alexandrov space, and P,Q be two points of
X.

1. if P 6= Q, then:

• P ∈ OQ⇒ Q 6∈ OP,
• P ∈ CQ⇒ Q 6∈ CP,

2. P ∈ CQ⇔ Q ∈ OP,

3. CP ⊆ CQ⇔ OQ ⊆ OP.

Definition 19 (Locally finite). A topological space (X,U) is said to be locally
finite if each point P ∈ X has as finite neighborhood and a finite closed set
containing P .

Theorem 3 (Path-connectivity and Connectivity in Alexandrov spaces [12].).
Let (X,U) be an Alexandrov space. Then S ⊆ X is connected iff it is path-
connected.

3.4 Partially ordered sets

Definition 20 (Binary relation [6]). Let X be an arbitrary set. A binary
relation R on X is as subset of the cartesian product X ×X:

R ⊆ X ×X.

Equivalently, a binary relation R on X is a mapping from X ×X to {0, 1}
such that ∀x, y ∈ X:

{(x, y) ∈ R} ⇒ {R(x, y) = 1} , and {(x, y) 6∈ R} ⇒ {R(x, y) = 0} .

Sometimes will denote by xRy or by y ∈ R(x) the fact that (x, y) ∈ R.
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Definition 21 (Properties of binary relations [6]). A binary relation is said:

• reflexive iff, ∀x ∈ X, (x, x) ∈ R,

• irreflexive iff, ∀x ∈ X, (x, x) 6∈ R,

• symmetrical iff, ∀x, y ∈ X, (x, y) ∈ R⇔ (y, x) ∈ R,

• asymmetrical iff, ∀x, y ∈ X, (x, y) ∈ R and (y, x) ∈ R⇒ x = y,

• transitive iff, ∀x, y, z ∈ X, (x, y) ∈ R and (y, z) ∈ R⇒ (x, z) ∈ R.

Definition 22 (Inverse of a binary relation [6]). Let X be a set, and R a
relation order on X. We say that the binary relation R′ on X such that
∀x, y ∈ X, (x, y) ∈ R⇔ (y, x) ∈ R′, is the inverse of R.

Notations 1 (R� [6]). Let X be a set, and R a relation order on X. We
will note R� the relation order defined such that, ∀x, y ∈ X:{

(x, y) ∈ R�
}
⇔ {(x, y) ∈ R and x 6= y} .

Definition 23 (Order relation [6]). Let O be a set of arbitrary elements.
An order relation on O is a binary relation on X such that R is reflexive,
antisymmetric, and transitive.

Definition 24 (Posets/Orders [6]). A set X of arbitrary elements supplied
with an order relation R on X is denoted (X,R) or |X| and is said to be a
partially ordered set (poset) or simply an order. We will also say that the
order relation R is associated to X, and that X is the domain of the poset
(X,R).

Notations 2 (α, β and θ [6]). Let |X| be a partially ordered set. We will
usually denote by αX the order relation associated to its domain X, in such
a way that O = (X,αX). Also, we will write βX the inverse of αX , and
θX = αX ∪ βX .

Notations 3 (α, β and θ applied to sets). By extension, we will define for
any X subset of a partially ordered set:

α(X) =
⋃
x∈X α(x),

β(X) =
⋃
x∈X β(x),

θ(X) =
⋃
x∈X θ(x).
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Notations 4 (αX(x), βX(x), θX(x) [6]). Let |X| be a partially ordered set,
and let x be a point in its domain X. Then we denote:

• αX(x) = {p ∈ X ; p ≤ x},

• βX(x) = {p ∈ X ; x ≤ p},

• θX(x) = αX(x) ∪ βX(x).

αX(p) is called the closure of p in |X| and is the minimal closed set in X
containing x, βX(p) is called the star of p in |X|, and is the minimal open
set in X containing X, and θX(x) is called the neighborhood of p in |X|.

To forge the intuition let us cite an example [1] of partially ordered sets:
the set consisting of the points, staightlines, and planes of an Euclidian space
is partially ordered by letting a point (respectively a straight line) precedes
any straight line (respectively plane) containing it. In this case, if p ∈ O is
a point, α(p) is simply the set made of this point {p}. If p is a straight line,
α(p) is this straight line plus all the points lying on this line. If p is a plane,
α(p) is this plane, plus all the straightlines lying in this plane, plus all the
points lying in this plane. Also, if p is a point, β(p) is this point, plus all the
straightlines containing this point, plus all the planes containing this point.
If p is a straight line, β(p) is this straight line, plus all the planes containing
this straightline. Finally, if p is a plane, β(p) is the set made of this plane.

Note that the set O of all the subsets of an arbitrary set M :

O = {A ; A ⊆M} ,

is also a partially ordered set. Futhermore, if A1, A2 ∈ O, A1 > A2 means
that A2 is a proper subset of A1, which can be written A2 ⊂ A1. The resulting
order is called the natural order in the collection of set O. It is also called
the order based on the inclusion. We will see the importance of this order
using Khalimsky grids in a further subsection.

Definition 25 (Isomorphic orders [6]). Let |X| = (X,αX) and (|Y | =
(Y, αY ) be two orders. Then, these two orders are said isomorphic (in the
order sense) iff there exists an isomorphism in the order sense between |X|
and |Y |, that is, a bijection f : X → Y such that for any couple (x1, x2) of
elements of X:

{x1 ∈ αX(x2)} ⇔ {f(x1) ∈ αY (f(x2))} .
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Notations 5 (Empty order [11]). Note that all the orders whose domain is
empy are isomorph, and we denote them by |∅|.

Definition 26 (Suborders [6]). Let |X| = (X,αX) be an order, and let S be
a subset of X. The suborder of |X| relative to S is the order (S, αS) with
αS = αX ∩ (S × S). If no ambiguity is possible, we will write (S, αS) = |S|.

Proposition 7 (αS(x), βS(x), θS(x) [6]). Let (X,αX) = |X| be an order,
and S be a subset of X inducing a suborder (S, αS) = |S|. Then for any
x ∈ S, αS(x) ≡ αX(x) ∩ S, βS(x) ≡ βX(x) ∩ S, and θS(x) ≡ θX(x) ∩ S.

Definition 27 (Rank [6]). Let (X,αX) = |X| be an order. The rank ρX(x)
of an element x in |X| is 0 if α�X(x) = ∅ and is equal to:

max
y∈α�

X(x)
(ρX(y)) + 1

either. The rank of an order |X| is denoted by ρ(|X|) and is equal to the
maximal rank of its elements:

ρ(|X|) = max
x∈X

(ρX(x)).

As underlined by Daragon [11], the notion of dimensions and of ranks are
different, even if they often match: the dimension of an object is inherent to
an object, when the notion of rank depends of the elements that lie into the
nieghborhood.

Definition 28 (Point/k-element [6]). Let (X,αX) = |X| be an order. An
element of X such that ρX(x) = k is called point or k-element of X.

3.5 From posets to T0-spaces

There comes a much important theorem of Alexandrov [1] relating orders
and Alexandrov spaces.

Theorem 4 (Theorem 6.52 [1] (p.28)). Let O be a partially ordered set, and
let A be a subset of O. We shall say that A is closed iff for any p, p′ ∈ O:

{p ∈ A and p′ < p} ⇒ {p′ ∈ A} .
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This topology (based on the closed sets) converts O into an Alexandrov space
(X,U) = f(O). Conversely, every Alexandrov space (X,U) can be turned
into a partially ordered set O = φ((X,U)) if, for any two distinct elements
p, p′ ∈ (X,U), p′ < p is taken to mean that p′ ∈ α(p). It follows that
f(φ((X,U))) = (X,U) and φ(f(O)) = O.

As explained by this theorem [1], partially ordered sets can be identified
with Alexandrov spaces in such a way that αO(p) is synonymous with the
(topological) closure in the equivalent Alexandrov space f(O), and βO(p) is
equal to the minimal (open) neighborhood of the point p in f(O) (where
β = α−1).

3.6 Khalimsky Grids

Definition 29 (Khalimsky Grids [16]). The Khalimsky grid of dimension n
is denoted |Hn| = (Hn,⊇) and is defined as the order such that:

H1
0 = {{a} ; a ∈ Z} ,

H1
1 = {{a, a+ 1} ; a ∈ Z} ,

H1 = H1
0 ∪H1

1,

Hn = {h1 × · · · × hn ; ∀i ∈ J1, nK, hi ∈ H1} .

Definition 30 (Cubical complexes). Let X be a subset of (Hn, αHn). We say
that X is a cubical complex iff its is closed under inclusion, that is, for any
element h of X , all the elements h′ of Hn such that h′ ⊆ h are elements of
X. In other words, X = αHn(X).

Figure 3.1 shows two usual representations depicting a same cubical com-
plex. On the left, we percieve the elements of Hn as sets of points of Zn,
and we clearly see when their interection is empty or not. On the right, we
percieve elements of Hn as geometric objects (vertices, edges, squares, cubes,
and so on), this is the splitted representation, whose name is justified by the
fact that even elements whose intersection is non empty are separated on the
representation.
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Figure 3.1: Different representations of the same cubical complex.

A consequence of Definition 29, showing that α =⊇, is that for any h ∈
Hn, we have the following equalities for the closure, the opening, and the
neighborhood:

α(h) = {h′ ∈ Hn ; h′ ⊆ h},

β(h) = {h′ ∈ Hn ; h ⊆ h′},

θ(h) = {h′ ∈ Hn ; h′ ⊆ h or h ⊆ h′}.

Obviously, any suborder |X| of |Hn| verifies that its associated order relation
αX equals ⊇ ∩X ×X which corresponds to the inclusion order restricted to
X, and then for any h ∈ X:

αX(h) = {h′ ∈ X ; h′ ⊆ h},

βX(h) = {h′ ∈ X ; h ⊆ h′},

θX(h) = {h′ ∈ X ; h′ ⊆ h or h ⊆ h′}.

Definition 31 (Dimension and Hn
k). Any element h of Hn which is the

cartesian product of k elements, with k ∈ J0, nK, of H1
1 and of (n−k) elements

of H1
0 is said to be of dimension k, which is denoted by dim(h) = k, and the

set of all the elements of Hn which are of dimension k is denoted by Hn
k .

Property 1. For any k ∈ J0, nK, any element h in Hn
k is of rank ρ(h, |Hn|) =
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k. In other words, in the Khalimsky grids, the dimension is equal to the rank
in |Hn|.

Proof: Let us proceed by induction on the dimension of h ∈ Hn.

Initialisation (dim(h) = 0): When dim(h) = 0, there exists a ∈ Zn such
that h = ⊗i∈J1,nK{ai}, and then by Lemma 1, α(h) = ⊗i∈J1,nK{{ai}} = {h},
then α�(h) = ∅, and then the rank of h in |Hn| is equal to 0.

Induction (dim(h) ∈ J1, nK): We assume that for any i ∈ J0, k− 1K, when
he dimension of h is lower than or equal to (k − 1), the dimension is equal
to the rank in |Hn|. Let us now assume that dim(h) = k, we can rearrange
the space coordinates such that h can be written:

h = ⊗i∈J1,kK{ai, ai + 1} ⊗ ⊗i∈Jk+1,nK{ai},

and then by the closure operator we obtain by Lemma 1:

α(h) = ⊗i∈J1,kK{{ai}, {ai, ai + 1}, {ai + 1}} ⊗ ⊗i∈Jk+1,nK{{ai}}.

In other words, the only element of α(h) of dimension k is h itself, all the
other elements being of dimension in J0, k − 1K, and then:

max
{

dim(h′) ; h′ ∈ α�(h)
}

= k − 1.

When the dimension il lower than or equal to (k − 1), the dimension
equals the rank in |Hn|, and then we obtain:

max
{
ρ(h′, |Hn|) ; h′ ∈ α�(h)

}
= k − 1,

and then the rank of h is k.

Finally, we obtained that for any value of k, and then for any element of
Hn, the dimension equals the rank in |Hn|.

Proposition 8 (Khalimsky grids are Alexandrov spaces [6]). For any n ≥ 1,
the Khalimsky grids |Hn = (Hn, α)| supplied with the order relation α =⊇,
as defined in Theorem 4, is an Alexandrov space.

Figure 3.2, Figure 3.3, and Figure 3.4 show the different possibles clo-
sures/openings/neighborhoods in the case of a “point”, an “edge”, and a
“square” in H2. We will see next that these Kovalevsky cells will be called
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Figure 3.2: The closures α(x), α(y), α(z) in H2 [11] (p. 34)
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Figure 3.3: The openings β(x), β(y), β(z) in H2 [11] (p. 34)
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Figure 3.4: The neighborhoods θ(x), θ(y), θ(z) in H2 [11] (p. 34)
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Figure 3.5: A binary image ubin in Z2 [11] (p. 31)

Figure 3.6: ubin [11] (p. 31) supplied with the (4, 8)-topology on the left
and with the (8, 4)-topology on the right (the foreground is in black and the
background in white).

respectively 0-faces, 1-faces, and 2-faces and that this notion exists in any
finite dimension.

Starting from a binary image ubin or equivalently from a set whose ubin is
the characteristical image depicted on Figure 3.5, we can supply this image
with the (4, 8)-topology, or the (8, 4)-topology very usual in digital topology
(see Figure 3.6). Just observe then the different connected components of
the foreground that result from this choice: 3 components in the first choice,
and 2 in the second choice.

No, let us immerse the image in H2 in different manners. In the raster scan
order, the first is the most simple, we do a (1−1)- mapping between the two
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Figure 3.7: Different immersions of ubin into H2 (the 3 first pictures are
extracted from p. 31 of [11]).

spaces, but this space is not invariant by translation. The second approach
uses the miss strategy (which reflects the (4, 8)-topology): the elements of
Z2 are mapped to the squares of H2, and each point or edge in H2 whose all
the neighboring squares are in the foreground are assigned as foreground too.
The third approach uses the hit strategy (which reflects the (8, 4)-topology):
the elements of Z2 are mapped to the squares of H2, and each point or edge
in H2 which is a face of a square of the foreground is assigned as foreground
too. The fourth approach corresponds to the isomorphism Hn we are going
to use, and which is such that elements of Zn become n-cubes.

Definition 32 (Paths [6]). Let |X| be an order. A path from x ∈ X to
y ∈ X is a sequence (p0 = x, p1, . . . , pk−1, pk = y) of elements of X such that
for any i ∈ J0, k − 1K, x ∈ θX(y).
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Figure 3.8: A path in H2 [11] (p.34)

Figure 3.8 depicts a path in H2.

Definition 33 (Connectivity of an order [6]). An order, as every topological
space, is connected iff it cannot be partitioned into two non-empty open sets.

Effectively, this definition holds since Alexandrov spaces and partially
ordered sets are equivalent by Theorem 4 [1].

Definition 34 (Path-connectivity of an order [6]). An order |X| is said
connected by path or path-connected iff for any couple (x, y) of elements of
X, there exists a path from x to y into |X|.

Theorem 5 (Connectivity VS path-connectivity [6]). Let |X| be a partially
ordered set. Then |X| is connect iff it is path-connected.

Since the pathwise-connectivity between two points x, y belonging to an
order constitutes a binary relation which is reflexive, symmetrical, and tran-
sitive, that is, an equivalence relation on X, we can define the equivalence
classes of X in Hn as the connected components of X in Hn:

Definition 35 (Connected components [6]). Let |X| be an order. A con-
nected component C of |X| is a subset of X such that for any couple (x, y)
of elements of C, there exists a path from x to y lying entirely into C, and
such that C is maximal for this property.

Definition 36 (Simple closed curve [6]). An order |X| = (X,αX) is a simple
closed curve if for any point x ∈ X, Card(θ�X(x)) = 2 and such that the couple
(y, z) of elements of θ�X(x) verifies that y 6∈ θ�X(z).
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Figure 3.9: A simple closed curve in H2 [11] (p.34)

As proved in [16], a simple closed curve (see Figure 3.9) separates H2 and
then satisfies an analog of the Jordan curve theorem in the 2D Khalimsky
grids.

3.7 Order Joins

Definition 37 (Order Join [6]). Let |X|, |Y | be two orders. It is said that
|X| and |Y | can be joined if X ∩ Y = ∅. If |X| and |Y | can be joined, the
join of |X| and |Y | is defined as the order:

|X|∗|Y | = (X ∪ Y, αX ∪ αY ∪X × Y ).

Some properties [11] of the join are important to remark:

• the empty order |∅| is the neutral element of the join operator: |X|∗|∅| =
|∅|∗|X| = |X|,

• the operator ∗ is not commutative,

• the operator ∗ does not create new elements, it adds some order rela-
tions between the elements of X and the elements of Y ,

• the elements of Y keep their initial rank when the join operation is
applied, when the elements of X have a rank which is incremented by
the rank of Y plus one.
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The construction of an order join can be made in this way: we put on
the top each element of X, and at the bottom all the elements of Y . Then
we connect the elements of X according to αX , and then the elements of Y
according to αY . Finally, we connect each element of X to each element of
Y , and we have obtained the Hasse diagram of the order join.

Property 2 (Order join and θ�X(x) [11](Property 1)). Let |X| be an order.
Then for any x ∈ X:

|θ�X(x)| = |β�X(x)|∗|α�X(x)|.

We will see in this section that as is the thesis of Daragon [11], this equi-
laty is particularily crucial, since it allows to “decompose” the neighborhood
of a point of Hn into two orders which own many very strong topological
properties.

Property 3 (θ�X∗Y (x) [11](Property 2)). Let |X| and |Y | be two orders that
can be joined. Then let x be an element of X and y be an element of Y .
Then we obtain that |θ�X∗Y (x)| = |θ�X(x)|∗|Y | and |θ�X∗Y (y)| = |X|∗|θ�Y (y)|.

On Figure 3.10, three orders of increasing complexity are depicted. Their
joins are depicted on Figure 3.11 and Figure 3.12. Note that the Hasse
diagrams are on the top, and the geometrical representation at the bottom.
Observe that the rank of these orders is straightforward to compute looking
at their Hasse diagrams.

3.8 n-surfaces

Definition 38 (CF-orders [6]). Let |X| = (X,αX) be a partially ordered set.
|X| is said countable iff its domain X is countable. Also, |X| is said locally
finite iff for any element x ∈ X, the set θX(x) = {y ∈ X ; (x, y) ∈ θX} is
finite. A partially ordered set which is countable and locally finite is said to
be a CF-order.

Now let us recall the definition of discrete surfaces or n-surfaces of Evako,
Kopperman and Mukhin [13] which will be essential to define well-compo-
sedness in the sense of Alexandrov.
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c3
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p1 p2 p3

c1 c2 c3

a

a

|X|

|Y|
y z

x

x zy

Figure 3.10: Three examples of orders |X|, |Y |, |Z|. [11] (p.37)

a

x

y z

zy x

a

|X|*|Y|

x

y

a
|Y|*|X|

x

a

zy

z

Figure 3.11: The join operator ∗ is not commutative. [11] (p.37)

Definition 39 (n-surface). Let |X| = (X,αX) be a CF-order. The order |X|
is said to be:

• a (−1)-surface iff X = ∅,

• a 0-surface iff X is made of two elements x, y ∈ X which are not
neighbors the one of the other one: x 6∈ αX(y) and y 6∈ αX(x),
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|X|*|Z|

a

p1

p3p2

c1 c2

c3

p1 p2 p3

c2
c1 c3

a

|Y|*|Z|

p1 p2 p3

c1 c3
c2

y z

x

x

y

z
c2

c3

c1
p1

p2p3

Figure 3.12: Some order joins representing a simplicial complex on the left
and a sphere on the right [11] (p.37)

a b
c

d

e

f
|S2|

a b

c d

e f (c)

a b

e f
θS2

Figure 3.13: A 2-surface: the sphere S2 [11] (p.50)

• a n-surface, n ≥ 1, iff |X| is connected and for any x ∈ X, the order
|θ�X(x)| is a (n− 1)-surface.

To forge the intuition on discrete surfaces, we propose to show an ex-
ample extracted from [11]. On Figure 3.13, we can observe according to
Daragon [11] the most simple 2-surface: the sphere |S2|. It is made of 6
elements: S2 = {a, b, c, d, e, f}, and any point x ∈ S2 verifies that its neigh-
borhood |θ�S2(x)| is a 1-surface. Effectively, the neighborhood of any point
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y ∈ θ�S2(x), we have that

∣∣∣∣θ�θ�S2 (x)(y)

∣∣∣∣ is made of two points which are not

neighbors, that is, is a 0-surface.

Another example of 2-surface is simply |H2|: the neighborhood of any
point of H2 is a simple close curve. Effectively, as proven by Evako et al.
in [13]:

Theorem 6. The order |Hn| is a (discrete) n-surface.

Note that this theorem is fundamental and will have many implications
later in our proof that well-composedness in the sense of Alexandrov and
digital well-composedness are equivalent.

Also, Daragon [11] proved this following theorem on partially ordered
sets:

Theorem 7. Let |X| and |Y | be two orders that can be joined, and let n ∈ N
be an integer. The order |X|∗|Y | is a (n + 1)-surface iff there exists some
p ∈ J−1, n+ 1K such that |X| is a p-surface and |Y | is a (n− p)-surface.

The proof of this theorem is based on Property 3 due to Bertrand [6].

Definition 40 (Homogeneity [11]). An order |X| is said homogeneous iff
for any element x ∈ X, θX(x) contains a n-element.

Property 4 (Rank of a n-surface [13]). Let |X| be a n-surface. The rank of
|X| is equal to n.

Property 5 (Homogeneity of n-surfaces [11]). Let |X| be a n-surface. Any
element x of |X| is θ-neighbor of a n-element of |X|.
Property 6 (Decomposition of a n-surface (Property 10 in [11])). Let |X| =
(X,αX) be an order. Then |X| is a n-surface iff for any x ∈ X, |α�X(x)| is
a (k − 1)-surface and |β�X(x)| is a (n− k − 1)-surface, with k = ρ(x, |X|).

Since this property will be fundamental next, let us show an example of
the β�-adherence and of the α�-adherence of a point x ∈ H3 of rank 2 in
|H3| (see Figure 3.14). Since x is a 2-element, its α�-adherence is a 1-surface,
and its β�-adherence is a 0-surface.

Definition 41 (Separation [11]). Let |X| be an order, and let Y be a strict
subset of X. Then it is said that |Y | separates |X| iff |X\Y | is not connected.

For example, if |X| is a n-surface, and Y is a strict subset of X such that
|Y | is a k-surface, then necessarily k = n−1 (as in continuous topology using
topological n-manifolds).
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x

(x) (x)(x)

x x

Figure 3.14: Different kinds of adherences of a 2-element in H3 [11] (p.54)

3.9 Closed Orders

Definition 42 (Closed orders [11]). Let |X| = (X,αX) be an order. |X| is
said to be closed iff for any z ∈ X, and for any y ∈ α�X(x), for any value
i ∈]ρ(y, |X|), ρ(x, |X|)[:

∃z ∈ α�X(x) ∩ β�X(x) s.t. ρ(z, |X|) = i.

In other words, this relation means that there exists in a closed order
elements “between” x and y which are of any rank between the rank of x
and the rank of y in the order. It recalls simplicial complexes which are closed
by inclusion in the sense that for any k-simplex in a simplicial complex S,
there exists at least one l-simplex in S which is a face of s for any value l
in J0, kK (since a simplicial complex contains by definition all the faces of its
elements).

Property 7 (n-surfaces are closed orders [11] (Property 20 p.63)). Let |X|
be an order. If |X| is a n-surface, |X| is a closed order.

3.10 Plain maps

Let us now recall some mathematical background coming from [5, 21].

Let A = (X,U) be an Alexandrov space.

Definition 43. An application F : X → P(R) (which is also written F :
X  R) is said to be a set-valued map. The domain of F is the set D(F ) ⊆
X such that ∀x ∈ X, F (x) 6= ∅ ⇔ x ∈ D(F ).
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Definition 44. A set-valued map F : X  R is said to be upper semi-
continuous (USC) at x ∈ D(F ), for any neighborhood U of F (x), ∀x′ ∈ β(x),
F (x′) ⊆ U . A set-valued map is said to be upper semi-continuous (USC) iff
it is USC at each point x ∈ D(F ).

Definition 45. A set-valued USC map F : X  R is said to be a (closed)
quasi-simple map iff for any x ∈ D(F ), F (x) is a closed connected set and
furthermore, for any x ∈ D(F ) such that {x} = β(x), F (x) is degenerate.

Definition 46. A quasi-simple map F : X  R is said to be a simple map
iff for any quasi-simple map F2 : X  Z such that F (x) = F2(x) when x ∈ D
is such that β(x) = {x}, then for any x ∈ D(F ), F (x) ⊆ F2(x).

Definition 47. A set-valued map F : X  R is said to be a plain map iff
it is a closed-valued interval-valued simple map.

Now, let us assume that A and B are two topological spaces.

Definition 48. Let F : A  B be a set-valued map. We call the inverse
image of M by F the set F−(M) = {x ∈ A ; F (x) ∩M 6= ∅}. Also, we call
core of M by F the set F+(M) = {x ∈ A ; F (x) ⊆M}.

Then some properties [5] follow for USC maps:

Proposition 9. A set-valued map F : A  B is USC at x iff the core of
any neighborhood of F (x) is a neighborhood of x. Hence, a set-valued map
F : A B isUSC iff the core of any open subset is open.

Proposition 10. If D(F ) is closed, then F is USC iff the inverse image of
any closed set is closed.

3.11 AWCness in n-D

Now we can define well-composedness on Khalimsky grids (AWCness) [21] in
n-D.

Definition 49 (AWCness). A finite set X ⊂ Hn is said well-composed in the
sense of Alexandrov or AWC iff the connected components of its topological
boundary are discrete (n− 1)-surfaces.
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On Khalimsky grids, for a given plain map U : Hn  R, the following
threshold sets exist [21]:

[U D λ] = { z ∈ Hn
∣∣ ∃ v ∈ U(z), v ≥ λ },

[U B λ] = { z ∈ Hn
∣∣ ∀ v ∈ U(z), v > λ },

.[U C λ] = { z ∈ Hn
∣∣ ∀ v ∈ U(z), v < λ },

[U E λ] = { z ∈ Hn
∣∣ ∃ v ∈ U(z), v ≤ λ }.

Definition 50. Let U : Hn  R be a given plain map. We say that this
map is well-composed in the sense of Alexandrov or AWC iff, for any value
of λ ∈ R, the connected components of the topological boundary of each of its
threshold sets [U D λ], [U B λ], [U C λ], and [U E λ] are (n− 1)-surfaces.
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Chapter 4

A sketch of the proof

Let us present the main steps of the proof that AWCness and DWCness are
equivalent on cubical grids.

4.1 From
(Z

2

)n
to Hn

We define the bijection H : (Z/2)→ H1 such that:

∀z ∈ (Z/2),H(z) =

{
{z + 1/2} if z ∈ (Z/2) \ Z,
{z, z + 1} if z ∈ Z. (4.1)

We can then deduce the bijection Hn :
(Z
2

)n → Hn defined such that:

Hn = ⊗i∈J1,nKH(zi),

where zi denote the ith coordinate of z ∈ (Z/2).

We can compute the inverse bijection of H, that we denote by Z : H1 →
(Z/2), and defined such that:

∀h ∈ H1,Z(h) =

{
a if ∃a ∈ Z s.t. h = {a, a+ 1},
a− 1/2 if ∃a ∈ Z s.t. h = {a}. (4.2)

We can then deduce the bijection Zn : Hn → (Z/2) defined such that:

Zn = ⊗i∈J1,nKZ(hi),

where hi denote the ith coordinate of h ∈ Hn.
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{0} {0,1} {1} {1,2} {2}{-1,0}{-1}

-1/2 0 1/2 1 3/2-1-3/2

ℤ

ℍ

Figure 4.1: Bijection between H1 and (Z/2)

Figure 5.2 shows how (Z/2) is mapped to H1. Furthermore, it can be
shown that supplying

(Z
2

)n
with a particular topology, Zn (respectively Hn)

is in fact a topological isomorphism, that is a bicontinuous bijection, between
Hn and

(Z
2

)n
(respectively between

(Z
2

)n
and Hn). In other words, these two

spaces have the same topological structure.

4.2 Immersion into Khalimsky Grids

Starting from a given digital set X ⊂ Zn, we can immerse it into Hn in the
following manner:

IMM(X) ≡ Int(α(Hn(X))),

where Int it the topological interior in Hn:

Int(X) = {h ∈ X ; β(h) ⊆ X} .

4.3 Stating the problem

The context is the following: we have a set X made of points in Zn, from
which we compute its immersion IMM(X) in the Khalimsky grids. X is
digitally well-composed iff it does not contain any critical configuration, and
IMM(X) is said well-composed in the sense of Alexandrov iff its topological
boundary N defined such as:

N = α(IMM(X)) ∩ α(Hn \ IMM(X)),

is made of disjoint discrete (n− 1)-surfaces.

We want to establish that these two concepts are rigorously equivalent.
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4.4 Reformulating the topological boundary

The topological boundary ∂IMM(X) can be reformulated as a function of
X = Hn(X) and the complement Y = Hn

n \ X of X in Hn
n. Effectively, we

have the following proposition:

N = α(X ) ∩ α(Y).

Summarily, we can reformulate this way the boundary because these fol-
lowing properties are verified in Hn:

• Hn is a n-surface and then is homogeneous,

• ∀z ∈ Hn, α(β(z) ∩Hn
n) = α(β(z)),

• ∀z ∈ Hn, α(z) is a regular closed set,

• ∀z ∈ Hn, β(z) is a regular open set.

4.5 Reformulating the problem in a local way

z

Figure 4.2: The subspace |β�(z)| we are working in to study AWCness
(2D/3D cases).
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We could then directly prove that the fact that IMM(X) is well-com-
posed in the sense of Alexandrov implies that X is digitally well-composed,
and the converse, and we would be done. However, we observed that we
can reformulate the condition “IMM(X) is well-composed in the sense of
Alexandrov” with another condition, much simple to handle and manipu-
late, since it is a local criteria (as digital well-composedness is). Effectively,
IMM(X) is well-composed in the sense of Alexandrov is equivalent to:{

∀z ∈ N, |β�N(z)| is a (n− 2− dim(z))− surface
}
.

Since |β�N(z)| is equal to |N ∩ β�(z)|, we understand effectively that we are
studying a restriction of the boundary N in a small subspace, that is, |β�(z)|,
depicted on Figure 4.2, where we can observe that the point z in the middle
of the subspace has been omitted, since it is not taken into account in the
local criteria.

z z

Figure 4.3: Examples of 0-surfaces (in black).

Figure 4.4: Examples of 1-surfaces.
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The question is then: what does it mean that |β�N(z)| is an (n − 2 −
dim(z))-surface? When dim(z) = (n−2), that is, when β(z) is a subspace of
dimension 2 as on the left of Figure 4.2, it means that |β�N(z)| is a 0-surface,
that is, the restriction |β�N(z)| of the boundary N to the subspace β�(z)
is made of two elements which are not neighbors the one of the other one
(see Figure 4.3). When dim(z) = (n − 3), that is when β(z) is a subspace
of dimension 3 as on the right of Figure 4.2, it means that the restriction
|β�N(z)| of the boundary N to the 3D subspace β�(z) is a 1-surface, that is,
a simple closed curve (see Figure 4.4).

Our aim is then to prove that X is digitally well-composed iff for any
element z of the boundary N, we have that |β�N(z)| is a (n − dim(z) − 2)-
surface.

4.6 Study of the converse sense

Let us begin with the converse sense: we admit that for any element z of
the boundary N, we have that |β�N(z)| is a (n− dim(z)− 2)-surface, and we
want to prove that X is digitally well-composed. For that, we will prove the
counterposition: we assume that X is not digitally well-composed, and then
contains a critical configuration, and we show that it implies that there exists
a “critical point” z∗ such that |β�N(z∗)| is not a discrete surface.

So, let assume that X contains a primary critical configuration in a block
S of dimension k ≥ 2, that is, X ∩ S = {p, p′} such that p and p′ are
antagonist into S (the secondary case follows the same reasoning, by duality
of well-composedness in the sense of Alexandrov and digital well-composed-
ness). It is then clear that all the other points of the block S belong to he
complement Y of X in Zn.

Let us begin with the 2D case, that is, when the block S is of dimension
k = 2 in Zn. In this case, its isomorph in Hn, which is in reality made of
n-cubes, can be represented using squares, as depicted on Figure 4.5. Then,
the center of these four squares, that we will call z∗, has a dimension (n−2).
Let us show that this point is critical in the sense that |β�N(z)| is not a 0-
surface. For that, as shown on Figure 4.5, we work into the space β�(z∗),
which contains our four colored squares, and we compute their respective
closures (into the subspace β�(z∗)), their intersection will then be β�N(z∗).
Effectively, |β�N(z∗)| is not a 0-surface, because it is made of 4 points and a
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z*

Figure 4.5: From a 2D critical configuration in Z2 to a critical point z∗ in
H2

0.

0-surface is made of two points, then z∗ is “critical” and we have “proven”
the reciprocal sense for k = 2.

Let us now proceed to the 3D case, that is, when the block S is of dimen-
sion k = 3 in Zn. In this case, its isomorph in Hn can be represented using
cubes, as depicted on Figure 4.6. Then, the center z∗ of these 8 cubes has a
dimension (n− 3) and is critical in the sense that |β�N(z∗)| is an union of two
disjoint 1-surfaces, and then it is not a 1-surface. So we “proved” the case
k = 3 too.

In fact, for the general case k ∈ J2, nK, it can be proven that, if we denote
by p and p′ the isomorphisms of the two points p and p′ respectively into the
cubical complexes Hn, starting from the formulation N = α(X ) ∩ α(Y), we
obtain:

β�N(z∗) =
(
α�(p) ∪ α�(p′)

)
∩ β�(z∗),

which can be decomposed into two orders |α�(p) ∩ β�(z∗)| and |α�(p′) ∩
β�(z∗)| which are disjoint (n− 2− dim(z))-surfaces, and then their union is
not a (n− 2− dim(z))-surface.

4.7 Study of the direct sense

Since we have explained how we proceed in the countersense, let us show how
we proceed in the direct sense.

We want to prove that if X is digitally well-composed, then IMM(X)
is well-composed in the sense of Alexandrov, which can be proven by the
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Figure 4.6: From the 3D critical configuration to the critical point.
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fact that for any element z of the boundary N, we have that |β�N(z)| is a
(n − dim(z) − 2)-surface. In fact, we will proceed by induction. We define
the property (Pk) such that if this property is true for any value k ∈ J1, nK,
then X is well-composed in the sense of Alexandrov:

(Pk) =
{
∀z ∈ N ∩Hn

n−k, |β�N(z)| is a (n− 2− dim(z))− surface
}
.

Obviously, the case k = 0 is not necessary, since no point of the boundary
N is a n-cube.

DWC DWC not DWC 

Figure 4.7: Assuming that X is DWC, |β�N(z)| is a 0-surface when dim(z) =
n− 2 (k = 2).

So let start with k = 1: in this case, z is a (n − 1)-face, and then β�(z)
is empty, which means that |β�N(z)| is a (−1)-surface since it is the empty
order. Let us continue with k = 2. In this case, z is a (n− 2)-face, and then
it is sufficient to proceed cases by case (modulo symmetry, rotation, and
complementation), as shown by Figure 4.7. The isomorphism of X restricted
to β�(z) is depicted using blue faces, and the isomorphism of Y = Zn \ X
restricted to β�(z) is depicted using red faces. Since we have the relation
N = α(X ) ∩ α(Y), we obtain in the two DWC cases (on the left and at the
middle) that the intersection of the closure of the blue faces and the closure
of the red faces makes a 0-surface in β�(z) (depicted in black), since its
restriction to β�(z) is made of two points which are not neighbors the one
of the other one. The case k = 2 is then treated.

For the cases k ∈ J3, nK, we can proceed by induction on k since the
initialization succeeded. So let us assume that k ∈ J3, nK is given and that
the property (Pl) is true for any l ∈ J1, k − 1K, we want to prove it for k.

In this case, z is a (n − k)-face with k ≥ 3, which means that dim(z) ≤
(n − 3), and then (n − 2 − dim(z)) ≥ 1. It is clear then that |β�N(z)| is
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a (n − 2 − dim(z))-surface iff we have two conditions: (1) |β�N(z)| must be
connected, and (2) for any point u of β�N(z), |θ�

β�
N(z)
|must be a (n−3−dim(z))-

surface.

Even if the secund condition seems to be much more complicated than
the first one, it is in fact the converse. Effectively, it it easy to prove by a
simple calculus that |θ�

β�
N(z)
| is equal to:

|β�N(u)|∗
∣∣α�(u) ∩ β�(z)

∣∣ ,
which corresponds to an order join of |β�N(u)| which is a (n − 2 − dim(u))-
surface by the induction hypothesis and

∣∣α�(u) ∩ β�(z)
∣∣, from which we can

prove it is a (dim(u)−dim(z)−2)-surface. Since an order join of a k1-surface
and of a k2-surface is a (k1 + k2 + 1)-surface by Theorem 7, |θ�

β�
N(z)
| is a

(n− 3− dim(z))-surface. Then (2) is proven.

To prove (1), we assume that there exists z ∈ Hn
n−k such that |β�N(z)|

is not connected. We will see that this hypothesis is essential, since many
properties will follow on, until we reach a contradiction.

Assuming |β�N(z)| is not connected obviously means that it is made of
several connected components, that we will denote by {Fi}i∈I . The first
fundamental property is that each component Fi, i ∈ I, is a (n−2−dim(z))-
surface because they are connected (by definition) and because we can prove
that for any u ∈ Fi, we have |θ�Fi

| which is equal to |θ�
β�
N(z)
|, which is a

(n− 3− dim(z))-surface, and then Fi is a (n− 2− dim(z))-surface.

Starting from this first property, a secund fundamental property follows
on: for i ∈ I, a same component Fi cannot contain opposite faces relatively
to z. Roughly speaking, opposite faces are two faces which are symmetrical
relatively to a third face (see Figure 4.8). Effectively, we can feel that if
one first component contains two opposite face in β�(z), it will separate any
other component of |β�N(z)|, which is impossible since each Fi is connected
by hypothesis.

Now that we know that each component Fi cannot contain two opposite
faces, the third fundamental property can be proven: each of them contains
exactly (n − dim(z)) (dim(z) + 1) faces of β�(z). For example, in the 3D
case, that is for dim(z) = (n− 3) as on Figure 4.9, where (dim(z) + 1)-faces
are depicted in red, each component contains exaclty 3 (dim(z) + 1)-faces.
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a bc

c

a

b

c

a

b

a bc

Figure 4.8: Examples of opposites in H2.

z

a

b

Figure 4.9: Structure of β�N(z) when we have (n−dim(z)) = 3 assuming that
|β�N(z)| is not connected.
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Since there are 2(n − dim(z)) of these faces in β�(z), |β�N(z)| is made of 2
components F1 and F2.

Using these three fundamental properties, it can be proven that each
of these two components F1 and F2 lies in the closure of characteristical
n-faces a, b ∈ Hn

n that we define here as the supremum of the (dim(z) + 1)-
faces contained in each of them. More precisely, |F1| ⊆

∣∣α�(a) ∩ β�(z)
∣∣

and |F2| ⊆
∣∣α�(b) ∩ β�(z)

∣∣. Furthermore, since we can prove that two k-
surfaces which are included the one in the other one are equal and since∣∣α�(a) ∩ β�(z)

∣∣ and
∣∣α�(b) ∩ β�(z)

∣∣ are two (n − dim(z) − 2)-surfaces like
the components F1 and F2, we obtain that:

|F1| =
∣∣α�(a) ∩ β�(z)

∣∣ ,
|F2| =

∣∣α�(b) ∩ β�(z)
∣∣ .

On Figure 4.9, representing the 3D case (dim(z) = n−3), the first component
made of red 1-faces and of blue 2-faces on the left lies in the closure of the
3-face a (in the subspace β�(z)) and the second component made of red 1-
faces and of blue 2-faces on the right lies in the closure of the 3-face b (in the
subspace β�(z)).

The link between the configuration we obtained in Hn
n by assuming that

|β�N(z)| is not connected and a critical conguration is then clear: since β�N(z) ⊆
N, if a belongs to X, then the rest of the block minus b belongs to Y , and
then b belongs to X to, and we obtain a critical configuration of primary
type in X. The dual reasoning leads to a secundary critical configuration
in X. In both cases, we obtain a contradiction. Then |β�N(z)| is connected.
Finally, IMM(X) is well-composed in the sense of Alexandrov when X is
digitally well-composed.

4.8 Conclusion for sets

Finally, we obtain the property that a set X ⊂ Zn is DWC iff its immersion
IMM(X) into the Khalimsky grids |Hn| is AWC, that is, is such that its
topological boundary ∂IMM(X) is made of disjoint (n− 1)-surfaces.
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4.9 Conclusion for plain maps

Starting from a function u : Zn → R, we can compute its immersion U :
Hn  R into the Khalimsky grids, defined such that:

∀h ∈ Hn, U(h) =

{
{u(Zn(h))} if z ∈ Hn

n,
Span {U(q) ; q ∈ β(z) ∩Hn

n} either .

We obtain finally that a real-valued image u : Zn → R is DWC iff the
plain map (see Section 3.10) resulting from its immersion U : Hn  R into
the Khalimsky grids is AWC.
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Chapter 5

The complete proof

(0,0,0,0)

(0,1,0,0)

(1,0,0,0)

(1,1,0,0)

(1,0,1,0)

(1,1,1,0)

(0,0,0,1)

(0,1,0,1)

(0,1,1,1)

(1,1,1,1)

(1,0,1,1)

(1,0,0,1)

(0,0,1,1)

(0,1,1,0)

(0,0,1,0)
x

y

z

t

(1,1,0,1)

Figure 5.1: A 4D digitally well-composed set (depicted in blue) and its com-
plement (in red).

Before beginning the complete proof of the equivalence between these
two kinds of well-composednesses, we propose to illustrate that the intu-
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ition that “a digitally well-composed set should always be the limit of an
increasing sequence of digitally well-composed sets” is false. A 4D example
of digitally well-composed sets can prove this (see Figure 5.1). Effectively,
removing/adding any point to this set made of yellow points and blue edges
creates a critical configuration of dimension 2, and there there exists no
strictly increasing/decreasing sequence of digitally well-composed sets which
converges to this set.

5.1 Some preliminaries

These three easy lemmas will be useful in the sequel.

5.1.1 Cartesian product and basic operators

Let us denote by ⊗ the cartesian product, defined such that for any A and
B two spaces or arbitrary elements, A⊗B = {(a, b) ; a ∈ A, b ∈ B}.

Lemma 1. For each element a in Hn, α(a) =
⊗

m∈J1,nK

α(am), where am is the

mth coordinate of a in Hn and ⊗ is the cartesian product.

Proof: Let k, l two values of N, and ak ∈ Hm, al ∈ Hn. Then,

α(ak ⊗ al) =
{
f ∈ Hk+l ; f ≤ ak ⊗ al

}
,

=
{
f ∈ Hk+l ; f = fk ⊗ f l, fk ≤ ak, f l ≤ al

}
,

=
{
f ∈ Hk+l ; f = fk ⊗ f l, fk ≤ ak

}
∩
{
f ∈ Hk+l ; f = fk ⊗ f l, f l ≤ al

}
,

= α(ak)⊗Hl ∩Hk ⊗ α(al),
= α(ak)⊗ α(al).

In this way, for a ∈ Hn, a = ⊗i∈J1,nKai, and then we obtain:

α(a) = α(⊗i∈J1,nKai),
= α(⊗i∈J1,n−1Kai)⊗ α(an),
= . . . ,
= α(a1)⊗ · · · ⊗ α(an),

=
⊗

m∈J1,nK

α(am)
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Lemma 2. For each element a in Hn, β(a) =
⊗

m∈J1,nK

β(am), where am is the

mth coordinate of a in Hn and ⊗ is the cartesian product.

Proof: Let k, l be two values of N, and ak ∈ Hk, al ∈ Hl. Then :

β(ak ⊗ al) =
{
f ∈ Hk+l ; f ≥ ak ⊗ al

}
,

=
{
f ∈ Hk+l ; f = fk ⊗ f l, fk ≥ ak, f l ≥ al

}
,

=
{
f ∈ Hk+l ; f = fk ⊗ f l, fk ≥ ak

}
∩
{
f ∈ Hk+l ; f = fk ⊗ f l, f l ≥ al

}
,

= β(ak)⊗Hl ∩Hk ⊗ β(al),
= β(ak)⊗ β(al).

In this way, for a ∈ Hn, a = ⊗i∈J1,nKai, and then we obtain:

β(a) = β(⊗i∈J1,nKai),
= β(⊗i∈J1,n−1Kai)⊗ β(an),
= . . . ,
= β(a1)⊗ · · · ⊗ β(an),

=
⊗

m∈J1,nK

β(am).

Lemma 3. Let {Oi}i∈I be a family of open sets in H1. Then the cartesian

product
⊗
i∈J1,nK

Oi is open in Hn.

Proof: Let us define O = ⊗i∈J1,nKOi. Then it follows that:

h ∈ O ⇔ h ∈ ⊗i∈J1,nKOi,
⇔ ∀i ∈ J1, nK, hi ∈ Oi,
⇒ ∀i ∈ J1, nK, β(hi) ⊆ Oi,
⇒ ⊗i∈J1,nKβ(hi) ⊆ ⊗i∈J1,nKOi,
⇒ β(h) ⊂ O,

which implies that O is open in Hn.

5.2 Isomorphism between (Z/2)n and Hn

Let us see that (Z/2)n and Hn supplied with some specific topologies are
isomorphic in the sense that they have the same topological structure (the
definition of isomorphic spaces comes later).
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5.2.1 Topological structure of (Z/2)n

When Khalimsky grids are associated by “nature” to the inclusion order ⊇,
the set (Z/2) needs that we associate one topology to it to be able to speak
about its topological structure.

For that, we can start from supplying (Z/2) with a topology. So, let be
the following set:

I = { [k, l] ∩ (Z/2) ; k, l ∈ Z, k ≤ l}.

Then we generate the topology U(Z/2) as being any union of elements of
I and any finite intersection of I, this way I is the basis of U(Z/2).

Since closed in (Z/2) are complement of open sets, it is obvious that for
any a, b ∈ Z such that a ≤ b:

[a− 1/2, b+ 1/2] ∩ (Z/2) = (Z/2) \

 ⋃
c∈Z, c 6∈Ja−1,bK

[c, c+ 1] ∩ (Z/2)


is closed as complement of an open set in (Z/2), and then intervals that have
bounds which are both not integers will be closed in (Z/2). Furthermore, for
any a ∈ Z, {a− 1

2
, a, a+ 1

2
} is closed in (Z/2).

Then we can induce the topology U(Z/2)n associated to (Z/2)n using the
cartesian product:

((Z/2)n ,U(Z/2)n) =
⊗
i∈J1,nK

((Z/2),U(Z/2)).

In this manner, each open set of (Z/2)n is an union of (cartesian) n-ary
products of open sets of (Z/2) (and conversely).

Note that in this chapter we will say that a point in (Z/2) has an integral
coordinate or is an integral value iff z ∈ Z. Otherwise, we will say that z has
a half coordinate or is an half value. By extension, for points of (Z/2)n, we
will say that the ith coordinate is integral if zi is integral. Otherwise, we will
say that this coordinate is in half or that z has an half ith coordinate.
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5.2.2 Topological structure of Hn

Concerning |Hn|, as we have seen before, it is associated to the inclusion
order ⊇. This way, as suggested by Alexandrov (see Theorem 4), we define
every set α(p) = {q ∈ Hn ; q ⊆ p} for any element p ∈ Hn as closed sets
in Hn as a topological space. Due to the symmetry of Alexandrov spaces,
β(p) = {q ∈ Hn ; p ⊆ q} will be open sets of Hn as a topological space.
Finally, we can then define the topology of Hn as:

UHn = {O ⊆ Hn ; ∀h ∈ O, β(h) ⊆ O},

which means that every open set O in (Hn,UHn) can be written such that:

O = ∪h∈Oβ(h).

Also, we will extend the notion of α-adherence and β-adherence to sets:

Definition 51 (Adherence of a set). Let X be a subset of Hn. We define
the set α(X) = ∪h∈Xα(h), respectively the set β(X) = ∪h∈Xβ(h), as the
α-adherence of X in Hn. They are respectively the smallest closed and the
smallest open sets containg X in Hn. Following the same logic, we define the
θ-adherence θ(X) = ∪h∈Xθ(h) of X.

5.2.3 Isomorphism between (Z/2)n and Hn

From now on, (Z/2)n and Hn will be assumed to be supplied with their
respective topologies, and their subsets will be supplied with their respective
relative topologies.

{0} {0,1} {1} {1,2} {2}{-1,0}{-1}

-1/2 0 1/2 1 3/2-1-3/2

ℤ

ℍ

Figure 5.2: Topological isomorphism between |H1| and ((Z/2),U(Z/2))

Definition 52 (Z). Let us define the application Z : H1 → (Z/2) such that:

∀h ∈ H1,Z(h) =

{
a if ∃a ∈ Z s.t. h = {a, a+ 1}
a− 1/2 if ∃a ∈ Z s.t. h = {a} (5.1)
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This application maps elements of H1
0 to integral values, and elements

of H1
1 to half values. Also, we can observe easily that this application is

bijective. Figure 5.2 shows how open sets are preserved by the isomorphism:
the set {−1} is open and is mapped by the isomorphism to {{−1, 0}} which
is also an open set. In a same manner, the open (and not degenerated)
set {0, 1

2
, 1} is mapped to {{0, 1}, {1}, {1, 2}} which is an open set in H1.

Furthermore, the blue and the red sets are connected into (Z/2) and such
are their isomorphisms. However, the set made of blue and red points in
(Z/2) is not connected since it is a disjoint union of two open sets, and
it is mapped to a set which is not connected either. So we can see how
isomorphisms preserve topological structures.

Definition 53 (Inverse of Z). We define the application H : (Z/2) → H1

such that:

∀z ∈ (Z/2),H(z) =

{
{z + 1/2} if z ∈ (Z/2) \ Z
{z, z + 1} if z ∈ Z (5.2)

Obviously, H is the inverse of Z.

Definition 54 (Zn and Hn). We define the applications Zn : Hn → (Z/2)n

and Hn : (Z/2)n → Hn, based on Definition 52 and Definition 53, using the
cartesian product:

∀h ∈ Hn, Zn(h) = ⊗i∈J1,nKZ(hi), (5.3)

∀z ∈ (Z/2)n , Hn(z) = ⊗i∈J1,nKH(zi). (5.4)

As proven is Section 5.1, Zn (and then Hn) are topological isomorphisms,
i.e., bicontinuous bijections, and for this reason we say that ((Z/2)n ,U(Z/2)n)
and (Hn,UHn) are isomorphic (they have the same topological structure).

This is illustrated on Figure 5.3 where we can see how points of Z2 become
squares in H2. Furthermore, we can observe that the set made of the blue
point p ∈ Z2 and its 8-neighborhood N3n−1(p, (Z/2)n), which is a closed set
as a cartesian product of two closed sets, is mapped to the α-adherence of
the blue square, which is closed by construction. More complex structures
like the red set plus its neighboring (black) points keep their structure intact
by the isomorphism.
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Figure 5.3: Topological isomorphism between (Z/2)2 and H2 supplied with
their respective topologies.

5.2.4 From Hn to (Z/2)n

Let us show that Zn : Hn → (Z/2)n is a topological isomorphism, i.e. a
bicontinuous bijection, between ((Z/2)n ,U(Z/2)n) and (Hn,UHn).

Z and Zn are bijections

Let us first prove that Z is injective. Let h1, h2 be two elements of H1.
We assume that Z(h1) = Z(h2). Either Z(h1) ∈ Z, and in this case
h1 = {Z(h1),Z(h1) + 1} = h2, or Z(h1) ∈ (Z/2) \ Z, and in this case
h1 = {Z(h1)− 1

2
} = h2.

Now let us prove that Z is surjective. For any value z ∈ (Z/2), there
exists h ∈ H1 such that Z(h) = z. Effectively, if z ∈ Z, we can choose
h = {z, z + 1} to verify this property, and if z ∈ (Z/2) \ Z, we can choose
h = {z − 1

2
} to verify again this property.

Since we have proven that Z is a bijection, it follows that Zn is a bijection
as a cartesian product of bijections.
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Continuity of Zn
We want to show here that for any open set O of (Z/2)n, the inverse image
of O by Zn is open in Hn.

Since the topology of (Z/2)n is a product topology, O is an union of
cartesian products of open sets of (Z/2). In other words, we can write

O =
⋃
i

⊗
j∈J1,nK

Oij where Oij is open in (Z/2).

Moreover, each Oij can be written as an union of elementary open sets

E i,kj such that Oij =
⋃
m E

i,m
j with E i,mj = ([km, lm]∩ (Z/2)) where km, lm ∈ Z

are such that km ≤ lm. We can decompose E i,mj into two sets Ii,mj and Ji,mj
defined by:{

Ii,mj =
⋃
{{a} ; a ∈ Z ∩ E i,mj },

Ji,mj =
⋃
{[a, a+ 1] ∩ (Z/2) ; [a, a+ 1] ⊆ E i,mj , a ∈ Z}. (5.5)

Therefore we obtain that :

Z−1n (O) =
⋃
iZ−1n (

⊗
j∈J1,nK

Oij)

=
⋃
i

⊗
j∈J1,nK

Z−1(Oij)

=
⋃
i

⊗
j∈J1,nK

Z−1
(⋃

m

E i,mj

)

=
⋃
i

⊗
j∈J1,nK

(⋃
m

Z−1(E i,mj )

)

=
⋃
i

⊗
j∈J1,nK

(⋃
m

Z−1(Ii,mj ∪ Ji,mj )

)

=
⋃
i

⊗
j∈J1,nK

(⋃
m

(Z−1(Ii,mj ) ∪ Z−1(Ji,mj ))

)
Since for all a ∈ Z,

Z−1({a}) = {Z−1(a)} = {{a, a+ 1}} = β({a, a+ 1}),
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it follows that Z−1(Ii,mj ) is open in H1. Also, since for all a ∈ Z,

Z−1([a, a+ 1] ∩ (Z/2)) = Z−1({a, a+ 1
2
, a+ 1}),

= {{a, a+ 1}, {a+ 1}, {a+ 1, a+ 2}} = β({a+ 1}),

it follows thatZ−1(Ji,mj ) is open in H1 too. The consequence is that Z−1(Ii,mj )∪
Z−1(Ji,mj )) is open into H1 and then Z−1n (O) is open in Hn as union of carte-
sian products of open sets of H1 (see Lemma 3).

Defining the inverse applications of Z and Zn
Starting from the definition of Z, we can easily deduce the definition of its
inverse H : (Z/2)→ H1 such that:

∀z ∈ (Z/2),H(z) =

{
{z + 1/2} if z ∈ (Z/2) \ Z,
{z, z + 1} if z ∈ Z. (5.6)

Then we can define Hn : (Z/2)n → Hn as the n-ary cartesian product of
H:

∀z ∈ (Z/2)n ,Hn(z) =
⊗
i∈J1,nK

H(zi),

where zi is the ith coordinate, i ∈ J1, nK of z.

It can be easily verified that Hn is the inverse of Zn. Effectively, ∀z ∈
(Z/2)n:

Zn(Hn(z)) = Zn(Hn(⊗i∈J1,nKzi)),
= Zn(⊗i∈J1,nKH(zi)),
= ⊗i∈J1,nKZ(H(zi)),
= ⊗i∈J1,nKzi,
= z,

since Z and H are inverse applications. A same reasoning will show that
∀h ∈ Hn,Hn(Zn(h)) = h.

Continuity of the inverse of Zn
Let O be an open set of Hn, we want to show that the inverse image of O
by Hn is open in (Z/2)n.
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Since O is open into Hn, we can write :

O =
⋃
h∈O

β(h),

and then

Zn(O) = Zn

(⋃
h∈O

β(h)

)
=
⋃
h∈O

Zn(β(h)).

Using Lemma 2, we obtain:

Zn(O) =
⋃
h∈O

Zn(⊗i∈J1,nKbeta(hi)) =
⋃
h∈O

⊗i∈J1,nKZ(beta(hi)).

Two only cases are then possible for each term hi: either there exists an el-
ement a ∈ Z such that hi = {a}, and then β(hi) = {{a−1, a}, {a}, {a, a+1}}
which leads to Z(β(hi)) = {a− 1, a− 1

2
, a}, or there exists an element a ∈ Z

such that hi = {a, a + 1}, and then β(hi) = {{a, a + 1}} which leads to
Z(β(hi)) = {a}. In both cases, Z(β(hi)) is open in (Z/2) and then O is
open into (Z/2)n.

Relation between (Z/2)n and Hn

Hn and Zn are inverse topological isomorphisms, and then (Z/2)n and Hn,
supplied with their respective topologies, are topologically isomorphic, i.e.,
they have the same topological structure.

5.3 Reformulating the formula of the bound-

ary

Let us show that we can reformulate the topological boundary of IMM(X) =
Int(α(Hn(X))) as a function of the isomorphism X of X and its complement
Y in Hn

n:

Proposition 11. Let X ⊆ Zn be a set. Now let us denote X = Hn(X) ⊆ Hn
n,

Y = Hn
n \ X , and IMM(X) = Int(α(X )). Then the topological boundary

∂IMM(X) can be reformulated such that:

N = α(X ) ∩ α(Y).
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Proof: Let us first remark that α(X ) is a regular closed set. Effectively,
we have that Int(α(X ))) ⊆ α(X ), which implies that α(Int(α(X ))) ⊆ α(X )
by transitivity of the operator α. Conversely, let p be an element of α(X ),
then there exists x ∈ X such that p ∈ α(x). Yet, Int(α(X )) = {h ∈
α(X ) ; β(h) ⊆ α(X )}, and x ∈ Hn

n verifies that β(x) = {x} ⊆ Int(α(X )).
Then x ∈ Int(α(X ))), and then p ∈ α(x) ⊆ α(Int(α(X ))). Then, α(X ) is a
regular closed set.

Using this fact, we can simplify the formula of N:

N = α(IMM(X)) ∩ α(Hn \ IMM(X)),
= α(Int(α(X ))) ∩Hn \ IMM(X),
= α(X ) \ Int(α(X )),
= α(X ) ∩ (Int(α(X )))c,
= α(X ) ∩ α(Int(X c)).

Then we want to show that:

α(X ) ∩ α(Int(X c)) = α(X ) ∩ (Y).

Let us begin with the converse inclusion. Since Y = Hn
n \ X ⊆ Hn \ X ,

it is clear that Int(Y) ⊆ Int(Hn \ X ). Since Y is open as union of n-faces,
we obtain then that Y ⊆ Int(Hn \ X ). Using the (increasing) operator α, it
is clear that α(Y) ⊆ α(Int(Hn \ X )) = α(Int(X c)), and then α(X ) ∩ α(Y) ⊆
α(X ) ∩ α(Int(X c)).

Let us now prove the direct inclusion. Let us assume that z is an element
of α(X ) ∩ α(Int(X c)). We have three possibles cases. The first case corre-
sponds to β(z)∩Hn

n ⊆ X (1), the secund case corresponds to β(z)∩Hn
n ⊆ Y

(2), and the thrid case correspond to β(z)∩Hn
n∩X 6= ∅ 6= β(z)∩Hn

n∩Y (3).

Before treating the first case, let us prove that α(β(z)) = α(β(z) ∩ Hn
n)

(P ). The converse inclusion is obvious. Concerning the direct inclusion,
let a be an element of α(β(z)). Then there exists p ∈ β(z) such that a ∈
α(p). Also, Hn is a n-surface (see Theorem 6) and then is homogeneous (see
Property 5). This implies that there exists pn ∈ β(p) such that pn ∈ Hn

n.
Since pn ∈ β(p) and p ∈ β(z), pn ∈ β(z) ∩ Hn

n, and then the fact that a
belongs to α(p) implies that a ∈ α(β(z) ∩Hn

n). This way, (P ) is true.

Now we can treat the first case: β(z) ∩ Hn
n ⊆ X . This implies that

Int(α(β(z) ∩ Hn
n)) ⊆ Int(α(X )). Using (P ), we obtain that Int(α(β(z))) ⊆
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Int(α(X )). Since β(z) is an open regular set, we obtain that β(z) ⊆ Int(α(X )).
Yet, β(z) ⊆ α(β(z)) = α(X ) (since α(X ) is a regular closed set). However,
this imples that β(z) = Int(β(z)) ⊆ Int(α(X )), and then z 6∈ (Int(α(X )))c,
which is a contradiction. This case is then impossible.

In the second case, β(z) ∩Hn
n ⊆ Y , which is equivalent to say that there

do not exist any x ∈ X such that x ∈ β(z), which is equivalent to say that
there do not exist any x ∈ X such that z ∈ α(x), which is equivalent to
z 6∈ α(X ), which leads one more time to a contradiction. This case is then
impossible too.

In the third case, β(z)∩Hn
n ∩X 6= ∅ and β(z)∩Hn

n ∩Y 6= ∅ implies that
there exists some x ∈ X and y ∈ Y such that z ∈ α(x) ∩ α(y), and then
z ∈ α(X ) ∩ α(Y). The proof is done.

5.4 Hypotheses of the problem

The two spaces we are working in are the discrete space (Z/2)n and its
topological isomorphism Hn, which are both of dimension n ≥ 2.

Notations 6 (X, Y,X ,Y ,N). From now on, we define the set X as a given
subset of Zn, and its complement Y in Zn : Y = Zn\X. We also define their
isomorphisms in Hn using Zn as in Definition 54 such that X = Hn(X) and
Y = Hn(Y ). Then, we define the common boundary N of X and Y in Hn

such that:
N = α(X ) ∩ α(Y)

We can remark that X ∪ Y = Hn
n, X ∩ Y = ∅ and for these reasons:

Hn
n ∩N = ∅.

5.5 Stating the problem

In this section, we want to show that each finite set X ⊂ Zn is digitally
well-composed iff its immersion IMM(X) is well-composed in the sense of
Alexandrov. In other words, we want to prove that the absence of critical
configurations in X is equivalent to say that the connected components of
the topological boundary N of IMM(X) are (n− 1)-surfaces.
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5.6 Reformulating the problem

After having recalled some basic definitions, let us show that we can refor-
mulate the property that IMM(X) is AWC in a local way.

Definition 55 (Separated sets). Let A,B two subsets of Hn. We say that A
and B are separated iff the following property holds:

(A ∩ (β(B)) ∪ (β(A) ∩B) = ∅.

Now, let us show that this problem, which is basically global in the sense
that AWCness is based on connected components, can be proven based on
local properties.

Lemma 4. Using Notations 6, IMM(X) is AWC iff for each z ∈ N, |θ�N(z)|
is a (n− 2)-surface.

Proof: Let us define C1, C2 ∈ CC(N), where CC(N) denotes the set of
connected components of N. These two components are then separated, i.e.,

(β(C1) ∩ C2) ∪ (β(C2) ∩ C1) = ∅,

which is equivalent to:

(β(C1) ∩ C2) ∪ (α(C1) ∩ C2) = ∅,

then we can deduce easily that θ(C1) ∩ C2 = ∅, and then for each point
z ∈ C1, θ(z) ∩ C2 ⊆ θ(C1) ∩ C2 = ∅.

So let z be a point in C1, then we obtain:

|θ�N(z)| = |θ�(z)∩N| = |θ�(z)∩
⋃

C∈CC(N)

C| = |
⋃

C∈CC(N)

(θ�(z)∩C)| = |θ�C1
(z)|.

In this way, we can write:

IMM(X) is AWC ⇔ ∀C ∈ CC(N), C is a (n− 1)− surface

⇔ ∀C ∈ CC(N),∀z ∈ C, |θ�C(z)| is a (n− 2)− surface,

⇔ ∀C ∈ CC(N),∀z ∈ C, |θ�N(z)| is a (n− 2)− surface.

⇔ ∀z ∈ N, |θ�N(z)| is a (n− 2)− surface.

62



Now let us follow with a simple proposition.

Proposition 12. Using Notations 6, N is closed in |Hn|.

Proof: N is closed in |Hn| as intersection of α(X ) and α(Y) which are
both closed in |Hn|.

Using this proposition, we will observe that for any element z ∈ N, we
obtain α�N(z) = α�(z), which means that we can obviate the restriction to N
in the expression α�N(z).

Proposition 13. Let F be a closed subset of |Hn|, then:

F =
⋃
h∈F

α(h).

Proof: It is simply due to the symmetry between closed sets and open
sets in Alexandrov spaces.

Proposition 14. Let F be a closed set in |Hn|, and h be an element of S.
Then α(h) ⊆ F .

Proof: It is a direct consequence of Proposition 13.

Proposition 15. Using Notations 6, for any z ∈ N, α�N(z) = α�(z).

Proof: For any z ∈ N, by Proposition 14 and Proposition 12, α(z) ⊆ N,
and then α�(z) ⊆ N, which implies that α�N(z) = α�(z) ∩N = α�(z).

Now let us show that the term |α�N(z)| has a particular structure:

Proposition 16. Using Notations 6, for any z ∈ N:

|α�N(z)| is a (dim(z)− 1)-surface.

Proof: By Proposition 15, for any z ∈ N, α�N(z) = α�(z) ≡ α�Hn(z). Also,
by Theorem 6, Hn is a n-surface (according to Evako [13]). Then,|α�N(z)| is
a (ρ(z, |Hn|)−1)-surface by Property 6. Since the rank of an element of |Hn|
is equal to its dimension, we obtain finally that |α�N(z)| is a (dim(z) − 1)-
surface.

This proposition is much important because it allows us to decompose
the term θ�N(z) in Lemma 4.
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Lemma 5. Using Notations 6, for any z ∈ N, |θ�N(z)| is a (n − 2)-surface
iff |β�N(z)| is a (n− 2− dim(z))-surface.

Proof: It is the direct result of the combination of Theorem 7 [11] and
Proposition 16.

It results the following theorem:

Theorem 8. Using Notations 6, IMM(X) is AWC iff:{
∀z ∈ N, |β�N(z)| is a (n− dim(z)− 2)− surface)

}
.

Proof: we obtain this result by combining Lemma 5 and Lemma 4.

Our main goal is then to show that:

{X is DWC } ⇔
{
∀z ∈ N, |β�N(z)| is a (n− 2− dim(z))− surface

}
.

5.7 Proof of the converse implication

In this section, we prove that:{
∀z ∈ N, |β�N(z)| is a (n− 2− dim(z))− surface

}
⇒ {X DWC } .

For that, we are going to show the counterposition: if X is not digitally
well-composed, then there exists a point z∗ ∈ N, that we will cal the critical
point, such that |β�N(z∗)| is not a (n− 2− dim(z))-surface.

5.7.1 Complements about antagonism

Let us recall that two points of Zn are antagonist in a block of dimension
k ∈ J0, nK iff they belong to this block and if they maximize the L1 distance
between two points of this block.

Lemma 6. Let x, y be two elements of Zn. Then, x and y are antagonist in
a block of Zn of dimension k ∈ J0, nK iff:{

Card {m ∈ J1, nK ; xm = ym} = n− k, (1)
Card {m ∈ J1, nK ; |xm − ym| = 1} = k. (2)
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c

y

x
f
1

f
2

f3

Figure 5.4: The points x = c + f 1 and y = c + f 2 + f 3 of Zn are antagonist
in the block S(c, {f 1, f 2, f 3}) of dimension 3.

Proof: Let us begin with the converse implication. Let us assume that
we start from x, y ∈ Zn and k ∈ J0, nK such that (1) and (2) are verified.
Let us prove that x and y belong to a same block in B(Zn) of dimension
k. For that, let us define c ∈ Zn such that for any coordinate i ∈ J1, nK,
ci = min(xi, yi). This point will be characteristic of that block. Now, let us
define:

Ix = {i ∈ J1, nK ; ci 6= xi} ,
Iy = {i ∈ J1, nK ; ci 6= yi} ,

then it follows that: {
x = c+

∑
i∈Ix e

i, (3)
y = c+

∑
i∈Iy e

i. (4)

Also, we can remark that:

Ix = {i ∈ J1, nK ; ci = yi ∧ xi 6= yi} ,
Iy = {i ∈ J1, nK ; ci = xi ∧ xi 6= yi} ,

and then Ix ∩ Iy = ∅. It follows then that F = {ei ∈ B ; i ∈ Ix ∪ Iy} is of
dimension Card(Ix) + Card(Iy), which is equal to k by (1) and (2). Finally,
we obtain that the block S(c,F) ∈ B(Zn) contains x and y by (3) and (4).
Also, by (1) and (2), we know that ‖x − y‖1 = k, which is the maximal
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distance in a block of dimension k. Then, x and y are antagonist in S(c,F),
which concludes the proof of the converse implication.

Let us now prove the direct implication. We assume that x, y ∈ Zn are
antagonist in a block S(c,F) of Zn of dimension k ∈ J0, nK. Let i be an
integer in J1, nK, then two cases are possible: either the ith canonical vector
ei belongs to F and then |xi− yi| = 1, or it does not belong to F and in this
case xi = yi. Since Card(F) = k by hypothesis, it concludes the proof.

5.7.2 Infimum of two faces

Let us study under which condition we can say that an infimum exists be-
tween two elements a, b ∈ Hn, that is, when there exists a greatest element
which is superior or equal to any element which is inferior to both a and b.

Definition 56 (Supremum). Let X be a subset of Hn. If there exists one
element x ∈ X such that for any y ∈ X, y ⊆ x, we say that x is the greatest
element of X, and we denote it sup(X).

Definition 57 (Infimum). Let a, b be two elements of Hn. When sup(α(a)∩
α(b)) is well-defined, we denote it a∧ b and we call it the infimum between a
and b.

Lemma 7. Let a, b be two elements of Hn. Then,

{α(a) ∩ α(b) 6= ∅} ⇔ {a ∧ b is well-defined } .

Furthermore, when a ∧ b is well-defined, it verifies the relations: a ∧ b = ⊗i∈J1,nK(ai ∧ bi),

α(a ∧ b) = α(a) ∩ α(b).

Proof: Let us treat the one-dimensional case a1, b1 ∈ H1, and let us
proceed case by case.

• Either a1, b1 ∈ H1
0. Then there exist i, j ∈ Z s.t. a1 = {i} et b1 = {j}.

Then α(a1) = {{i}} and α(b1) = {{j}}.

– Either i = j and α(a1)∩ α(b1) = {{i}} then sup(α(a1)∩ α(b1)) =
{i} and α(a1 ∧ b1) = α(a1) ∩ α(b1).
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y

x=y

yx

x

y

Figure 5.5: Examples of infimums between x and y: α(x) is in red, α(y) is in
blue, their intersection is in purple, and the infimum of x and y has a green
contour.
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– Or i 6= j and α(a1) ∩ α(b1) = ∅, then a1 ∧ b1 does not exist.

• Or a1 ∈ H1
1 and b1 ∈ H1

0. Then there exists i, j ∈ Z s.t. a1 = {i, i+ 1}
and b1 = {j}. Then α(a1) = {{i}, {i+1}, {i, i+1}} and α(b1) = {{j}}.

– Either i = j, and α(a1) ∩ α(b1) = {{i}}, a1 ∧ b1 = {i}, and
α(a1) ∩ α(b1) = α(a1 ∧ b1).

– Or i = j − 1, α(a1) ∩ α(b1) = {{j}}, a1 ∧ b1 = {j}, and α(a1) ∩
α(b1) = α(a1 ∧ b1).

– Or i 6∈ {j, j − 1}, α(a1) ∩ α(b1) = ∅ and a1 ∧ b1 does nots exist.

• Or a1 ∈ H1
0 and b1 ∈ H1

1 and the reasoning is similar to the one before.

• Or a1, b1 ∈ H1
1. Then there exists i, j ∈ Z s.t. a1 = {i, i + 1} and

b1 = {j, j+ 1}. We obtain α(a1) = {{i}, {i+ 1}, {i, i+ 1}} and α(b1) =
{{j}, {j + 1}, {j, j + 1}}.

– Either i = j and α(a1)∩α(b1) = {{i}, {i+1}, {i, i+1}}, a1∧ b1 =
{i, i+ 1}, and α(a1) ∩ α(b1) = α(a1 ∧ b1).

– Or i = j − 1, α(a1) ∩ α(b1) = {{j}}, a1 ∧ b1 = {j}, and α(a1) ∩
α(b1) = α(a1 ∧ b1).

– Or i = j+ 1, α(a1)∩α(b1) = {{j+ 1}}, and a1 ∧ b1 = {j+ 1} and
α(a1) ∩ α(b1) = α(a1 ∧ b1).

– Or i 6∈ {j − 1, j, j + 1} and α(a1)∩α(b1) = ∅ and a1 ∧ b1 does not
exist.

Then, when a, b belong to Hn, n ≥ 1, s.t. α(a) ∩ α(b) 6= ∅, we can use
Lemma 1 (see the Annex) and then we obtain that:

α(a) ∩ α(b) = α(⊗i∈J1,nKai) ∩ α(⊗i∈J1,nKbi),
= ⊗i∈J1,nKα(ai) ∩ ⊗i∈J1,nKα(bi)
= ⊗i∈J1,nK (α(ai) ∩ α(bi)) ,
6= ∅,

then for each value i ∈ J1, nK, α(ai) ∩ α(bi) 6= ∅, and then ai ∧ bi exists and
α(ai) ∩ α(bi) = α(ai ∧ bi).
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In this way:

α(a) ∩ α(b) = α(⊗i∈J1,nKai) ∩ α(⊗i∈J1,nKbi),
= ⊗i∈J1,nK (α(ai) ∩ α(bi)) ,
= ⊗i∈J1,nKα(ai ∧ bi),
= α(⊗i∈J1,nK(ai ∧ bi)),

where the last line is due to Lemma 1, then the greatest element of α(a) ∩
α(b) is ⊗i∈J1,nK(ai ∧ bi), that is, exists and is unique. Furthermore, a ∧ b =
⊗i∈J1,nK(ai ∧ bi), and α(a ∧ b) = α(a) ∩ α(b).

5.7.3 Link between antagonism and infimum

H(p) H(p')

H(p)∧H(p')

Figure 5.6: When two points p and p′ defined in Z3 are 1-antagonist, the
infimum Hn(p) ∧Hn(p′) between their isomorphisms in Hn is a 2-face.

H(p)

H(p')

H(p)∧H(p')

Figure 5.7: When two points p and p′ defined in Z3 are 2-antagonist, the
infimum Hn(p) ∧Hn(p′) between their isomorphisms in Hn is a 1-face.
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H(p)

H(p')

H(p)∧H(p')

Figure 5.8: When two points p and p′ defined in Z3 are 3-antagonist, the
infimum Hn(p) ∧Hn(p′) between their isomorphisms in Hn is a 0-face.

Lemma 8. Let p, p′ be two elements of Zn. Then p and p′ are antagonist
in a block of dimension k, k ∈ J0, nK, in Zn iff Hn(p) ∧ Hn(p′) exists and
belongs to Hn

n−k.

Proof: let us begin with the direct implication. Let p, p′ be defined in
Zn and k ∈ J0, nK such that p and p′ are k-antagonist. By Lemma 6, there
exists I ⊆ J1, nK such that Card(I) = k, and such that:{

∀i ∈ I, |pi − p′i| = 1,
∀i ∈ J1, nK \ I, pi = p′i.

Since for each i ∈ J1, nK, we have pi, p
′
i ∈ Z, then Hn(pi) = {pi, pi + 1},

and Hn(p′i) = {p′i, p′i + 1}. Let us notate zi = Hn(pi) and z′i = Hn(p′i), then
zi, z

′
i ∈ H1

1.

When i is in I, either p′i = pi − 1, and α(zi) ∩ α(z′i) = {{pi}}, and then
zi ∧ z′i = {pi} ∈ H1

0, or p′i = pi + 1, and α(zi) ∩ α(z′i) = {{p′i}} and then
zi ∧ z′i = {p′i} ∈ H1

0.
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When i belongs to J1, nK \ I, zi = z′i and α(zi) ∩ α(z′i) = α(zi) and then
zi ∧ z′i = zi ∈ H1

1.

It is then obvious that ⊗i∈J1,nK(zi ∧ z′i) belongs to Hn
n−k.

Since we have α(zi) ∩ α(z′i) 6= ∅ for any i ∈ J1, nK:

α(Hn(p)) ∩ α(Hn(p′)) = α(z) ∩ α(z′),
= α(⊗i∈J1,nKzi) ∩ α(⊗i∈J1,nKz

′
i),

= ⊗i∈J1,nKα(zi) ∩ ⊗i∈J1,nKα(z′i),
= ⊗i∈J1,nK(α(zi) ∩ α(z′i)),
6= ∅,

and then by Lemma 7, Hn(p) ∧Hn(p′) exists and is equal to ⊗i∈J1,nK(zi ∧ z′i)
which belongs to Hn

n−k.

Let us proceed now to the converse implication. Let p, p′ be two points
of Zn, and z = Hn(p), z′ = Hn(p′) such that z ∧ z′ ∈ Hn

n−k. It means that
there exists I ⊆ J1, nK s.t. Card(I) = k and verifying:{

∀i ∈ I, zi ∧ z′i ∈ H1
0,

∀i ∈ J1, nK \ I, zi ∧ z′i ∈ H1
1.

However for i ∈ I, zi ∧ z′i ∈ H1
0 implies p′i ∈ {pi − 1, pi + 1}, and for

i ∈ J1, nK \ I, zi ∧ z′i ∈ H1
1 implies zi = z′i and then pi = p′i, from which we

deduce that k coordinates of p and p′ are different, and they differ by one.
They are then antagonist in a block of dimension k by Lemma 6.

Figures 5.6, 5.7, 5.8 depict examples of antagonists in blocks of Z3 such
that the intersection of the closures of their isomorph is non-empty: the two
cubesHn(p) andHn(p′) share a 2-face when they correspond to 1-antagonists
in Zn, a 1-face when they correspond to 2-antagonists in Zn, and a 0-face
when they correspond to 2-antagonists in Zn. Then, the order of antagonism
decreases when the dimension of the shared face increases.

5.7.4 Existence of a critical point z∗

Notations 7 (S, p, p′, z∗). Using Notations 6, we assume that X is not
digitally well-composed, that is, there exists a block S ∈ B(Zn) of dimen-
sion k ∈ J2, nK, and two points p and p′ which are antagonist in S s.t.
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X ∩ S = {p, p′} (primary case) or s.t. S \ X = {p, p′} (secondary case).
We will only treat the first case, since the reasoning is the same for the dual
case. In this way, we will assume that :{

X ∩ S = {p, p′},
Y ∩ S = S \ {p, p′}.

By Lemma 8, the fact that p, p′ are k-antagonist implies that there exists an
element z∗ ∈ Hn s.t.:

z∗ = Hn(p) ∧Hn(p′) ∈ Hn
n−k.

We call z∗ the critical point or critical face.

We will see after the reason for which we say that z∗ is critical.

5.7.5 z∗ belongs to N

v

p'

p

S

Figure 5.9: Hn(p) ∧Hn(p′) ∈ α(Hn(p) ∧Hn(v)).

Lemma 9. Let S be a block in Zn of dimension k ≥ 2. Now, let p, p′ be
two antagonists in S, and v be a 2n-neighbor of p in S. Then, we have the
following relation:

Hn(p) ∧Hn(p′) ∈ α(Hn(p) ∧Hn(v)). (R)
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Proof: We need first to prove that Hn(p) ∧ Hn(p′) and Hn(p) ∧ Hn(v)
are well-defined. By Lemma 8, since p and p′ are antagonist in a block of
dimension k ≥ 2, Hn(p) ∧Hn(p′) is well-defined (and belongs to Hn

n−k), and
since p and v are 2n-neighbours in Zn, they are 1-antagonist in the block
{p, v} of dimension 1, and then Hn(p) ∧ Hn(v) is well-defined (and belongs
to Hn

n−1).
By Lemma 7, we can reformulate the first term in the relation (R):

Hn(p) ∧Hn(p′) = Hn(⊗i∈J1,nKpi) ∧Hn(⊗i∈J1,nKp
′
i),

= ⊗i∈J1,nK(H(pi)) ∧ ⊗i∈J1,nK(H(p′i)),

= ⊗i∈J1,nK(H(pi) ∧H(p′i)),

and we can also reformulate the second term using Lemma 1:

α(Hn(p)) ∩ α(Hn(v)) = α(Hn(⊗i∈J1,nKpi)) ∩ α(Hn(⊗i∈J1,nKvi)),

= α(⊗i∈J1,nKH(pi)) ∩ α(⊗i∈J1,nKH(vi)),

= ⊗i∈J1,nKα(H(pi)) ∩ ⊗i∈J1,nKα(H(vi)),

= ⊗i∈J1,nK (α(H(pi)) ∩ α(H(vi))) .

Then we want to show that for all i ∈ J1, nK, H(pi) ∧ H(p′i) belongs to
α(H(pi)) ∩ α(H(vi)).

Let I be the family of indices {i ∈ J1, nK ; pi 6= p′i} . Since v is a 2n-
neighbor of p into Zn such that it belongs to S (see Figure 5.9), there exists
an index i∗ in I such that vi∗ = p′i∗ and ∀i ∈ J1, nK \ {i∗}, vi = pi . Then we
can study the different cases:

• if i ∈ J1, nK \ I, then pi = p′i = vi and then H(pi) ∧ H(p′i) = H(pi) ∈
α(H(pi)) = α(H(pi)) ∩ α(H(vi)).

• if i ∈ I, then two subcases are possible:

– Either i = i∗ and then vi = p′i, which implies α(H(pi))∩α(H(vi)) =
α(H(pi)) ∩ α(H(p′i)) = α(H(pi) ∧H(p′i)) 3 H(pi) ∧H(p′i).
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– Or i 6= i∗, and then vi = pi, which implies α(H(pi)) ∩ α(H(vi)) =
α(H(pi)) = {{pi}, {pi + 1}, {pi, pi + 1}}. However, either H(pi) ∧
H(p′i) = {pi} (if p′i = pi − 1) or H(pi) ∧ H(p′i) = {pi + 1} (if
p′i = pi + 1), then H(pi) ∧H(p′i) ∈ α(H(pi)) ∩ α(H(vi)).

Finally, for all i ∈ J1, nK, H(pi) ∧ H(p′i) belongs to α(H(pi)) ∩ α(H(vi)),
and then (R) is true.

Property 8. Using Notations 7, z∗ belongs to N.

Proof: We know that p and p′ belong to X, and that they are antagonist
in the block S such that X ∩ S = {p, p′}. Then, any 2n-neighbor v of p in
Zn such that it is contained in the block S of dimension k ≥ 2 belongs to the
complement of X in Zn, that is Y . Then, by definition of N:

α(Hn(p)) ∩ α(Hn(v)) ⊆ N.

Also, since p and v are 2n-neighbours, they are 1-antagonist, and then by
Lemma 8, Hn(p) ∧Hn(v) is well-defined and verifies by Lemma 7:

α(Hn(p) ∧Hn(v)) = α(Hn(p)) ∩ α(Hn(v)).

We can also apply Lemma 9, and we obtain that:

Hn(p) ∧Hn(p′) ∈ α(Hn(p) ∧Hn(v)),

which allows to conclude that:

z∗ = Hn(p) ∧Hn(p′) ∈ α(Hn(p) ∧Hn(v)) ⊆ N.

5.7.6 Preamble to the calculus of |β�N(z∗)|
Now that we know that we can write that |β�(z∗) ∩N| = |β�N(z∗)|, we want
to compute |β�N(z∗)|, but let us introduce some lemmas to proceed.

Lemma 10. Let a, b be two elements of Zn such that a and b are (3n − 1)-
neighbors in Zn. Then, Hn((a+ b)/2) = Hn(a) ∧Hn(b).
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Proof: Since a and b are (3n− 1)-neighbors in Zn, they are k-antagonist
for some k ∈ J0, nK, and then by Lemma 8, Hn(a) ∧ Hn(b) is well-defined.
Then, it is sufficient to prove that (a + b)/2 = Zn(Hn(a) ∧ Hn(b)). This is
equivalent to say that for any i ∈ J1, nK, we have (ai+bi)/2 = Z(H(ai)∧H(bi))
by Lemma 7. Since a and b are (3n − 1)-neighbors in Zn, they verify for any
i ∈ J1, nK that ai ∈ {bi − 1, bi, bi + 1}. Then, we just have to proceed case-
by-case, starting from the equality H(ai)∧H(bi) = {ai, ai + 1} ∧ {bi, bi + 1}:

• when ai = bi − 1,

H(ai) ∧H(bi) = {bi − 1, bi} ∧ {bi, bi + 1} = {bi},

whose image by Z is equal to bi − 1
2

= (ai + bi)/2,

• when bi = ai − 1, we use a symmetrical reasoning leading to the same
result,

• when bi = ai, the result is immediate.

This concludes the proof.

Lemma 11. For any element h ∈ Hn, α�(h) is closed in Hn.

Proof: It is simply due to the fact that α�(h) = ∪h′∈α�(h)α(h′) which is
an union of closed sets, and then a closed set in Hn.

Lemma 12. Let p be an element of Zn, then:

α�(Hn(p)) =
⋃

v∈N ∗3n−1(p)

α(Hn(p) ∧Hn(v)).

Proof: Let us proceed to some calculus:

α�(Hn(p)) =
{
f ∈ Hn ; f ∈ α�(Hn(p))

}
,

=
{
f ∈ Hn ; ‖Zn(f)− p‖∞ = 1

2

}
,

= {f ∈ Hn ; ‖vp − p‖∞ = 1 ; vp = 2Zn(f)− p} ,
=
{
f ∈ Hn ; vp ∈ N ∗3n−1(p) ; vp = 2Zn(f)− p

}
,

=
{
f ∈ Hn ; vp ∈ N ∗3n−1(p) ; Zn(f) = (vp + p)/2

}
,

=
{
f ∈ Hn ; vp ∈ N ∗3n−1(p) ; f = Hn((vp + p)/2)

}
.
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Also, by Lemma 10:

α�(Hn(p)) =
{
f ∈ Hn ; vp ∈ N ∗3n−1(p) ; f = Hn(vp) ∧Hn(p)

}
,

=
{
Hn(v) ∧Hn(p) ; v ∈ N ∗3n−1(p)

}
,

which leads to:

α�(Hn(p)) =
⋃

v∈N ∗3n−1(p)

{Hn(p) ∧Hn(v))}.

Let us apply the operator α on each side of this relation, we obtain then
by Lemma 11 the relation we are looking for.

Definition 58 (Center of a block). Let S ∈ B(Zn) be a block, and let z ∈ Zn
and F ⊂ B be the family of vectors such that S = S(z,F). Then, we define:

c = z +
∑
f∈F

f

2
,

as the center of the block S in (Z/2)n. We will also call abusively Hn(c) the
center of the block S in Hn.

Proposition 17 (Center and antagonists). Let S ∈ B(Zn) be a block and let
p, p′ ∈ S be two antagonists in S as a subset of Zn. Then the center of the
block S in (Z/2)n is equal to:

p+ p′

2
,

and the center of the same block S into Hn is equal to:

Hn(p) ∧Hn(p′).

Proof: Starting from p, p′ antagonist in S, we can compute z ∈ Zn and
F ⊂ B such that S = S(z,F). In fact, for all i ∈ J1, nK, zi = min(pi, p

′
i), and

F = {ei ; i ∈ J1, nK, pi 6= p′i}. Then, it is clear that:

p = (p− z) + z = z +
∑

ei∈F ,pi 6=zi e
i,

p′ = (p′ − z) + z = z +
∑

ei∈F ,p′i 6=zi
ei,
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and then:
p+ p′ = 2z +

∑
f∈F

f,

which shows that p+p′

2
is the center of S in (Z/2)n. To prove the second

part of the proposition, we just have to use Lemma 10. This concludes the
proof.

Proposition 18 (S(c)). Let S be a block in Zn of dimension k ∈ J0, nK, and
c be its center in (Z/2)n. Then we can reformulate S such that:

S =

c+
∑
i∈ 1

2
(c)

λie
i ; ∀i ∈ 1

2
(c), λi ∈

{
−1

2
,
1

2

} .

Proof: Let us name z ∈ Zn and F = {f 1, . . . , fk} ⊆ B respectively the
point and the family of vectors associated to S such that S = S(z,F). Let
us recall that:

S =

z +
∑
i∈J1,kK

λif
i ; ∀i ∈ J1, kK, λi ∈ {0, 1}

 ,

and then, since 1
2
(c) contains the indices of the vectors in F (see Defini-

tion 58), it is clear that:

S =

z +
∑
i∈ 1

2
(c)

λie
i ; ∀i ∈ 1

2
(c), λi ∈ {0, 1}

 .

Also, c = z +
∑

i∈ 1
2
(c)

ei

2
, and then:

S =

c+
∑
i∈ 1

2
(c)

(λi −
1

2
)ei ; ∀i ∈ 1

2
(c), λi ∈ {0, 1}

 .

This concludes the proof.
The following lemma clearly expose the link between the relation in (Z/2)

and the relation in H1:
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Lemma 13 (1D Switch Lemma). Let c be a value in (Z/2) \Z, and let y be
a value in Z. Then,

y ∈ {c− 1

2
, c+

1

2
} ⇔ β(H(y)) ⊆ β(H(c)).

Proof: When c belongs to (Z/2)\Z, H(c) = {c+ 1
2
} ∈ H1

0, and β(H(c)) =
{{c− 1/2, c+ 1/2}, {c+ 1/2}, {c+ 1/2, c+ 3/2}}. Also, when y ∈ Z, H(y) =
{y, y + 1} ∈ H1

1, and β(Hn(y)) = {{y, y + 1}}. If y belongs to {c− 1
2
, c+ 1

2
},

we obtain effectively that β(H(y)) ⊆ β(H(c)). Conversely, if {{y, y + 1}} ⊆
{{c − 1/2, c + 1/2}, {c + 1/2}, {c + 1/2, c + 3/2}}, it means that y ∈ {c −
1/2, c+ 1/2}.

Proposition 19 (Reformulation of a block). Let S be a block in Zn, and c
be its center in Hn. Then we can reformulate S such that:

S = Zn(β(c) ∩Hn
n).

Proof: By Lemma 18:

S =

c+
∑
i∈ 1

2
(c)

λie
i ; ∀i ∈ 1

2
(c), λi ∈

{
−1

2
,
1

2

} .

Let us assume that y belongs to S, then, :

• when i ∈ J1, nK \ 1
2
(c), yi = ci

• when i ∈ 1
2
(c) such that λi = 1/2, yi = ci + 1/2 with ci ∈ (Z/2) \ Z,

• and when i ∈ 1
2
(c) such that λi = −1/2, yi = ci−1/2 with ci ∈ (Z/2)\Z

Then, for any i ∈ J1, nK, by Lemma 13, H(yi) ∈ β(H(ci)), and then
Hn(y) ∈ β(Hn(c)). Because y ∈ Zn, Hn(y) ∈ Hn

n, and then Hn(y) ∈
β(Hn(c)) ∩Hn

n, which leads to y ∈ Zn(β(Hn(c)) ∩Hn
n).

Now let us assume that y ∈ Zn(β(Hn(c)) ∩Hn
n). It is clear that Hn(y) ∈

β(Hn(c)) ∩ Hn
n, which means that y ∈ Zn, and Hn(y) ∈ β(Hn(c)). In other

words, for any i ∈ J1, nK, H(yi) ∈ β(H(ci)). Two cases are then possible:
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• either ci ∈ Z and yi = ci,

• or ci ∈ (Z/2) \ Z, and by Lemma 13, yi ∈ {ci − 1
2
, ci + 1

2
},

and then we can affirm that y ∈ S(c) by Lemma 18.

Z*

α(H(y))

H(S)α(H(y))

H(S)H(S)

H(S)

Figure 5.10: For any point y ∈ Zn which is “exterior” to the block S centered
at z∗, the closure of its isomorph does not intersect the smallest open set in
the closure of the isomorph of this block.

Lemma 14. Let S be a block of Zn, p, p′ ∈ S be two points such that p′ =
antagS(p) a,d z∗ ∈ Hn be the center of S. For all y ∈ Zn:

{y 6∈ S ⇒ α(Hn(y)) ∩ β(z∗) = ∅} .

Proof: The existence and unicity of z∗ is due to the fact that p and p′

are antagonist in a block (see Lemma 8), and then α(Hn(p))∩α(Hn(p′)) 6= ∅
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by Lemma 7.

Assuming that for any y ∈ Zn, α(Hn(y)) ∩ β(z∗) 6= ∅:

⊗i∈J1,nK(α(H(yi)) ∩ β(z∗i )) 6= ∅,

and then by Lemma 1 and Lemma 2, for all i ∈ J1, nK:

α(H(yi)) ∩ β(z∗i ) 6= ∅ (Ri).

Now let us show that y belongs to S.

By (Ri), it follows that there exists pi ∈ α(H(yi)) ∩ β(z∗i ), which implies
by Theorem 2 that: {

H(yi) ∈ β(pi),
pi ∈ β(z∗i ),

,

which leads to H(yi) ∈ β(z∗i ), and then H(y) ∈ β(z∗) by Lemma 2. Since
y ∈ Zn, Hn(y) ∈ Hn, and then H(y) ∈ β(z∗) ∩ Hn

n, which is equivalent to
y ∈ Zn(β(z∗) ∩Hn

n), which is the alternative formulation of a block centered
at z∗ by Lemma 19.

On Figure 5.10, the isomorphism in Hn of a block S(z∗) is depicted in
red, and α(Hn(y)), where y is a point of Zn, is depicted in blue. We can
observe that when y 6∈ S(z∗), we obtain α(Hn(y)) ∩ β(z∗) = ∅.

z* z*

Figure 5.11: Example of β�N(z∗) in the 3D case. On the left, z∗ ∈ H3
1 (β�N(z∗)

is then the union of the blue faces), and on the right, z∗ ∈ H3
0 (β�N(z∗) is then

the union of the blue and red faces).
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z*
z*

Figure 5.12: Hasse diagrams of |β�N(z∗)| of Figure 5.11. On the left, z∗ ∈ H3
1

and |β�N(z∗)| is an union of two disjoint 0-surfaces. On the right, z∗ ∈ H3
0

and |β�N(z∗)| is an union of two disjoint 1-surfaces.

5.7.7 Calculus of |β�N(z∗)|
Property 9. Using Notations 7:

|β�N(z∗)| =
(
α�(Hn(p)) ∪ α�(Hn(p′))

)
∩ β�(z∗).

Proof: using Lemma 12 and Lemma 7:

α�(Hn(p)) ∩ β�(z∗) =
⋃

y∈N ∗3n−1(p)

α(Hn(p) ∧Hn(y)) ∩ β�(z∗),

=
⋃

y∈N ∗3n−1(p)

α(Hn(p)) ∩ α(Hn(y)) ∩ β�(z∗)

However y 6∈ S implies by Lemma 14 that α(Hn(y)) ∩ β�(z∗) = ∅, and
then under the union term, we write y ∈ N ∗3n−1(p)∩ S, which is also equiva-
lent to y ∈ S \ {p} since S ⊆ N3n−1(p):

α�(Hn(p)) ∩ β�(z∗) =
⋃

y∈S\{p}

α(Hn(p) ∧Hn(y)) ∩ β�(z∗).

We can also observe that α(Hn(p)∧Hn(p′))∩β�(z∗) = α(z∗)∩β�(z∗) = ∅,
and then:

α�(Hn(p)) ∩ β�(z∗) =
⋃

y∈S\{p,p′}

α(Hn(p) ∧Hn(y)) ∩ β�(z∗),

= α(Hn(p)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗).
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With the same calculus using p′ instead of p, we obtain that:

α�(Hn(p′)) ∩ β�(z∗) = α(Hn(p′)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗),

and then:(
α�(Hn(p)) ∪ α�(Hn(p′))

)
∩β�(z∗) = α(Hn(X∩S))∩α(Hn(Y ∩S))∩β�(z∗),

and remarking by Lemma 14 that:

α(X ) ∩ α(Y) ∩ β�(z∗) = α(Hn(X)) ∩ α(Hn(Y )) ∩ β�(z∗),
= α(Hn(X)) ∩ (α(Hn(Y )) ∩ β�(z∗)),
= α(Hn(X)) ∩ (α(Hn(Y ∩ S)) ∩ β�(z∗)),
= α(Hn(Y ∩ S)) ∩ (α(Hn(X)) ∩ β�(z∗)),
= α(Hn(Y ∩ S)) ∩ (α(Hn(X ∩ S)) ∩ β�(z∗)),
= α(Hn(X ∩ S)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗),

then β�N(z∗) =
(
α�(Hn(p)) ∪ α�(Hn(p′))

)
∩ β�(z∗).

5.7.8 Some additionnal theoretical background about
n-surfaces.

The following theorem is a direct consequence of the proof of Property 11
(pp. 55) extracted from the Ph. D. thesis of X. Daragon [11].

Theorem 9 (Inclusion of n-surfaces). Let |X| = (X,αX) and |Y | = (Y, αY )
be two n-surfaces, n ≥ 0. Then if |X| is a suborder of |Y |, i.e., if X ⊆ Y
and αX = αY ∩X ×X, then |X| = |Y |.

Proof: Let us proceed by induction.

Initialization (n = 0): when |X| and |Y | are two 0-surfaces, the inclusion
X ⊆ Y implies directly that X = Y since they have the same cardinality,
and then |X| = |Y |.

Induction (n ≥ 1): we assume that when two (n−1)-surfaces verify an in-
clusion relationship, they are equal. Now, let |X| and |Y | be two n-surfaces,
n ≥ 1, such that |X| is a suborder of |Y |. Then for all x ∈ X, x ∈ Y and then
we can write θ�X(x) ⊆ θ�Y (x) since X ⊆ Y . However, |θ�X(x)| and |θ�Y (x)| are
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(n− 1)-surfaces s.t. |θ�X(x)| is a suborder of |θ�Y (x)|, then |θ�X(x)| = |θ�Y (x)|.

Now let us assume that we have X ( Y . Then let x be a point of X and
y a point of Y \ X. Since |Y | is connected as a n-surface with n ≥ 1, it is
connected by path by Theorem 5, and then x, y ∈ Y implies that there exists
a path π joining them into Y . This way, there exists x′ ∈ X and y′ ∈ Y \X
s.t. y′ ∈ θ�(x′). In other words, y′ ∈ θ�Y (x′) = θ�X(x′) since x′ ∈ X. This
leads to y′ ∈ X. We obtain a contradiction. Then we have X = Y , and this
way, we have |X| = |Y |.

Lemma 15 (Union of disjoint k-surfaces). Let |X1| = (X1, αX1) and |X2 =
(X2, αX2)| be two non-empty disjoint k-surfaces (k ≥ 0). Then the order
|X| = (X1 ∪X2, αX) such that αX1 ∪ αX2 ⊆ αX , and such that |X1| or |X2|
is a suborder of |X| is not a k-surface. In other words, a disjoint union of
two k-surfaces cannot be a k-surface for k ≥ 0.

Proof: Let |X1| and |X2| be two non-empty disjoint k-surfaces. If |X1|
is a suborder of |X|, then by Theorem 9, |X1| = |X| since they are both k-
surfaces, which leads to a contradiction becauseX1 ( X and then |X1| 6= |X|.
The same thing applies if |X2| is a suborder of |X|.

5.7.9 |β�N(z∗)| is not a (n− dim(z∗)− 2)-surface.

Proposition 20. Let a, b be two points of Hn such that a ∈ β�(b) (dim(a) ≥
1). Then |α�(a) ∩ β�(b)| is a (dim(a)− dim(b)− 2)-surface.

Proof: Since |Hn| is a n-surface by Theorem 6 (proven by Evako in [13]),
by Property 6, |α�(a)| is a (ρ(a, |Hn|)− 1)-surface, and then a (dim(a)− 1)-
surface.

Now, we can remark that because b belongs to α�(a):

α�(a) ∩ β�(b) = β�α�(a)(b),

and then, again by Property 6, |α�(a)∩β�(b)| is a ((dim(a)−1)−ρ(b, |α�(a)|)−
1)-surface.

Also, we can remark that ρ(b, |α�(a)|) = ρ(b, |Hn|) = dim(b), which con-
cludes the proof.
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Property 10. Using Notations 7, |β�N(z∗)| is a disjoint union of two (n −
2− dim(z∗))-surfaces: {

α�(Hn(p)) ∩ β�(z∗),
α�(Hn(p′)) ∩ β�(z∗)

Proof: By Property 9:

β�N(z∗) =
(
α�(Hn(p)) ∪ α�(Hn(p′))

)
∩ β�(z∗),

which can be written as the union of α�(Hn(p)) ∩ β�(z∗) and α�(Hn(p′)) ∩
β�(z∗) whose intersection is equal to:

α�(Hn(p)) ∩ α�(Hn(p′)) ∩ β�(z∗) ⊆ α(z∗) ∩ β�(z∗) = ∅,

therefore these two terms are disjoint. Futhermore, p and p′ belong to Zn,
and then dim(Hn(p)) = dim(Hn(p′)) = n, which means by Proposition 20
that α�(Hn(p)) ∩ β�(z∗) and α�(Hn(p′)) ∩ β�(z∗) are (n − dim(z∗) − 2)-
surfaces.

Property 11. Using Notations 7, |β�N(z∗)| is not a (n−2−dim(z∗))-surface.

Proof: It is the direct consequence of Lemma 15 applied to Property 10.

Examples of |β�N(z∗)| are depicted on Figure 5.11 and Figure 5.12).

5.7.10 Summary and conclusion for the converse sense.

We have finally proven the converse implication: if X is not DWC, it contains
a (primary or secondary) critical configuration, then there exists a “critical
point” z∗ ∈ Hn such that |β�N(z∗)| is not a (n − 2 − dim(z∗))-surface, and
then IMM(X) is not AWC.

5.8 Proof in the direct sense.

Using Notations 6, we want to prove that IMM(X) is AWC, or equivalently
that ∀z ∈ N, |β�N(z)| is a (n − 2 − dim(z))-surface, when we assume that
X ⊆ Zn is digitally well-composed. To this aim, we will proceed by induction.
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Notations 8. Using Notations 6, we define the following property for any
k ∈ J1, nK:

(Pk) =
{
∀z ∈ N ∩Hn

n−k, |β�N(z)| is a (n− 2− dim(z))− surface
}
.

Then, the obvious property follows:

Property 12. Using Notations 8, IMM(X) is AWC iff (Pk) is verified for
any k ∈ J1, nK.

Proof: We have to prove that |β�N(z)| is a (n − dim(z) − 2)-surface for
any z ∈ N. Since N ∩Hn

n = ∅, it is sufficient to prove the property (Pk) for
any k ∈ J1, nK.

Property 13. Using Notations 8, (P1) and (P2) are true.

Proof: When z belongs to Hn
n−1 ∩N, |β�N(z)| = |∅| because β�(z) ⊆ Hn

n

and N ∩Hn
n = ∅, then |β�N(z)| is a (−1)-surface, and then (P1) is true.

DWC DWC not DWC 

Figure 5.13: Assuming that X is DWC, |β�N(z)| is a 0-surface when dim(z) =
n− 2 (k = 2).

When z belongs to Hn
n−2 ∩ N, we have only two possible configurations

(modulo rotations, symmetry and complementation) as shown on Figure 5.13.
Hn(X ∩ S) is drawn in blue, Hn(Y ∩ S) is drawn in red, β�N(z) is drawn in
black, and z is the central point. The two DWC cases are on the left and in
the middle while the non DWC case is on the right. Then we observe that
in the two DWC cases, β�N(z) is the union of two elements of Hn which are
not neighbors the one of the other one, and then |β�N(z)| is a 0-surface. (P2)
is then true.
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Theorem 10. Let X be a subset in Z2 which is digitally well-composed. Then
IMM(X) is well-composed in the sense of Alexandrov.

Proof: Since (P1) and (P2) are true, by Property 12, IMM(X) is AWC
when X is DWC in the case n = 2.

Let use Notations 8, and let us assume that n ≥ 3 is fixed, and that X is
digitally well-composed. We want to prove that (Pk) is true for any k ∈ J1, nK.
We can proceed by induction on k: observing that (P1) and (P2) are true
by Property 13, we can assume that for any k ∈ J3, nK, (Pl) is true for any
l ∈ J1, k− 1K, and we want then to prove that (Pk) is true. Since k ≥ 3, any
z belonging to Hn

n−k verifies dim(z) ≤ (n−3), and then (n−dim(z)−2) ≥ 1.
This way, (Pk) is equivalent to say that ∀z ∈ N∩Hn

n−k, |β�N(z)| is connected

and that ∀u ∈ β�N(z),
∣∣∣θ�
β�
N(z)

(u)
∣∣∣ is a (n − dim(z) − 3)-surface. Then comes

the following notation:

Notations 9. Using Notations 8, we assume that n ≥ 3, that X is digi-
tally well-composed and that (Pl) is true for any l ∈ J1, k − 1K ( induction
hypothesis). Then we define the following properties:
∀z ∈ N ∩Hn

n−k, |β�N(z)| is connected , (P ′k)

∀z ∈ N ∩Hn
n−k, ∀u ∈ β�N(z),

∣∣∣θ�
β�
N(z)

(u)
∣∣∣ is a (n− dim(z)− 3)-surface. (P∗k)

Proving (P ′k) and (P∗k) for this value of k is then sufficient to prove that
(Pk) is true for any k ∈ J1, nK.

Property 14. Using Notations 9, (P∗k) is true.

Proof: Since N is a closed set, α(u) ⊆ N and then by Proposition 2:∣∣∣θ�β�
N(z)

(u)
∣∣∣ =

∣∣∣β�β�
N(z)

(u)
∣∣∣ ∗ ∣∣∣α�β�

N(z)
(u)
∣∣∣ = |β�N(u)|∗

∣∣α�(u) ∩ β�(z)
∣∣ .

We can remark that
∣∣α�(u) ∩ β�(z)

∣∣ is a (dim(u) − dim(z) − 2)-surface
by Proposition 20 because u belongs to β�(z). Also, we know that u belongs
to Hn

n−1 ∪ · · · ∪ Hn
n−k+1, and then by the induction hypothesis, |β�N(u)| is a

(n− 2− dim(u))-surface. The result is that (P∗k) is true by Theorem 7.
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Lemma 16. Using Notations 9:

X is AWC ⇔ (P ′k).

Proof: By Property 14, it is clear that IMM(X) is AWC iff (P ′k) is
true.

In the sequel, we are going to reason reducio ad absurdum, by assuming
that there exists a critical point z ∈ N such that dim(z) ≤ (n− 3) and such
that |β�N(z)| is not connected:

Notations 10. Using Notations 9, we assume that there exists z ∈ N such
that dim(z) ≤ (n− 3) and:{

|β�N(z)| is not connected
}
.

Then we can define the family of connected components of |β�N(z)|:

{Fi}i∈I = CC(|β�N(z)|),

such that ∀i, j ∈ I, i 6= j implies Fi ∩ Fj = ∅.

We are going to show that this family is supplied with several properties
which finally lead to a contradiction.

5.8.1 First properties of {Fi}i∈I
Proposition 21. Let (X,U) be an Alexandrov space, and F ⊆ X be a closed
subset of X. Then the connected components of F are closed.

Proof: Let F be closed in the Alexandrov space (X,U). Let assume that
there exists a connected component C ∈ CC(F ) such that it is not closed.
Then C ( α(C), and then there exists p∗ ∈ α(C) = ∪c∈Cα(c) such that
p∗ 6∈ C. In other words, there exists c∗ ∈ C such that p∗ ∈ α(c∗). Since F is
closed and c∗ ∈ F , p∗ ∈ α(c∗) ⊆ F , which means that p∗ ∈ F . Also, C can
be rewritten C = CC(F, c∗) and then contains p∗ which is a neighbor of c∗

and belongs to F . We obtain a contradiction since p∗ 6∈ C.

Property 15. Using Notations 10, Fi is closed into β�(z) for any i ∈ I.
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Proof: N is a closed set into Hn as intersection of closed sets, and β�(z)
supplied with the induced topology is a subspace of Hn. This way, β�N(z) =
N ∩ β�(z) is closed into β�(z), and then by Proposition 21, each connected
component of |β�N(z)| is closed into β�(z).

Property 16. Using Notations 10, for all i, j set in I s.t. i 6= j:

β(Fi) ∩ Fj = ∅.

Proof: Let us assume that two components Fi and Fj, i 6= j, verify
β(Fi) ∩ Fj 6= ∅. Then there exists a point x ∈ β(Fi) ∩ Fj which proves that
Fi∪Fj is pathwise connected. We obtain a contradiction since Fi and Fj are
maximal components of |β�N(z)|.

The following property is an immediate consequence of the separation
property exposed above.

Property 17. Using Notations 10, for all i, j chosen in I s.t. i 6= j:

α(Fi) ∩ Fj = ∅.

Proof: Let i, j be in I s.t. i 6= j, then we know that β(Fi) ∩ Fj = ∅
by Property 16. Let us assume now that α(Fi) ∩ Fj 6= ∅, then there exists
v ∈ α(Fi) ∩ Fj, and then there exists too f i ∈ Fi s.t. v ∈ α(f i). However
v ∈ α(f i) implies that f i ∈ β(v), and then f i ∈ β(Fj). f

i ∈ β(Fj)∩Fi implies
then that this intersection is non-empty and then it leads to a contradiction.

Property 18. Using Notations 10, then for each u ∈ β�N(z), there exists one
unique index i∗ ∈ I such that u ∈ Fi∗ and it verifies that:

α�Fi∗
(u) = α�

β�
N(z)

(u) (1),

β�Fi∗
(u) = β�

β�
N(z)

(u) (2),

θ�Fi∗
(u) = θ�

β�
N(z)

(u) (3).
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Let us prove the first assertion. Let u be an element of β�N(z), then:

α�
β�
N(z)

(u) = α�(u) ∩ β�N(z) = α�(u) ∩
⋃
i∈I

Fi =
⋃
i∈I

(α�(u) ∩ Fi).

Now let i∗ be such that u ∈ Fi∗ , then we obtain α�(u) ∩ Fi∗ = α�Fi∗
(u).

Conversely, if i ∈ I s.t. i 6= i∗, α�(u) ∩ Fi = ∅ (because α(Fi∗) ∩ Fi = ∅ by
Property 17). Then we obtain: α�

β�
N(z)

(u) = α�Fi∗
(u).

The second assertion follows the same reasoning but uses Property 16
instead of Property 17.

The third assertion is a direct consequence of the two assertions we have
just proven.

Property 19. Using Notations 10, then for all i ∈ I, |Fi| is a (n−dim(z)−
2)-surface.

Proof: Let i be in I, Fi is connected by definition. Moreover, let u be
an element of Fi, then:

|θ�Fi
(u)| = |θ�

β�
N(z)

(u)|,

by Property 18, which means that |θ�Fi
(u)| is a (n−dim(z)− 3)-surface since

(P∗k) is true by Property 14. Then Fi is a (n− dim(z)− 2)-surface.

5.8.2 1 (x) and 1
2 (x)

Notations 11 (Integral and half coordinates). From now on, for each point
x ∈ (Z/2)n, we will write:

1 (x) = {i ∈ J1, nK ; xi ∈ Z}.

Obviously,

1 (x) = J1, nK \ 1

2
(x) ,

and Card (1 (x)) = dim(Hn(x)).
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Proposition 22. Let p, c be two elements in Hn. We have the following
equivalence:

{p ∈ β(c)} ⇔



∀i ∈ 1 (Zn(p)) ∩ 1
2

(Zn(c)) ,Z(pi) ∈
{
Z(ci)− 1

2
,Z(ci) + 1

2

}
,

∀i ∈ 1 (Zn(p)) ∩ 1 (Zn(c)) ,Z(pi) = Z(ci),

∀i ∈ 1
2

(Zn(p)) ∩ 1 (Zn(c)) ,Z(pi) = Z(ci),

1
2

(Zn(p)) ∩ 1 (Zn(c)) = ∅.

Proof: Let us prove first that p ∈ β(c) implies this set of four properties.
The relation p ∈ β(p) is equivalent by Lemma 2 to say that for any i ∈ J1, nK,
pi ∈ β(ci). Each term pi belongs to H1

1 or to H1
0, and so does ci, which leads

to four cases. Then, assuming that for i ∈ J1, nK, we have pi ∈ β(ci), we
obtain that:

• either pi ∈ H1
1 and ci ∈ H1

0, then pi ∈ β(ci) implies:

Z(pi) ∈
{
Z(ci)−

1

2
,Z(ci) +

1

2

}
,

• or pi ∈ H1
1 and ci ∈ H1

1, then pi ∈ β(ci) implies Z(pi) = Z(ci),

• or pi ∈ H1
0 and ci ∈ H1

0, then pi ∈ β(ci) implies Z(pi) = Z(ci),

• or pi ∈ H1
0 and ci ∈ H1

1, then pi ∈ β(ci) leads to a contradiction.

In other words,

• either i ∈ 1 (Zn(p)) ∩ 1
2

(Zn(c)), and Z(pi) ∈
{
Z(ci)− 1

2
,Z(ci) + 1

2

}
,

• or i ∈ 1 (Zn(p)) ∩ 1 (Zn(c)), and Z(pi) = Z(ci),

• or i ∈ 1
2

(Zn(p)) ∩ 1
2

(Zn(c)), and Z(pi) = Z(ci),

• and 1
2

(Zn(p)) ∩ 1 (Zn(c)) = ∅,

which concludes the direct implication.

Conversely, it we have these four properties, 1
2

(p)∩ 1 (c) = ∅ shows that:
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(1 (p) ∩ 1

2
(c)) ∪ (1 (p) ∩ 1 (c)) ∪ (

1

2
(p) ∩ 1

2
(c)) = J1, nK,

and since in these three cases, we obtain that pi ∈ β(ci), it is clear by
Lemma 2 that p ∈ β(c).

5.8.3 Covering and opposites

Definition 59 (Covering relation). Let a, b be two elements of Hn. We say
that a covers b, iff a ∈ β�(b) and there exists no element c of Hn such that
a > c > b. We denote it a � b. Also, in the case of the cubical complexes,
A � b iff a ∈ β(b) and dim(a) = dim(b) + 1.

Proposition 23. Let p, c be two elements of Hn. Then, p � c iff there exists
m ∈ J1, nK such that:

1 (Zn(p)) ∩ 1

2
(Zn(c)) = {m} and Zn(p) ∈

{
Zn(c)− 1

2
em,Zn(c) +

1

2
em
}
.

Proof: We can reformulate the fact that p � c in the following manner:


∀i ∈ 1 (Zn(p)) ∩ 1

2
(Zn(c)) ,Z(pi) ∈

{
Z(ci)− 1

2
,Z(ci) + 1

2

}
, (1)

∀i ∈ 1 (Zn(p)) ∩ 1 (Zn(c)) ,Z(pi) = Z(ci), (2)
∀i ∈ 1

2
(Zn(p)) ∩ 1

2
(Zn(c)) ,Z(pi) = Z(ci), (3)

1
2

(Zn(p)) ∩ 1 (Zn(c)) = ∅, (4)
dim(p) = dim(c) + 1. (5)

By (4), 1 (Zn(c)) ⊆ 1 (Zn(p)), and then (2) can be reformulated:

∀i ∈ 1 (Zn(c)) ,Z(pi) = Z(ci),

which implies that at least the dim(c) integral coordinates of Zn(c) are inte-
gral for Zn(p). Since dim(p) = dim(c) + 1 by (5), p admits one more integral
coordinate than c and it lies into 1 (Zn(p))\1 (Zn(p)) = 1 (Zn(p))∩ 1

2
(Zn(c)),

which means that:

Card(1 (Zn(p)) ∩ 1

2
(Zn(c))) = 1,
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and then there exists one index of coordinate m ∈ J1, nK such that 1 (Zn(p))∩
1
2

(Zn(c)) = {m}. By (1) to (4), we obtain then that on each coordinate
i ∈ J1, nK, Z(pi) = Z(ci) except fot the case i = m where:

Z(pi) ∈
{
Z(ci)−

1

2
,Z(ci) +

1

2

}
,

which concludes the direct sense.

Conversely, if there exists m ∈ J1, nK such that 1 (Zn(p)) ∩ 1
2

(Zn(c)) =
{m} and Zn(p) ∈

{
Zn(c)− 1

2
em,Zn(c) + 1

2
em
}
, it is clear that (1) is verified

by hypothesis. Also, for each i ∈ J1, nK \ {m}, we have Z(pi) = Z(ci), which
implies (2) and (3). Now let us assume that (4) is false, it means that there
exists some i ∈ 1

2
(Zn(p))∩1 (Zn(c)) such that Z(ci) is in half and such that

Z(pi) is integral. Then we obtain that |Z(ci)−Z(pi)| = 1
2
, which means that

i = m (Zn(c) and Zn(p) are different only on the mth coordinate). However,
i belongs to 1

2
(Zn(p)) ∩ 1 (Zn(c)) and m belongs to 1 (Zn(p)) ∩ 1

2
(Zn(c)).

We obtain a contradiction:

{i} ∈ 1 (Zn(p)) ∩ 1

2
(Zn(c)) ∩ 1

2
(Zn(p)) ∩ 1 (Zn(c)) = ∅,

then (4) is true. (5) is true because p has one more integral coordinate than
c by hypothesis.

Definition 60 (Opposites [19]). Let a, b, c be three elements of Hn. We say
that a and b are opposite relatively to c and we denote it a = oppc(b) iff
a � c, b � c and β(a) ∩ β(b) = ∅.

On Figure 5.14, some examples of opposite faces are depicted: we have
a = oppc(b) with a in red, b in blue, and c in pink. As we can see, geometrical
properties of symmetry follow on from the opposite relation between two
faces.

Lemma 17. Let a, b, c three elements of Hn such that a = oppc(b), then there
exists m ∈ J1, nK such that:

• either Zn(a) = Zn(c)− 1
2
em and Zn(b) = Zn(c) + 1

2
em,

• or Zn(a) = Zn(c) + 1
2
em and Zn(b) = Zn(c)− 1

2
em,
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a bc

c

a

b

c

a

b

a bc

Figure 5.14: Examples of opposites in H2.

i* ≠ j*

a

b c

i*

j*

a
i*

b
i*

a
j*

b
j*

Figure 5.15: a and b covering c: when the index i∗ defined such that ai∗ 6= ci∗
and the index j∗ defined such that bj∗ 6= cj∗ are different, we obtain that
β(a) ∩ β(b) 6= ∅. A fortiori, if a and b are opposite, i∗ = j∗.
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which leads in both cases to:

Zn(a) + Zn(b)

2
= Zn(c).

Furthermore, 1 (Zn(a)) = 1 (Zn(c)) t {m} = 1 (Zn(b)) ,

1
2

(Zn(a)) t {m} = 1
2

(Zn(c)) = 1
2

(Zn(b)) t {m}.

Proof: By Proposition 23, there exist i∗, j∗ ∈ J1, nK such that:

1 (Zn(a)) ∩ 1
2

(Zn(c)) = {i∗} ,

Zn(a) ∈
{
Zn(c)− 1

2
ei
∗
,Zn(c) + 1

2
ei
∗}
,

1 (Zn(b)) ∩ 1
2

(Zn(c)) = {j∗} ,

Zn(b) ∈
{
Zn(c)− 1

2
ej
∗
,Zn(c) + 1

2
ej
∗}
.

Also, since a and b cover c, we have that a ∈ β(c) and b ∈ β(c). Applying
β on these expressions, we obtain that β(a) ⊆ β(c) and that β(b) ⊆ β(c)
(by transitivity of β). Then, by Lemma 2 combined to the fact that for each
i ∈ J1, nK, we have ai = ci iff i 6= i∗, and bj = cj iff j 6= j∗, we have:

β(ai∗) ⊂ β(ci∗),

∀i ∈ J1, nK \ {i∗}, β(ai) = β(ci),

β(bj∗) ⊂ β(cj∗),

∀i ∈ J1, nK \ {j∗}, β(bi) = β(ci),

If i∗ 6= j∗ (see Figure 5.15), then when m = i∗, we have β(am) ⊂
β(cm) = β(bm), when m = j∗, we have β(bm) ⊂ β(cm) = β(am), and
when m ∈ J1, nK \ {i∗, j∗}, we have β(am) = β(cm) = β(bm). We obtain
by Lemma 2 that β(a) ∩ β(b) = ⊗i∈J1,nK (β(ai) ∩ β(bi)) 6= ∅, which contra-
dicts the hypotheses that a and b are opposites, and then i∗ = j∗.

Because Zn(a),Zn(b) ∈
{
Zn(c)− 1

2
ei
∗
,Zn(c) + 1

2
ei
∗}

and because they
are distinct, we obtain that:
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• either Zn(a) = Zn(c)− 1
2
ei
∗

and Zn(b) = Zn(c) + 1
2
ei
∗
,

• or Zn(a) = Zn(c) + 1
2
ei
∗

and Zn(b) = Zn(c)− 1
2
ei
∗
,

which leads obviously to:

Zn(a) + Zn(b)

2
= Zn(c).

When m ∈ J1, nK \ {i∗}, we have then dim(am) = dim(cm) = dim(bm),
and when m = i∗, we have dim(am) = dim(cm) + 1 = dim(bm). We can then
conclude that: 1 (Zn(a)) = 1 (Zn(c)) t {i∗} = 1 (Zn(b)) ,

1
2

(Zn(a)) t {i∗} = 1
2

(Zn(c)) = 1
2

(Zn(b)) t {i∗}.

5.8.4 A very particular (n− dim(z)− 2)-surface

Notations 12 (Subspaces of Hn). Let h be an element Hn, and let be I be a
familly of indices into J1, nK, and let be C a collection of coefficients in (Z/2).
Then we define the following set:

Hn
{h,I,C} = Hn

{
Zn(h) +

∑
i∈I

λie
i ; ∀i ∈ I, λi ∈ C

}
.

It is then obvious that for any element h ∈ Hn, we have the following
relations:

Proposition 24. For any element h ∈ Hn,
Hn

{h, 12 (Zn(h)),{− 1
2
,0, 1

2
}} = β(h),

Hn

{h,1(Zn(h)),{− 1
2
,0, 1

2
}} = α(h),

Hn
{h,J1,nK,(Z/2)} = Hn.
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Proposition 25. Let t, t′, z three elements in Hn such that t and t′ are

opposite relatively to z. Now let define E def≡ β(z) \ (β(t) ∪ β(t′)), and let
m∗ be the only coordinate in J1, nK such that m∗ ∈ 1 (Zn(t)) \ 1 (Zn(z)).
Then, the application Iso : E → Hn such that:

∀u ∈ E , Iso(u) = Hn

(
Zn(u) + (Z(tm∗)−Z(zm∗)) e

m∗
)
.

is an isomorphism (in the order sense) from E to β(t).

Proof: Let t, t′, z be three elements of Hn such that t′ = oppz(t), then
we obtain that there exists some value m ∈ J1, nK such that 1

2
(Zn(z)) ∩

1 (Zn(t)) = {m}, Zn(t) = Zn(z) + 1
2
em, and Zn(t′) = Zn(z) − 1

2
em (or

the converse case Zn(t) = Zn(z) − 1
2
em, and Zn(t′) = Zn(z) + 1

2
em but by

symmetry, we call neglect this case).

Also, we know that β(t) = Hn

{t, 12 (Zn(t)),{− 1
2
,0, 1

2
}}, β(t′) = Hn

{t′, 12 (Zn(t′)),{− 1
2
,0, 1

2
}}.

Since E is equal to β(z)\(β(t)∪β(t′)), we can refomulate it using formulation
defined in Notation 12. Effectively,

β(z) = Hn

{z, 12 (Zn(z)),{− 1
2
,0, 1

2
}},

= Hn

{
z +

∑
i∈ 1

2
(Zn(z))

λie
i ; λi ∈ {−1

2
, 0, 1

2
}
}
,

= Hn

{
z +

∑
i∈ 1

2
(Zn(t)t{m}) λie

i ; λi ∈ {−1
2
, 0, 1

2
}
}
,

= Hn

{
z + λme

m +
∑

i∈ 1
2
(Zn(t))

λie
i ; λm ∈ {−1

2
, 0, 1

2
}, λi ∈ {−1

2
, 0, 1

2
}
}
,

= Hn

{
t+
∑

i∈ 1
2
(Zn(t))

λie
i ; λi ∈ {−1

2
, 0, 1

2
}
}
,

+ Hn

{
z +

∑
i∈ 1

2
(Zn(t))

λie
i ; λi ∈ {−1

2
, 0, 1

2
}
}
,

+ Hn

{
t′ +

∑
i∈ 1

2
(Zn(t))

λie
i ; λi ∈ {−1

2
, 0, 1

2
}
}
,

= β(t) ∪ E ∪ β(t′).

Since this is a disjoint union, it is clear that :

E = Hn

z +
∑

i∈ 1
2
(Zn(t))

λie
i ; λi ∈ {−

1

2
, 0,

1

2
}

 .
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Now that we have this equality, we want to prove that their exists an
isomorphism between β(t), E and β(t′). By symmetry, it is sufficient to
prove that E and β(t) are isomorph. For that, we define the application
τ+,m : Hn → Hn such that for any u ∈ Hn:

τ+,m(u) = Hn(Zn(u) +
1

2
em).

Let us show first that this application maps E to β(t). Let u be an
element of E , then there exists for any i ∈ 1

2
(Zn(t)) one value λi ∈ {−1

2
, 0, 1

2
}

such that u = Hn(Zn(z)+
∑

i∈ 1
2
(Zn(t))

λie
i). This way, τ+,m(u) = Hn(Zn(z)+

1
2
em+

∑
i∈ 1

2
(Zn(t))

λie
i). Since Zn(z)+ 1

2
em = Zn(t), we obtain that τ+,m(u) =

Hn(Zn(t) +
∑

i∈ 1
2
(Zn(t))

λie
i), and then τ+,m(u) ∈ Hn

{t, 12 (Zn(t)),{− 1
2
,0, 1

2
}} which

is in fact β(t).

Now we want to prove that τ+,m is injective, which is immediate because it
is a translation. To prove that τ+,m, let us proceed this way: let v be a point
in β(t), then there exists for any i ∈ 1

2
(Zn(t)) one value λi ∈ {−1

2
, 0, 1

2
}

such that v = Hn(Zn(t) +
∑

i∈ 1
2
(Zn(t))

λie
i). Its antecedent is simply u =

Hn(Zn(z) +
∑

i∈ 1
2
(Zn(t))

λie
i) which obviously belongs to E .

This translation is then a bijection from E to β(t). Now we need to prove
that it preserves the order: let a, b be two elements of E such that a � b,
then there exists a value i ∈ 1

2
(Zn(t)) such that:

Zn(a) ∈ {Zn(b)− 1
2
ei,Zn(b) + 1

2
ei},

Z(ai) ∈ Z,

Z(bi) ∈ (Z/2) \ Z,

Now let us define a′ = τ+,m(a) and b′ = τ+,m(b). We want to prove that a′

covers b. In other words, a′ = Hn(Zn(a) + 1
2
em) and b′ = Hn(Zn(b) + 1

2
em).

We obtain then that:

Zn(a′) = Zn(a) + 1
2
em,

∈ {Zn(b)− 1
2
ei + 1

2
em,Zn(b) + 1

2
ei + 1

2
em},

∈ {Zn(b′)− 1
2
ei,Zn(b′) + 1

2
ei}.
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It remains to show that Z(ai) belongs to Z and that Z(bi) belongs to
(Z/2) \ Z. Since Z(bi) belongs to (Z/2) \ Z, Zn(b′) = Zn(b) + 1

2
em, and

m 6∈ 1
2

(Zn(t)) which contains i, then m 6= i, which leads to Z(b′i) = Z(bi),
and then Z(b′i) belongs to (Z/2)\Z. The fact that Z(a′i) belongs to Z comes
from the fact that Z(a′i) ∈ {Z(b′i) − 1

2
ei,Z(b′i) + 1

2
ei}. This concludes the

proof.

t

z

t'

Figure 5.16: Isomorphic orders in H3.

Lemma 18. Assuming n ≥ 2, let z be an element of Hn \Hn
n and t, t′ be in

Hn
dim(z)+1 such that they are opposite relatively to z. Then

∣∣β�(z) \ (β(t) ∪ β(t′))
∣∣

is a (n− dim(z)− 2)-surface.

Proof: Since t and t′ are two opposites, 1 (Zn(t)) = 1 (Zn(t′)) by Lemma 17,
and Card (1 (Zn(t))) = Card (1 (Zn(z))) + 1. Now let be m∗ the only coor-
dinate in J1, nK such that m∗ ∈ 1 (Zn(t)) \ 1 (Zn(z)). We can then write:

Zn(t) = Zn(z) + (Z(tm∗)−Z(zm∗)) e
m∗ .

Now let define E def≡ β(z) \ (β(t) ∪ β(t′)), and let define the application
Iso : E → Hn such that:

∀u ∈ E , Iso(u) = Hn

(
Zn(u) + (Z(tm∗)−Z(zm∗)) e

m∗
)
.

Intuitively, this application translates the point u from E to β(t) directed
by the vector em

∗
. More exactly, by Proposition 25, Iso is an isomorphism
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from |E| to |β(t)|.

This way, |β�(z) \ (β(t) ∪ β(t′))| = |E \ {z}| is isomorphic to |β(t) \
{Iso(z)}| = |β�(t)| which is a (n− dim(t)− 1) = (n− 2− dim(z))-surface.

As depicted on Figure 5.16, when t and t′ are opposite relatively to z,
|E| depicted in red is isomorphic (as an order) to |β(t)| depicted in blue
and to |β(t′)| depicted in green. Take care that not every translation in the
Khalimsky grid preserves the order.

5.8.5 Fi cannot contain two opposite faces

t

opp (t)
z

z

Fj

Figure 5.17: Fi cannot contain two opposite faces.

Property 20 (Fi cannot contain two opposite (dim(z) + 1)-faces). Using
Notations 10:

∀i ∈ I,∀t ∈ Hn
dim(z)+1, {t ∈ Fi ⇒ oppz(t) 6∈ Fi} .

Proof: It is sufficient to show that the hypotheses of non connectivity of
|β�N(z)| and of presence of two opposite faces in a same connected component
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of β�N(z) are incompatible. The reasoning of this proof is depicted on Fig-
ure 5.17. Let i be in I such that there exists t, t′ ∈ Hn

dim(z)+1 ∩ Fi werifying

t′ = oppz(t).

Then for all j ∈ I, j 6= i, we have β(Fi) ∩ Fj = ∅ by Property 16, and
then β(t) ∩ Fj = ∅, et β(t′) ∩ Fj = ∅. This way, Fj ⊆ β�(z) \ (β(t) ∪ β(t′)),
which is by Lemma 18 a (n− dim(z)− 2)-surface (like Fj). However, when
two discrete surfaces of same rank verify an inclusion relationship, they are
equal (see Theorem 9), then we have :

Fj = β�(z) \ (β(t) ∪ β(t′)).

This implies that Fi is included into β(t)∪β(t′) and then Fi = Fi∩(β(t)∪
β(t′)). Since t and t′ belong to Fi, we obtain finally that:

Fi = βFi
(t) ∪ βFi

(t′),

which is a disjoint union of two open non-empty sets, i.e., Fi is not connected,
which is impossible.

5.8.6 Fi contains at most (n− dim(z)) (dim(z) + 1)-faces

Property 21. Using Notations 10, for each value i in I, Fi contains at most
(n− dim(z)) (dim(z) + 1)-faces.

Proof: β�(z) contains exactly 2(n−dim(z)) couples of opposite (dim(z)+
1)-faces, and then for all i in I, Fi contains at most (n−dim(z)) (dim(z)+1)-
faces.

5.8.7 β�N(z) is a closure of (n− 1)-faces in β�(z)

Now let us prove somme lemmas useful in this subsection.

Lemma 19. Let x, y be two elements of Zn and S be a block such that
x = antagS(y). Then for all z ∈ S:

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(x)) ∩ α(Hn(z))

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(z)) ∩ α(Hn(y))
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H(x)

H(y)

H(z)

α(H(z)) ∩ α(H(y))

α(H(x)) ∩ α(H(y))

α(H(z)) ∩ α(H(x))

Figure 5.18: When z belongs to the block S where x and y are antagonist,
we have the relation α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(z)) ∩ α(Hn(y)).
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Proof: By symmetry, it is sufficient to show the first assertion (see Fig-
ure 5.18). Let I = {i ∈ J1, nK ; xi 6= yi}. Let z be an element of S, then for
all i ∈ I, zi ∈ {xi, yi} and for all i ∈ J1, nK \ I, xi = yi = zi.

When i ∈ J1, nK \ I, xi = yi = zi and then:

α(H(xi)) ∩ α(H(yi)) = α(H(xi)) = α(H(xi)) ∩ α(H(zi)).

When i ∈ I, either zi = xi, and:

α(H(xi)) ∩ α(H(yi)) ⊆ α(H(xi)) = α(H(xi)) ∩ α(H(zi)),

or zi = yi and it is immediate that:

α(H(xi)) ∩ α(H(yi)) ⊆ α(H(xi)) = α(H(xi)) ∩ α(H(zi)).

A simple application of the cartesian product is then sufficient to end the
proof.

x'x

y'
y

S
Π

Figure 5.19: Let x be in X and y be in Y such that they are antagonist in
a block S ⊂ Zn. They are joined by a 2n-path π ⊂ S containing a couple
(x′, y′) ∈ X × Y such that x ∈ N ∗2n(y).

Property 22 (β�N(z) is the closure of a set of (n− 1)-faces in β�(z)). Using
Notations 10, for each z ∈ N:

β�N(z) =
⋃

f∈Hn
n−1∩β�

N(z)

α(f) ∩ β�(z),

in other words, β�N(z) is equal to the union of the closures (into β�(z)) of the
(n− 1)-faces contained in it.
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Proof: Since for all f ∈ β�N(z), f ∈ N, then α(f) ∩ β�(z) ⊆ β�N(z)
because β�N(z) is closed in the subspace β�(z), the reciprocal inclusion is im-
mediate.

Now let u be in β�N(z). Let us recall that S(z) ≡ Zn(β(z) ∩ Hn
n) is the

block centered at z. Then by Lemma 14:

β�N(z) = α(Hn(X)) ∩ α(Hn(Y )) ∩ β�(z),
= α(Hn(X ∩ S(z))) ∩ α(Hn(Y ∩ S(z))) ∩ β�(z).

This way, there exists x ∈ X ∩ S(z) and y ∈ Y ∩ S(z) such that u ∈
α(Hn(x)) ∩ α(Hn(y)). x and y belonging to the same block S(z) and being
disctinct, they are k-antagonist, k ≥ 1.

Now let be I = {i ∈ J1, nK ; xi 6= yi}, reindexed such that I =
{ej1 , . . . , ejk}. We can then define the 2n-path π,i.e., a sequence in Zn such
as two consecutive elements in the sequence are 2n-neighbours in Zn, joining
x and y into S(z): π = (p0 = x, p1, . . . , pk−1, pk = y), verifying the recursive
relation: {

p0 = x,
pl = pl−1 + (yjl − xjl).ejl ,∀l ∈ J1, kK,

Now, let us define l∗ = (min{l ∈ J1, kK ; pl ∈ Y }−1), then we obtain two
points x′ ≡ pl

∗ ∈ X and y′ ≡ pl
∗+1 ∈ Y which are 2n-neighbors in the block

S(z) (voir Figure 5.19).

Since y′− x =
∑

l∈J1,l∗+1K

(yjl − xjl).ejl , y′ and x are antagonist in a block of

dimension (l∗ + 1) that we will call S ′. Moreover:{
x′ = x+

∑
l∈J1,l∗K(yjl − xjl).ejl , (1)

y′ = x+
∑

l∈J1,l∗+1K(yjl − xjl).ejl , (2)

then for all i ∈ {j1, . . . , jl∗}, x′i = yi = y′i by (1) and (2), then ∀i ∈ J1, nK,
x′i ∈ {y′i, xi}, which implies x′ ∈ S ′.

Then, using Lemma 19:

α(Hn(x)) ∩ α(Hn(y′)) ⊆ α(Hn(x′)) ∩ α(Hn(y′)).
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Moreover, y′ ∈ S where x and y are antagonist, so one more time using
Lemma 19,

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(x)) ∩ α(Hn(y′)),

and then we obtain by transitivity that:

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(x′)) ∩ α(Hn(y′)).

This way, u ∈ α(Hn(x′)) ∩ α(Hn(y′)) ⊆ N because x′ ∈ X and y′ ∈ Y .
x′ and y′ being 2n-neighbors, they are 1-antagonist and then u belongs to
the closure of the (n − 1)-face f = Hn(x′) ∧ Hn(y′). This face belongs
to β�(z) because x′, y′ ∈ S(z) and this way u ∈ α(f) ∩ β�(z) with f ∈
β�N(z) ∩Hn

n−1.

5.8.8 Fi is a closure of (n− 1)-faces in β�(z)

Property 23 (Fi is a closure of (n−1)-faces in β�(z)). Using Notations 10,
∀i ∈ I,∀m ∈ Jdim(z)+1, n−1K, Fi is the closure of an union of (n−1)-faces
in β�(z), i.e.:

Fi =
⋃

f∈Hn
n−1∩Fi

α(f) ∩ β�(z).

Proof: Using Property 22, we have:

β�N(z) =
⋃

f∈Hn
n−1∩β�

N(z)

α(f) ∩ β�(z),

where for all f ∈ Hn
n−1 ∩ β�N(z), the orders |α(f) ∩ β�(z)| are connected:

|α�(f) ∩ β�(z)| is a (dim(f)− dim(z)− 2)-surface, and then:

• if dim(z) = n−3, (dim(f)−dim(z)−2) = ((n−1)−(n−3)−2) = 0, and
then |α�(f)∩β�(z)| is a 0-surface such that |α(f)∩β�(z)| is connected:
f is connected to the two points of |α�(f) ∩ β�(z)|.

• if dim(z) ≤ n − 4, |α�(f) ∩ β�(z)| is connected and then so does
|α(f) ∩ β�(z)| since f is a neighbor of |α�(f) ∩ β�(z)|.

Now, let us show by a double inclusion that we can prove the result we
are looking for.
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For any i ∈ I, and for each f ∈ Hn
n−1 ∩ Fi, |α(f) ∩ β�(z)| is connected,

and share f with Fi. Since they are both subsets of β�N(z), by definition of
Fi,

Fi ⊇ α(f) ∩ β�(z).

Hence,

Fi ⊇
⋃

f∈Hn
n−1∩Fi

α(f) ∩ β�(z).

Conversely, Fi is a connected component of |β�N(z)| which is closed in
β�(z), and then is also closed in β�(z), which means that for f ∈ Fi, α(f)∩
β�(z) ⊆ Fi, then for any f ∈ Fi ∩Hn

n−1, α(f) ∩ β�(z) ⊆ Fi, and then:

Fi ⊆
⋃

f∈Hn
n−1∩Fi

α(f) ∩ β�(z).

That concludes the proof.

5.8.9 Fi contains faces of each dimension into Jdim(z)+
1, n− 1K

Lemma 20. Let f, z be two elements of Hn such that f ∈ β(z), and let be
I = {i ∈ J1, nK ; fi 6= zi}. Then,

dim(f) = dim(z) + Card (I) .

Proof: Since f ∈ β(z), then for all i ∈ J1, nK, fi ∈ β(zi) and then three
cases are possible:

• either dim(zi) = 1, and then fi = zi (because β(zi) = {zi}),

• or dim(zi) = 0 and dim(fi) = 0, then fi = zi (because the only face of
dimension 0 in β(zi) is zi),

• or dim(zi) = 0 and dim(fi) = 1, and then fi ∈ {H(Z(zi)− 1
2
),H(Z(zi)+

1
2
)}.

In other words, the number of coordinates where f and z are different is equal
to the the number of times when the dimension of fi is strictly superior to
the dimension of zi when i is in J1, nK.
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Property 24. Using Notations 10, ∀i ∈ I, ∀m ∈ Jdim(z) + 1, n− 1K:

Fi ∩Hn
m 6= ∅.

Proof: Intuitively, Fi being an union of closing of (n− 1)-faces in β�(z)
by Property 23, it contains faces of all dimensions between (n − 1) and
(dim(z) + 1). Formally, since Fi is non empty, there exists one face f ∈
Hn
n−1 ∩ Fi ⊆ β�(z) such that α(f) ∩ β�(z) is included into Fi. Furthermore,

α(f) ∩ β�(z) is not empty because f ∈ β�(z), then:

α(f) ∩ β�(z) = {Hn(u) ; ui ∈ {Z(fi),Z(zi)}, ∀i ∈ J1, nK} \ {z}.

Let us define I = {i ∈ J1, nK ; zi 6= fi} reindexed such that I =
{ej0 , . . . , ejk} where k = Card (I), and let us define the sequence (ul)l∈J0,kK

included into Zn(α(f) ∩ β(z)) defined such that:{
u0 = Zn(f),
ul+1 = ul + (Z(zjl)−Z(fjl)) e

jl ,∀l ∈ J0, k − 1K.

Since f belongs to β(z) by hypothesis, |Z(fi) − Z(zi)| = 1
2
,∀i ∈ I. In this

way, Hn(ul) is of dimension (dim(f) − l) for any l ∈ J0, kK. By Lemma 20,
k = dim(f)−dim(z), and then dim(Hn(ul)) ranges Jdim(z) + 1, n− 1K when
l ranges J0, k − 1K. For this values of l, Hn(ul) belongs to α(f) ∩ β�(z), this
concludes the proof.

5.8.10 Rank lemma

Lemma 21 (Rank lemma). Using Notations 10,

∀i ∈ I,∀v ∈ Fi, ρ(v, |Fi|) = dim(v)− dim(z)− 1.

Proof: Let u be an element of Fi. We want to show by induction that
ρ(u, |Fi|) = k is equivalent to dim(u) = k + dim(z) + 1.

Initialization (k = 0): first, let us assume that u is of dimension dim(u) =
dim(z)+1. Since Fi ⊆ β�(z), α�(u)∩Fi ⊆ α�(u)∩β�(z) = ∅, then α�Fi

(u) =
∅, and then ρ(u, |Fi|) = 0. Now, let us assume that ρ(u, |Fi|) = 0, then u be-
longs to Fi which is closed in β�(z), and then α(u)∩β�(z) ⊆ Fi. In this way,
the only faces whose rank is 0 in Fi are the (dim(z)+1)-faces of β�(z). Finally

106



we have for each u ∈ Fi the equivalence ρ(u, |Fi|) = 0⇔ dim(u) = dim(z)+1.

Heredity (k ≥ 1): we can assume that for each l ∈ J0, k− 1K, ρ(u, |Fi|) =
l ⇔ dim(u) = dim(z) + 1 + l. Let us show that for all v ∈ Fi and k ≥ 1, we
effectively have the equivalence ρ(v, |Fi|) = k ⇔ dim(v) = k + dim(z) + 1.

Let v be in Fi such that dim(v) = k + dim(z) + 1. Then, using the
induction hypothesis, we obtain:

ρ(v, |Fi|) = max
{
ρ(u, |Fi|) ; u ∈ α�(v) ∩ Fi

}
+ 1,

= max
{

dim(u)− dim(z)− 1 ; u ∈ α�Fi
(v)
}

+ 1,
= max

{
dim(u) ; u ∈ α�Fi

(v)
}
− dim(z).

Since v ∈ Fi, α(v) ∩ β�(z) ⊆ Fi and then α�(v) ∩ β�(z) ⊆ α�Fi
(v), which

leads to:

max
{

dim(u) ; u ∈ α�Fi
(v)
}
≥ max

{
dim(u) ; u ∈ α�(v) ∩ β�(z)

}
≥ dim(v)−1,

and in the same time, max
{

dim(u) ; u ∈ α�Fi
(v)
}
≤ dim(v) − 1 (because

u ∈ α�(v)). This way, max
{

dim(u) ; u ∈ α�Fi
(v)
}

= dim(v) − 1 and then
ρ(v, |Fi|) = dim(v)− dim(z)− 1 = k. The direct implication is then proven.

Let us assume now that v ∈ Fi verifies ρ(v, |Fi|) = k. By the induction
hypothesis, we obtain one more time:

ρ(v, |Fi|) = max
{

dim(u) ; u ∈ α�Fi
(v)
}
− dim(z).

In other words, max
{

dim(u) ; u ∈ α�Fi
(v)
}

= k + dim(z), and then:

max
{

dim(u) ; u ∈ α�(v)
}
≥ k + dim(z).

v is then of dimension superior or equal to (k + dim(z) + 1).

Let us assume now that dim(v) ≥ k + dim(z) + 2. Since v ∈ Fi, α(v) ∩
β�(z) ⊆ Fi, and then v covers one or several faces in Fi of dimension(s)
superior or equal to (k+dim(z)+1), and then max

{
dim(u) ; u ∈ α�Fi

(v)
}
≥

k + dim(z) + 1, which implies that ρ(v, |Fi|) ≥ k + 1, which is impossible.
Then dim(v) = k + dim(z) + 1. The reciprocal implication is then proven.
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5.8.11 Definition and properties of T (u)

Notations 13. From now on, we will use the notation:

∀z ∈ Hn \Hn
n,∀u ∈ β�(z), T (u) ≡ α(u) ∩ β�(z) ∩Hn

dim(z)+1.

Lemma 22. For all z ∈ Hn \Hn
n and for all u ∈ β�(z),

T (u) =

{
Hn

(
Zn(z) + (Z(ui)−Z(zi)).e

i
)

; i ∈ 1 (Zn(u)) ∩ 1

2
(Zn(z))

}
.

Proof: Let us define:

A =

{
Hn

(
Zn(z) + (Z(ui)−Z(zi)).e

i
)

; i ∈ 1 (Zn(u)) ∩ 1

2
(Zn(z))

}
.

Let us show first that A ⊆ T (u). Since we have u ∈ β�(z), 1 (Zn(u)) ∩
1
2

(Zn(z)) 6= ∅. Then let t be a face in A, t can be written:

t = Hn

(
Zn(z) + (Z(ui∗)−Z(zi∗)).e

i∗
)
,

with i∗ ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)). We recall that 1
2

(Zn(u)) ∩ 1 (Zn(z)) = ∅
because u ∈ β�(z), we then have the different subcases when i ∈ J1, nK :

1. either i ∈ (1 (Zn(u)) ∩ 1 (Zn(z))) ∪
(
1
2

(Zn(u)) ∩ 1
2

(Zn(z))
)
, then ui =

zi and then ti = zi = ui implies that ti ∈ α(ui) ∩ β(zi).

2. or i = i∗ ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)), then ti = ui with Z(ui) = Z(zi)± 1
2
.

Since Z(ti) = Z(zi) ± 1
2
, we have then ti ∈ {{Z(zi) − 1/2,Z(zi) +

1/2}, {Z(zi) + 1/2,Z(zi) + 3/2}}. Also, β(zi) = {{Z(zi)−1/2,Z(zi) +
1/2}, {Z(zi) + 1/2}, {Z(zi) + 1/2,Z(zi) + 3/2}} 3 ti. This way, ti ∈
α(ui) ∩ β(zi).

3. or i ∈ 1 (Zn(u))∩ 1
2

(Zn(z))\{i∗}, then ti = zi with Z(zi) = Z(ui)± 1
2
.

Since ti = {Z(ti)+
1
2
}, we have α(ui) = {{Z(ui),Z(ui)+1}, {Z(ui)}, {Z(ui)+

1}} 3 {Z(zi) + 1
2
} = ti. This way, ti ∈ α(ui) ∩ β(zi).

We have finally t ∈ α(u)∩β(z), and since by construction we have t 6= z,
t ∈ α(u) ∩ β�(z). Furthermore, Zn(t) owns the dim(z) integral coordinates
of z more the i∗-th one, and then t ∈ Hn

dim(z)+1, then A ⊆ T (u).
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Let us show now that T (u) ⊆ A. Let t be in T (u). We recall that
1
2

(Zn(u)) ∩ 1 (Zn(z)) = ∅ because u ∈ β�(z). Then we have the possible
following cases:

1. either i ∈ 1 (Zn(u)) ∩ 1 (Zn(z)) = 1 (Zn(z)), then Z(ti) = Z(zi) ∈ Z

2. or i ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)), then ti ∈ {zi, ui} and then Z(ti) ∈ Z if
ti = ui and Z(ti) ∈ (Z/2) \ Z if ti = zi

3. or i ∈ 1
2

(Zn(u))∩ 1
2

(Zn(z)) = 1
2

(Zn(u)), then Z(ti) = Z(ui) ∈ (Z/2)\Z

This way, since {∀i ∈ J1, nK, i ∈ 1 (Zn(z))⇒ i ∈ 1 (Zn(t))} and since t ∈
Hn

dim(z)+1, there exists an unique coordinate i∗ ∈ 1 (Zn(t))\1 (Zn(z)). Then,

ti∗ = ui∗ 6= zi∗ and for all i ∈ J1, nK \ {i∗}, ti = zi. Since i∗ ∈ 1 (Zn(u)) ∩
1
2

(Zn(z)) (because t ∈ α(u)), and since:

t = Hn

(
Zn(z) + (Z(ui∗)−Z(zi∗)).e

i∗
)
,

we obtain that t ∈ A.

5.8.12 Supremum of two faces

Let us study under which condition we can say that an supremum exists
between two elements a, b ∈ Hn, that is, when there exists a smallest element
which is inferior or equal to any element which is superior to both a and b.

Definition 61 (inf). Let X be a subset of Hn. If there exists one element
x ∈ X such that for any y ∈ X, y ⊇ x, we say that x is the smallest element
of X, and we denote it inf(X).

Definition 62 (Supremum). Let a, b be two elements of Hn. When inf(β(a)∩
β(b)) is well-defined, we denote it a∨ b and we call it the supremum between
a and b.

Lemma 23. Let a, b be two elements of Hn. Then,

{β(a) ∩ β(b) 6= ∅} ⇔ {a ∨ b is well-defined } .
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Figure 5.20: Examples of supremums between x and y: β(x) is in red, β(y)
is in blue, their intersection is in purple, and the supremums of x and y has
a green contour.

Furthermore, when a ∨ b is well-defined, it verifies the relations: a ∨ b = ⊗i∈J1,nK(ai ∨ bi),

β(a ∨ b) = β(a) ∩ β(b).

Proof: Let us treat first the case a1, b1 ∈ H1 and let us proceed case by
case.

• either a1, b1 are in H1
0. Then there exists i, j ∈ Z such that a1 = {i}

et b1 = {j}.Then β(a1) = {{i − 1, i}, {i}, {i, i + 1}}, β(b1) = {{j −
1, j}, {j}, {j, j + 1}}.

– Either i = j and β(a1) ∩ β(b1) = {{i − 1, i}, {i}, {i, i + 1}} and
a1 ∨ b1 = {i} which implies that β(a1) ∩ β(b1) = β(a1 ∨ b1).

– Or i = j−1, and β(a1)∩β(b1) = {{i, i+1}} and a1∨b1 = {i, i+1},
which implies β(a1) ∩ β(b1) = β(a1 ∨ b1).

– Or i = j+1, and β(a1)∩β(b1) = {{j, j+1}} and a1∨b1 = {j, j+1},
which implies β(a1) ∩ β(b1) = β(a1 ∨ b1).
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– Or i 6∈ {j − 1, j, j + 1}, then β(a1) ∩ β(b1) = ∅ and a1 ∨ b1 does
not exist.

• or a1 ∈ H1
1 and b1 ∈ H1

0. Then there exist i, j ∈ Z such that a1 =
{i, i + 1} and b1 = {j}. Then β(a1) = {{i, i + 1}}, β(b1) = {{j −
1, j}, {j}, {j, j + 1}}.

– Either i = j, β(a1) ∩ β(b1) = {{i, i+ 1}}, a1 ∨ b1 = {i, i+ 1} and
β(a1) ∩ β(b1) = β(a1 ∨ b1).

– Or i = j − 1, β(a1) ∩ β(b1) = {{j − 1, j}}, a1 ∨ b1 = {j − 1, j},
and β(a1) ∩ β(b1) = β(a1 ∨ b1).

– Or i 6∈ {j−1, j}, then β(a1)∩β(b1) = ∅ and a1∨b1 does not exist.

• or a1 ∈ H1
0 and b1 ∈ H1

1. Then the reasoning is the same as before.

• or a1, b1 ∈ H1
1. Then there exist i, j ∈ Z such that a1 = {i, i + 1} and

b1 = {j, j+1}. We obtain then β(a1) = {{i, i+1}}, β(b1) = {{j, j+1}}.

– Either i = j, then β(a1)∩ β(b1) = {{i, i+ 1}}, a1 ∨ b1 = {i, i+ 1}
and β(a1) ∩ β(b1) = β(a1 ∨ b1).

– Or i 6= j, β(a1) ∩ β(b1) = ∅ and a1 ∨ b1 does not exist.

When a, b belong to Hn, n ≥ 1, such that β(a) ∩ β(b) 6= ∅, we obtain by
Lemma 2 that:

β(a) ∩ β(b) = β(⊗i∈J1,nKai) ∩ β(⊗i∈J1,nKbi),
= ⊗i∈J1,nKβ(ai) ∩ ⊗i∈J1,nKβ(bi),
= ⊗i∈J1,nK (β(ai) ∩ β(bi)) ,
6= ∅,

then for all i ∈ J1, nK, β(ai) ∩ β(bi) 6= ∅, which imples that ai ∨ bi exists
and β(ai) ∩ β(bi) = β(ai ∨ bi). This way:

β(a) ∩ β(b) = β(⊗i∈J1,nKai) ∩ β(⊗i∈J1,nKbi)
= ⊗i∈J1,nK (β(ai) ∩ β(bi))
= ⊗i∈J1,nKβ(ai ∨ bi)
= β(⊗i∈J1,nKai ∨ bi)
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whose infimum is ⊗i∈J1,nKai∨bi and then a∨b = ⊗i∈J1,nKai∨bi, and β(a∨b) =
β(a) ∩ β(b).

5.8.13 Decomposition lemma

Now let us show that we can “decompose” any face of β�(z) as a function of
its (dim(z) + 1)-faces.

z
z

Figure 5.21: Decomposing faces of β�(z) into (dim(z)+1)-faces. On the left,
a (dim(z) + 2)-face is decomposed into two (dim(z) + 1)-faces and on the
right a (dim(z) + 3)-face is decomposed into three (dim(z) + 1)-faces.

Lemma 24 (Decomposition lemma). Let z be a face in Hn \Hn
n. Each face

u ∈ β�(z) can be decomposed in the following manner (see Figure 5.21):

u =
∨

v∈T (u)

v.

Proof: we need first to show that
∨
v∈T (u) v exists. To this aim, it is suf-

ficient to show that
⋂

t∈T (u)

β(t) 6= ∅. However, u ∈ β�(z) implies by Lemma 22

that T (u) =
{
Hn (Zn(z) + (Zn(ui)−Zn(zi)).e

i) ; i ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z))
}

.
For all i∗ ∈ 1 (Zn(u)) ∩ 1

2
(Zn(z)), let us denote:

ti
∗ ≡ Hn

(
Zn(z) + (Zn(ui∗)−Zn(zi∗)) e

i∗
)
,

then T (u) = {ti∗}i∗∈1(Zn(u))∩ 1
2
(Zn(z))

.
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This way, by Lemma 2:⋂
t∈T (u)

β(t) =
⋂

i∗∈1(Zn(u))∩ 1
2
(Zn(z))

β(ti
∗
)

=
⋂

i∗∈1(Zn(u))∩ 1
2
(Zn(z))

β

 ⊗
m∈J1,nK

ti
∗

m


=

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

⊗
m∈J1,nK

β
(
ti
∗

m

)
=

⊗
m∈J1,nK

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
We want to show that for all m ∈ J1, nK,

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
6= ∅. Since

u belongs to β(z), then:

• either m ∈ 1 (Zn(z)) ∪ 1
2

(Zn(u)), then Z(um) = Z(zm). And because
m 6= i∗ for all i∗ ∈ 1 (Zn(u)) ∩ 1

2
(Zn(z)), ti

∗
m = zm = um, and:⋂

i∗∈1(Zn(u))∩ 1
2
(Zn(z))

β
(
ti
∗

m

)
= β(um) 6= ∅.

• or m ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)), then Z(um) ∈
{
Z(zm)− 1

2
,Z(zm) + 1

2

}
.

Then there exists a value i∗ ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)) such that i∗ = m,
for which Z(ti

∗
m) = Z(um) ∈ {Z(zm)− 1

2
,Z(zm) + 1

2
}, and then:

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
= β(tmm) ∩

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))\{m}

β
(
ti
∗

m

)
,

= β(um) ∩ β(zm).
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Two cases are possible. Either Z(um) = Z(zm)− 1
2
, then:

β(um) ∩ β(zm) = β(Hn(Z(zm)− 1
2
)) ∩ β(zm)

= {{Z(zm)− 1
2
,Z(zm) + 1

2
}}

∩


{Z(zm)− 1/2,Z(zm) + 1/2},

{Z(zm) + 1/2},

{Z(zm) + 1/2,Z(zm) + 3/2}


= {{Z(zm)− 1

2
,Z(zm) + 1

2
}}

= β(um)

6= ∅

Or Z(um) = Z(zm) + 1
2
, then:

β(um) ∩ β(zm) = β(Hn(Z(zm) + 1
2
)) ∩ β(zm)

= {{Z(zm) + 1/2,Z(zm) + 3/2}}

∩


{Z(zm)− 1/2,Z(zm) + 1/2},

{Z(zm) + 1/2},

{Z(zm) + 1/2,Z(zm) + 3/2}


= {{Z(zm) + 1/2,Z(zm) + 3/2}}

= β(um)

6= ∅

This way, for all m ∈ J1, nK,
⋂

i∗∈1(Zn(u))∩ 1
2
(Zn(z))

β
(
ti
∗

m

)
6= ∅, and then⋂

t∈T (u)

β(t) 6= ∅, which implies that
∨
t∈T (u) t exists in Hn.
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Let us compute now this term, following the calculus made before:

β
(∨

t∈T (u) t
)

=
⊗

m∈J1,nK

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
=

⊗
m∈J1,nK

β(um)

= β(
⊗

m∈J1,nK

um)

= β(u)

and then u =
∨
t∈T (u) t.

Lemma 25. Let v, v′ be two elements of β�(z) such that v 6= v′. Then
T (v) 6= T (v′).

Proof: Let us prove the counterposition: if T (v) = T (v′), by Lemma 24,
we obtain v = v′. This concludes the proof.

5.8.14 Counting the k-faces into α(a) ∩ β(b)

Lemma 26. Let v, f be two faces of Hn such that f ∈ β(v). For all k ∈
Jdim(v), dim(f)K:

Card (α(f) ∩ β(v) ∩Hn
k) = C

k−dim(v)
dim(f)−dim(v).

Proof: We recall that for all w ∈ Hn, we have:

w ∈ α(f) ∩ β(v)⇔
{
∀m ∈ 1 (Zn(f)) ∩ 1

2
(Zn(v)) , wm ∈ {vm, fm},

∀m ∈ 1
2

(Zn(f)) ∪ 1 (Zn(v)) , wm = vm(= fm).

}
.

This way, dim(v) coordinates of Zn(w) are integers, (n− dim(f)) coordi-
nates of w are not integers, and the (dim(f)−dim(v)) remaining coordinates
are free to choose between Zn(f) (then integers) or the ones of Zn(v) (then

not integers). Then we have a total number of C
k−dim(v)
dim(f)−dim(v) faces of dimen-

sion k into α(f)∩β(v), since their topological isomorphism into (Z/2)n have
(k − dim(v)) integral coordinates among the (dim(f)− dim(v)) coordinates
not fixed by advance.
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5.8.15 Minimal number of (dim(z) + 1)-faces into Fi

Property 25. Using Notations 10, for all i ∈ I, Fi contains at least (n −
dim(z)) (dim(z) + 1)-faces.

Proof: Let i be in I, then for all m ∈ Jdim(z) + 1, n− 1K, Fi ∩Hn
m 6= ∅

by Property 24. This way, there exists t ∈ Hn
n−2 ∩ Fi, and because Fi is a

(n− 2− dim(z))-surface,
∣∣β�Fi

(t)
∣∣ is a ((n− dim(z)− 2)− ρ(v, |Fi|)− 1) = 0-

surface by Lemma 21. Then there exists v, v′ ∈ Hn
n−1∩Fi such that v 6∈ θ(v′).

However, α(v) ∩ β�(z) and α(v′) ∩ β�(z) contain both (n − dim(z) − 1)
(dim(z) + 1)-faces (cf. Lemma 26), and v 6= v′ implies that T (v) 6= T (v′)
(cf. Lemma 25), and then there exists at least one face into T (v′) which is
not among the (n− dim(z)− 1) faces of T (v). However, T (v) ∪ T (v′) ⊆ Fi
(because Fi is closed into β�(z)). This way, Fi ∩ Hn

dim(z)+1 contains at least

(n− dim(z)) faces.

5.8.16 Exact number of (dim(z) + 1)-faces into Fi

Property 26. Using Notations 10, for all i ∈ I, Fi contains exactly (n −
dim(z)) (dim(z) + 1)-faces.

Proof: This is the direct consequence of Property 21 and Property 25.

5.8.17 Decomposing components T (Fi)

From now on, for each i ∈ I, we define:

T (Fi) = Fi ∩Hn
dim(z)+1.

Property 27. Using Notations 10, for all i ∈ I, T (Fi) can be represented
as an union of faces {tm}m∈ 1

2
(Zn(z))

defined such that for all m ∈ 1
2

(Zn(z)):

Zn(tm) = Zn(z) + λme
m,

with λm ∈ {−1
2
, 1
2
}.

Proof: for each m ∈ 1
2

(Zn(z)), Hn(Zn(z)− 1
2
em) and Hn(Zn(z) + 1

2
em)

belong to β�(z). Then for all m ∈ 1
2

(Zn(z)), we have the possible cases:
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• either Hn(Zn(z) − 1
2
em) ∈ T (Fi), and then Hn(Zn(z) + 1

2
em) 6∈ T (Fi)

(by Property 20) (P1)

• or Hn(Zn(z) + 1
2
em) ∈ T (Fi), and then Hn(Zn(z)− 1

2
em) 6∈ T (Fi) (for

the same reason as before) (P2)

• or {Hn(Zn(z)− 1
2
em),Hn(Zn(z) + 1

2
em)} ∩ T (Fi) = ∅ (P3)

By (P1) and (P2), we have at most (n − dim(z)) faces into T (Fi) ⊆
β�(z). If there exists a coordinate m ∈ 1

2
(Zn(z)) such that (P3) is true,

we will have less than (n − dim(z)) (dim(z) + 1)-faces into T (Fi), what
is impossible by Property 25, then (P3) is never verified. We have then
either (P1) or (P2) for each m ∈ 1

2
(Zn(z)). This way, there exists for

each m ∈ 1
2

(Zn(z)) one only λm ∈ {−1
2
, 1
2
} such that Hn(Zn(z) + λme

m) ∈
T (Fi), then{Hn(Zn(z) + λme

m)}m∈ 1
2
(Zn(z))

⊆ T (Fi). Since these two sets

have (n − dim(z)) faces and since they verify a inclusion relationship, they
are equal, and then {Hn(Zn(z) + λmem)}m∈ 1

2
(Zn(z))

= T (Fi).

5.8.18 Characteristical points of each Fi

Property 28. Using Notations 10, for all i ∈ I,
∨

t∈T (Fi)

t exists.

Proof: Let i be a coordinate in I. It is sufficient to show that:⋂
t∈T (Fi)

β(t) 6= ∅.

By Property 27, there exists a family of faces {tm}m∈ 1
2
(Zn(z))

= T (Fi) such

that for all m ∈ 1
2

(Zn(z)), Zn(tm) = Zn(z) +λme
m with λm ∈ {12 ,−

1
2
}. This

way:

117



⋂
t∈T (Fi)

β(t) =
⋂

m∈ 1
2
(Zn(z))

β(tm),

=
⋂

m∈ 1
2
(Zn(z))

β

 ⊗
j∈J1,nK

tmj

 ,

=
⋂

m∈ 1
2
(Zn(z))

⊗
j∈J1,nK

β(tmj ),

=
⊗
j∈J1,nK

⋂
m∈ 1

2
(Zn(z))

β(tmj ).

When j belongs to 1 (Zn(z)), we obtain tmj = zj (because tm belongs to

β(z)). Then
⋂

m∈ 1
2
(Zn(z))

β(tmj ) = β(zj) 6= ∅.

When j belongs to 1
2

(Zn(z)),

⋂
m∈ 1

2
(Zn(z))

β(tmj ) =

 ⋂
m∈ 1

2
(Zn(z))\{j}

β(tmj )

 ∩ β(tjj),

= β(zj) ∩ β(H(Z(zj) + λj)),

=
{
{Z(zj) + 1

2
}, {Z(zj)− 1

2
,Z(zj) + 1

2
}, {Z(zj) + 1

2
,Z(zj) + 3/2}

}
,

∩ {{Z(zj) + λj,Z(zj) + λj + 1}},

= {{Z(zj) + λj,Z(zj) + λj + 1}},

= β(tjj),

6= ∅.

Then each term
⋂

m∈ 1
2
(Zn(z))

β(tmj ) is non empty, and then
⋂

t∈T (Fi)

β(t) 6= ∅.
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t1

t2∨t

u

t3
Figure 5.22: Each component Fi is contained into the closure of its “charac-
teristical point”.

5.8.19 Fi is contained in the closure of its characteris-
tical point

Property 29. Using Notations 10, for each i ∈ I:

Fi ⊆ α

 ∨
t∈T (Fi)

t

 .

Proof: Let us begin with an intuitive explanation of this property in the
3D case using Figure 5.22. Let t1, t2, t3 be three different (dim(z) + 1)-faces
into Fi such they are not opposite the one to the other one. Let us define

u = t1∨t2. It follows that
∨

t∈T (Fi)

t = u∨t3, and this way u ∈ α

 ∨
t∈T (Fi)

t

. We

can pursue the reasoning by decomposing each face u of Fi by its (dim(z)+1)-

faces. Fi is then included into α

 ∨
t∈T (Fi)

t

.

Now, let us be more formal: let u be in Fi, u ∈ β�(z), and then by

Lemma 24, u =
∨

t∈T (u)

t. Since Fi is closed into β�(z), α(u) ∩ β�(z) ⊆ Fi and

then T (u) ⊆ T (Fi). This way,∨
t∈T (Fi)

t =
∨

t∈T (u)

t
∨ ∨

t∈T (Fi)\T (u)

t = u
∨ ∨

t∈T (Fi)\T (u)

t,
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which implies that
∨

t∈T (Fi)

t ∈ β(u) and then u ∈ α

 ∨
t∈T (Fi)

t

, from which we

can deduce that Fi ⊆ α

 ∨
t∈T (Fi)

t

.

5.8.20 Structure of components Fi

Property 30. Using Notations 10, for each i ∈ I:

Fi = α�

 ∨
t∈T (Fi)

t

 ∩ β�(z).

Proof: Let i be a coordinate in I. Then Fi ⊆ β�(z), which implies

by Property 29 that Fi ⊆ α

 ∨
t∈T (Fi)

t

 ∩ β�(z). Nevertheless,
∨

t∈T (Fi)

t be-

longs to Hn
n because Card (T (Fi)) = (n − dim(z)) and because the faces

of T (Fi) are different two by two. Also, Fi ∩ Hn
n = ∅, and then we have

Fi ⊆ α�

 ∨
t∈T (Fi)

t

 ∩ β�(z). Since
∨

t∈T (Fi)

t ∈ β�(z) (by transitivity of β),

α�

 ∨
t∈T (Fi)

t

 ∩ β�(z) is a (n− dim(z)− 2)-surface by Proposition 20. This

is also the case concerning Fi by Property 19. This way, Fi = α�

 ∨
t∈T (Fi)

t

∩
β�(z) by Theorem 9.

Number of components of |β�N(z)| (if not connected)

Property 31. Using Notations 10:

Card (I) = 2.
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Proof: The non connectivity of |β�N(z)| implies obviously that Card (I) ≥
2. Moreover, for each i ∈ I, Fi contains (n−dim(z)) (dim(z)+1)-faces, while
β�(z) contains 2(n−dim(z)) (dim(z)+1)-faces, the maximum of components
of |β�N(z)| s then equal to two.

5.8.21 The two characteristical points of |β�N(z)|
From now on, we will use the following notation:

Notations 14. Using Notations 10, we denote also:

a =
∨

t∈T (F1)

t, and b =
∨

t∈T (F2)

t.

.

5.8.22 Zn(a) and Zn(b) are (n− dim(z))-antagonist

Lemma 27. Let us assume that n ≥ 2. Let z be in Hn such that dim(z) ≤
n− 2, and let a, b be in Hn

n ∩ β�(z). Then α�(a)∩α�(b)∩ β�(z) = ∅ implies
that Zn(a) and Zn(b) are (n− dim(z))-antagonist into Zn.

Proof: a, b ∈ β�(z) implies that z ∈ α�(a)∩α�(b), and then α(a)∩α(b) 6=
∅, which implies that a ∧ b exists and α(a) ∩ α(b) = α(a ∧ b) by Lemma 7.
This way, z ∈ α�(a) ∩ α�(b) ⊆ α(a ∧ b), and then a ∧ b ∈ β(z). Let us
assume that we have a = b. Then α�(a)∩α�(b)∩β�(z) = α�(a)∩β�(z) is a
(n− dim(z)− 2)-surface by Proposition 20, and then is non empty (because
(n − dim(z)) ≥ 2). This is impossible by hypothesis, and then we have
a 6= b. Since a and b are different and they are both into Hn

n, they are
not neighbors and this way α�(a) ∩ α�(b) = α(a) ∩ α(b) = α(a ∧ b). We
obtain that α(a ∧ b) ∩ β�(z) = ∅. We have seen that z ∈ α(a ∧ b), then(
α(a ∧ b) ∩ β�(z)

)
∪ {z} = α(a ∧ b) ∩ β(z) = {z}, and then z = a ∧ b. By

Lemma 8, we deduce that Zn(a) and Zn(b) are (n− dim(z))-antagonist.

Property 32. Using Notations 14, Zn(a) and Zn(b) are (n − dim(z))-
antagonist in Zn.
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Proof: Since F1 = α�(a) ∩ β�(z) and F2 = α�(b) ∩ β�(z) are disjoint,

α�(a) ∩ α�(b) ∩ β�(z) = ∅.

By Lemma 27, Zn(a) and Zn(b) are then (n− dim(z))-antagonist.

5.8.23 Connectivity of S(z) \ {Zn(a),Zn(b)} (dim(z) ≤
(n− 3))

Lemma 28. Let n ≥ 3 be an integer. Let z be in Hn such that dim(z) ≤ n−3,
and let a, b be in S(z) such that a = antagS(z)(b). Then S(z) \ {a, b} is 2n-
connected into Zn.

Proof: let x, y be in S(z) \ {a, b} with x 6= y. Then there exists a value
k ∈ J1, n− dim(z)K such that x and y are k-antagonist (since they belong to
the block S(z) of dimension (n− dim(z))). Let us now proceed by induction
on the value of k.

Initialization (k = 1): when x and y are 1-antagonist in Zn, they are 2n-
neighbors and then there exists a 2n-path π joining them into S(z) \ {a, b}
such that π = (x, y).

Induction (k ∈ J2, n− dim(z)K): we assume that for all the elements x, y
in S(z) \ {a, b} such that they are (k − 1)-antagonist into S(z), there exists
a 2n-path joining them into S(z) \ {a, b}. Let us show that when x and y
are k-antagonist, x and y are 2n-connected into S(z)\{a, b}. By hypothesis,
x and y are k-antagonist with k ≥ 2 and belong to S(z), then they are
antagonist in a block S ⊆ S(z) of dimension k. This way, x admits in S
a total number of k 2n-neighbors (which are different from itself) where at
most one is into {a, b}. Effectively, if a and b were both neighbors of x, they
would be identical or 2-antagonists. These two cases are impossible since a
and b are (n− dim(z))-antagonist with (n− dim(z)) ≥ 3. Then there exists
a 2n-neighbor vx of x into S \ {a, b}. vx is then (k − 1)-antagonist of y and
2n-neighbor of x, then x and y are connected into S(z) \ {a, b} thanks to the
induction hypothesis.
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5.8.24 S(z) contains a critical configuration

z

a

b

Figure 5.23: Structure of β�N(z) when we have (n − dim(z)) = 3 assuming
that |β�N(z)| is not connected.

Property 33. Using Notations 14, S(z) contains a critical configuration
(either primary or secondary) of dimension (n−dim(z)), i.e., either we have
X ∩ S(z) = {Zn(a),Zn(b)} or we have X ∩ S(z) = S(z) \ {Zn(a),Zn(b)}.

Proof: Let u, v be in S(z)\{Zn(a),Zn(b)}. Since this set is 2n-connected
for (n − dim(z)) ≥ 3 by Lemma 28, there exists a 2n-path π = (p0 =
u, . . . , pl = v) joining u and v into S(z) \ {Zn(a),Zn(b)} with l ≥ 1. We can
deduce from it a path π′ into Hn such that:

π′ =
(
Hn(p0),Hn(p0) ∧Hn(p1),Hn(p1), . . . ,Hn(pl−1),Hn(pl−1) ∧Hn(pl),Hn(pl)

)
.

For all m into J0, l − 1K, we have Hn(pm−1) ∧Hn(pm) ∈ Hn
n−1 since pm−1

and pm are 2n-neighbors into Zn.

Let us assume now that there exists a value m ∈ J0, l − 1K such that
Hn(pm−1) ∧Hn(pm) ∈ N, then Hn(pm−1) ∧Hn(pm) ∈ β�N(z) and then:

• either Hn(pm−1) ∧Hn(pm) ∈ α�(a) ∩ β�(z) and then

β�(Hn(pm−1) ∧Hn(pm)) = {Hn(pm−1),Hn(pm)}

contains a, which is impossible by definition of π,
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• or Hn(pm−1) ∧Hn(pm) ∈ α�(b) ∩ β�(z) and then

β�(Hn(pm−1) ∧Hn(pm)) = {Hn(pm−1),Hn(pm)}

contains b, which is impossible for the same reason.

This way, Hn(pm−1) ∧ Hn(pm) 6∈ N, and then either all the points of
π belong to X or they all belong to Y . In other words, either S(z) \
{Zn(a),Zn(b)} ⊆ X or S(z) \ {Zn(a),Zn(b)} ⊆ Y .

Now, let va be a 2n-neighbor of Zn(a) (in S(z) \ {Zn(a),Zn(b)}) and let
vb be a 2n-neighbor of Zn(b) (into S(z) \ {Zn(a),Zn(b)}). Then Hn(va) ∧ a
and Hn(vb)∧b belong to N (because they belong to β�N(z)) and then we have
the two possible configurations: either Zn(a) ∈ X, then va ∈ Y , from which
we deduce that vb ∈ Y , and then Zn(b) ∈ X (and X contains a primary
critical configuration), or Zn(a) ∈ Y , then va ∈ X, from which we deduce
that vb ∈ X, and then Zn(b) ∈ Y (and X contains a secondary critical
configuration). In both cases, we obtain a critical configuration.

Figure 5.23 shows the structure of β�N(z) when we have (n − dim(z)) =
3, assuming that |β�N(z)| is not connected. We can observe that |β�N(z)|
is the disjoint union of two 1-surfaces |F1| =

∣∣α�(a) ∩ β�(z)
∣∣ and |F2| =∣∣α�(b) ∩ β�(z)

∣∣.
5.8.25 Summary of the direct sense.

We obtain the contradiction we were looking for, that is, X contains a critical
configuration in S(z), which is impossible since X is assumed to be digitally
well-composed. |β�N(z)| is then connected, which means that (P ′k) is true,
and then IMM(X) is AWC. The direct implication is then proven.

5.8.26 Conclusion for sets

Theorem 11 (AWC VS DWC [Not Verified]). A set X ⊂ Zn is DWC iff
its immersion IMM(X) = Int(α(Hn(X)) ⊆ Hn into the Khalimsky grids
|Hn| is AWC, that is, is such that the connected components of its topological
boundary are disjoint (n− 1)-surfaces.
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Summarily, the AWCness of a set is equivalent to the DWCness because of
three main reasons: firstly, we can use the cartesian product in Zn and in Hn

n

in the same way (we can “decompose” cells thanks to their projections), and
that is why well-composednesses in these two spaces are equivalent; secundly,
cubical grids have regularity properties that characterize them (for example,
they are locally finite, that is, any neighborhood in Zn like in Hn has a finite
cardinal, and so on); thirdly, we have proven that the two spaces where lies
the studied sets are topologically isomorph, and then these spaces (and then
the subspaces X and X ) have the same topological structure.

5.8.27 Conclusion for plain maps

Starting from a function u : Zn → R, we can compute its immersion U =
IMM(u) : Hn  R into the Khalimsky grids, defined in the following
manner:

Definition 63 (Immersion of an image). Let u : Zn → R be a function
on Zn. Then we define its immersion U = IMM(u) : Hn  R into the
Khalimsky grids such that:

∀hHn, U(h) =

{
{u(Zn(h))} if z ∈ Hn

n,
Span {U(q) ; q ∈ β(z) ∩Hn

n} either .

This leads us to the following theorem:

Theorem 12 (AWC VS DWC [Not Verified]). A real-valued image u :
Zn → R is DWC iff it immersion U = IMM(u) : Hn  R into the
Khalimsky grids is AWC.

Proof: If U is AWC, then for any λ ∈ R [U B λ] is AWC. Yet, [U B λ] =
IMM([u > λ]), which implies that IMM([u > λ]) is AWC, and then
[u > λ] is DWC. u is then DWC.

Conversely, if u is DWC, then for any λ ∈ R, [u ≥ λ] is DWC, and then
IMM([u ≥ λ]) is AWC, which implies that α(IMM([u ≥ λ])) (they both
have the same boundaries). Yet, [U D λ] = α(IMM([u ≥ λ])), and then
is AWC too. u DWC implies also that [u > λ] is DWC, which implies that
IMM([u > λ]) = [U B λ] is AWC. By a dual reasoning, we obtain that
[U E λ] and [U C λ] are AWC too, which shows that U is AWC.
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Chapter 6

Conclusion

In this report, we prove that AWCness and DWCness equivalent in n-D, and
not only in 2D and 3D. This means that the usual digital subsets of Zn that
are DWC can be immersed in Hn and the connected components of their
boundaries will be discrete surfaces. Conversely, if any subset verifies that
its immersion is AWC, we will know that this set is DWC. This equivalence
holds for images thanks to threshold sets: an image u defined on Zn will be
DWC iff its immersion in Hn is AWC.
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[19] Löıc Mazo, Nicolas Passat, Michel Couprie, and Christian Ronse. Digital
imaging: A unified topological framework. Journal of Mathematical
Imaging and Vision, 44(1):19–37, 2012.

[20] Fernand Meyer. Skeletons and perceptual graphs. Signal Processing,
16(4):335–363, 1989.
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