
HAL Id: hal-01375601
https://hal.science/hal-01375601

Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Provisioning of Deterministic and Non-Deterministic
Services for Vehicles: The Rubus Approach

Harold “bud” Lawson, Saad Mubeen, Alessio Bucaioni, Jukka Mäki-Turja,
John Lundbäck, Mattias Gålnander, Kurt-Lennart Lundbäck, Mikael Sjödin

To cite this version:
Harold “bud” Lawson, Saad Mubeen, Alessio Bucaioni, Jukka Mäki-Turja, John Lundbäck, et al..
Provisioning of Deterministic and Non-Deterministic Services for Vehicles: The Rubus Approach.
Workshop CARS 2016 - Critical Automotive applications : Robustness & Safety, Sep 2016, Göteborg,
Sweden. �hal-01375601�

https://hal.science/hal-01375601
https://hal.archives-ouvertes.fr


Provisioning of Deterministic and
Non-Deterministic Services for Vehicles:

The Rubus Approach
Harold “Bud” Lawson‡, Saad Mubeen∗, Alessio Bucaioni∗†, Jukka Mäki-Turja∗, John Lundbäck†,

Mattias Gålnander†, Kurt-Lennart Lundbäck†, Mikael Sjödin∗,
∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems AB, Järfälla, Sweden
‡ Lawson Konsult AB, Lidingö, Sweden

∗{saad.mubeen, jukka.maki-turja, alessio.bucaioni, mikael.sjodin}@mdh.se
†{john.lundback, mattias.galnander, kurt.lundback}@arcticus-systems.com

‡bud@lawson.se

Abstract—Providing computer-based services for vehicle func-
tions has evolved to the point where a large majority of functions
are realized by software. However, the need to provide safety
and security in critical functions such as braking, steering,
motor control, etc. requires an approach that can guarantee
the continuous reliable operation of the functions. At the same
time, there are a variety of functions that are less critical from
the vehicle operation perspective that can be provided where
safety and security are less critical. From a vehicle manufacturers
point of view, providing both types of services in an economic
and reliable manner is a real challenge. To meet this challenge,
we consider the Rubus Tool Suit for the software development
and a well-proven (in industrial use for over twenty years) and
certified (according to ISO 26262) operating system Kernel for
its execution. In addition, a user-friendly approach to model-
and component-based development concept called the software
circuits has provided an approach to meet the demands of both
safety-critical deterministic and as well as non-safety critical
non-deterministic services. In this paper, a brief history of the
evolution of Rubus approach as well as an overview of the driving
concepts used in providing the Rubus products are described.

I. HISTORY AND EVOLUTION OF RUBUS

Arcticus Systems AB was established as a Swedish corpora-
tion in 1985. The Rubus1 Kernel was introduced for industrial
use in 1996. The concepts utilized in Rubus evolved from
previous experiences with Arcticus and earlier product OTool
as well as their participation in the Swedish Development
Agency (NUTEK) VIA (Vehicle Internal Architecture) project
during 1992-95. The partners in the project included, in
addition to Arcticus, Saab Automotive, Volvo, Mecel AB,
SICS, Uppsala University, Chalmers University and Lawson
Konsult AB.

Earlier experiences with time-driven deterministic execution
in Automatic Train Control (ATC) were used as a primary in-
put to the VIA project. Harold “Bud” Lawson was the architect
of the on-board system provided by ITT Standard Radio to the
Swedish Railways (SJ). This product was developed during the

1Rubus (the name of a red arctic berry and a registered trademark of
Arcticus AB)

latter part of the 1970s and has been installed in the majority
of locomotives in Sweden starting in 1981. The program code
was surprisingly minimal due to the utilization of the hardware
like paradigm used in its development (became known as
Software Circuits (SWC)). The time determinism and the
small amount of program code led to significant advantages
in exhaustive testing and verification of the production units.
The results of this product development have been reported
in [1], [2], [3].

The VIA project identified the need for a mix of time-
driven (became known as Red) and event-driven (became
known as Blue) real-time tasks. As a central part of the VIA
project, the Rubus Kernel was developed to support a mix
of both forms of real-time application tasks. Red application
tasks are scheduled periodically and have guaranteed execution
time slots (deterministic). Blue application tasks are executed
within residual time in the time slots (non-deterministic).
The VIA project based on the use of the Rubus Kernel
and a proposed time deterministic network communication
defined a distributed real-time infrastructure for vehicles called
BASEMENT. The results of the project where reported in two
articles [4], [5].

Arcticus established an agreement with Mälardalen Univer-
sity in 1997 and further research and development led to the
development of an off-line scheduler by Christer Norström
(formerly Eriksson) now CEO at SICS (Swedish Institute for
Computer Science) and Kristian Sandström [6]. This effort
formed the basis for the eventual Model Driven Development
(MDD) product.

A major breakthrough for Arcticus in 1996 was the selection
of the Rubus Kernel, as the real-time operating system, for the
implementation of a Limited Slip Coupling Device (for four
wheel drive vehicles) by Haldex in Landskrona (now owned by
BorgWarner Torq Transfer Systems). After several prototype
iterations the first LSCD was delivered to Volkswagen. Since
then it has evolved into a significant product that is utilized
in most of all four-wheel drive vehicles in the world.



In 1997, both Volvo Construction Equipment (VCE) in
Eskilstuna and BAE Hägglunds in Örnsköldsvik decided to
deploy the Rubus Kernel in their products. These customers’
active cooperation with Arcticus led to the development and
deployment of the MDD products (Rubus tool suite).

VCE has deployed the Rubus Kernel in several of its
products and the Kernel has been certified, in 2015, according
to the international standard ISO 26262:2011 with respect to
ASIL D (Road Vehicles Functional Safety). As a part of
this certification, Arcticus has developed its Quality Manage-
ment System (QMS) based upon ISO/IEC/IEEE 15288 and
ISO/IEC/IEEE 12207 on Systems, respective Software Life
Cycle Processes.

As a result of the long-term cooperation between Arcticus
and Lawson Konsult AB, an article describing their contribu-
tions to Highly Reliable Real-Time Systems was presented at
the 3rd Nordic Conference on Computing [7].

The cooperation between Arcticus and Mälardalen Univer-
sity has continued and is on going where both faculty members
and doctoral students have made significant contributions to
the Rubus tool suite. In addition to the on-line scheduler,
improvements to component models [8], [9], shared stack
analysis [10], response-time analysis of singe-node (unipro-
cessor) systems [11], response-time analysis of Controller
Area Network and its higher-level protocols [12], end-to-end
response time and delay analysis for distributed systems [13]
and worst-case execution analysis. In order to better support
interoperability between Rubus and other related models and
languages such as EAST-ADL [14], metal-model of the Rubus
Component Model (RCM) has been formally defined [15].
In addition, model-based techniques have been employed
for realizing a model-based design exploration methodology
for easing the transition between the EAST-ADL and the
RCM [16], [17].

II. DRIVING CONCEPTS

Based upon the evolution of Arcticus products, the follow-
ing central concepts have evolved.

A. Software Circuits

A hardware analogy where component data and control
flow behave as a chain of circuits. This promotes the analysis
and verification of application function timing constraints and
resource utilization that is accomplished by clearly separating
data and control flow mechanisms in a network of software
circuits. The model of a software circuit is shown in Fig. 1.
It is the basic building block and the lowest-level hierarchical
element in RCM.

	 3	

accomplished	by	clearly	separating	data	and	control	flow	mechanisms	in	a	network	of	software	circuits.	
The	model	of	a	software	circuit	is	shown	in	Figure	1.	

		

Figure	1:		Model	of	a	Software	Circuit.	

The	 Construct	 and	 Destruct	 logic	 are	 terms	 from	 Object	 Oriented	 languages	 that	 describe	 activation,	
respectively,	deactivation	of	the	circuit.	

2.2 Time	Triggered,	Event	Triggered,	and	Interrupt	Execution	
Software	Circuit	execution	is	triggered	based	on	these	three	categories	called	Red,	Blue	and	Green.	The	
ability	 to	mix	 both	 Red	 deterministic	 (time	 triggered)	 and	 Blue	 non-deterministic	 (event	 triggered)	 as	
well	as	treating	Green	interrupt	execution	is	a	unique	aspect	of	the	Rubus	product	suite.	

2.3 Model	Driven	Development	
Model-Driven	 Development	 (MDD)	 has	 had	 an	 increasingly	 important	 role	 in	 designing	 and	
implementing	 real-time	 embedded	 systems.	 Due	 to	 the	 complexity	 of	 real-time	 systems,	 the	
development	must	rely	more	and	more	upon	automation	and	the	interoperability	amongst	models	such	
as	 Simulink.	 The	 Rubus	 Tool	 Suite	 provides	 an	 integrated	 tool-chain	 that	 includes	 system	 modelling,	
design,	analysis	and	synthesis	providing	the	features	portrayed	in	Figure	2.	

	

		Figure	2:		Rubus	Conceptual	Models.	

The	three	models	provide	various	viewpoints	reflecting	all	of	the	necessary	information	concerning	the	
development,	analysis,	synthesis	and	execution	of	real-time	applications.		

Designing
Design

Anlysis

Synthesis

RCM	Rubus	
Component	

Model

RAM	Rubus	
Analysis	Mode

RRM	Rubus	Run-
Time	Mode

Configuring	

Properties	such	as:
• Timing	WCET,	BCET
• Resource

Run-Time	
measurements

Fig. 1. Model of a Software Circuit.

The Construct and Destruct logic are terms from the object-
oriented languages that describe activation, respectively, deac-
tivation of the circuit.

B. Model Driven Development

MDD has had an increasingly important role in designing
and implementing real-time embedded systems. Due to the
complexity of real-time systems, the development must rely
more and more upon automation and the interoperability
amongst models such as Simulink. The Rubus Tool Suite pro-
vides an integrated tool-chain that includes system modelling,
design, analysis and synthesis providing the features portrayed
in Fig. 2.

Rubus Model Drive Software Development

Designing
Design

Analysis

Synthesis

Rubus 
Component 
Model (RCM)

Rubus Analysis 
Model (RAM)

Rubus Run‐Time 
Model (RRM)

Configuring 
Properties such as:
x� Worst‐case 

execution time
x� Best‐case 

execution time
x� Resource usage

Run‐Time 
Measurements

Fig. 2. Rubus Conceptual Models.

The three models provide various viewpoints reflecting all
of the necessary information concerning the development,
analysis, synthesis and execution of real-time applications.

• Rubus Component Model (RCM) - Viewpoint of
the developer/development team model: The developer
designs the system, in a platform independent manner
that focuses upon the application. Timing and resource
constraints are expressed in the model.

• Rubus Analysis Model (RAM) - Viewpoint of the
analysis model: The resulting RCM design is formal and
lends itself to static analysis that is mapped to the actual
run-time platform. The analysis includes type checking,
execution order, real-time requirements such as response
times and worst-case execution times. This analysis helps
in reducing late, costly and time-consuming testing ef-
forts of, e.g., temporal errors. Furthermore, mathematical
models and supporting tools provide formal evidence of
fulfilling requirements.
Using the Rubus analysis engines it is possible to timing
analyze the system at various levels. For example, a single
node is analyzed by calculating the response times of
tasks and comparing them with corresponding deadlines.
The analysis engines also support the analysis of end-
to-end delays (such as Data Reaction and Age) for
distributed systems (see Fig. 3). The analysis is based on



Confidential/proprietary	information	of	Arcticus	Systems	AB	is	contained	herein	and	may	not	be	disclosed,	displayed,	used	reproduced	or	copied	
without	prior	written	consent.	Failure	to	comply	with	this	notice	may	result	in	liability	for	costs,	damages	or	losses.	

©	2015,	Arcticus	Systems	AB.	All	rights	reserved.	Rubus®	is	a	registered	trademark	of	Arcticus	Systems.	 7	

Using	the	timing	analysis	support	in	Rubus	Designer,	it	is	possible	to	analyze	a	single	node	by	calculating	
the	 response	 times	 of	 tasks	 and	 comparing	 them	with	 corresponding	 deadlines.	 Rubus	 Designer	 also	
supports	the	analysis	of	end-to-end	delays	(such	as	Data	Reaction	and	Age)	for	distributed	systems	(see	
Figure	6	below).	The	analysis	is	based	on	advanced	data	path	analysis	algorithms	and	supports	multiple	
networks,	black	box	nodes	(whose	internal	software	architectures	are	not	available),	message	interference	
and	redundant	data	paths.	The	internal	execution	models	of	nodes	are	taken	into	account	if	available.	It	is	
possible	 to	 analyse	 network	 communication	 based	 on	 Controller	 Area	 Network	 (CAN)	 or	 Ethernet	 by	
calculating	the	response	times	of	messages.		This	distributed	analysis	is	a	unique	property	provided	by	the	
Rubus	Designer.			

Node	A

Node	B

Node	C Node	D
Black	Box

Constraints
	End	Point

Constraints
Start	Point

Msg	X

Msg	Z

Msg	YNetwork	1 Network	2

End	To	End	Constraints
• Data	Age
• Data	Reaction

	

Figure	6:	End-to-End	Network	Analysis	

Rubus	Inspector	provides	for	platform	independent	formal	and	semi-formal	“Model	in	the	Loop”	testing	
environment	used	to	test	the	Software	Circuits	of	the	Rubus	Component	Model	(RCM).		It	provides	for	unit	
testing	 as	 well	 as	 for	 sub-system	 or	 complete	 system	 testing.	 	 	 Test	 inputs	 are	 provided	 by	 the	 user	
however,	it	is	also	possible	to	generate	tests	that	utilize	LabView/Simulink	and	Matlab	environments.		

Rubus	Analyser	provides	for	the	user-friendly	presentation	of	off-line	and	on-line	information	about	the	
real	time	execution	behavior	of	the	system.		It	enables	connection	with	the	development	host	system	to	
download	information	such	as	trace	data	and	run-time	information	in	real-time.		Post-run-time	analysis	of	
host	 data	 for	 formal	 analysis	 can	 be	 compared	 with	 the	 original	 model	 data	 to	 verify	 the	 real-time	
properties	initially	set	by	the	designer.	

4.2 The	Rubus	RTOS	Product	
While	the	Rubus	Component	Model	developed	utilizing	Rubus	Tool	Suite	is	platform	independent,	
Arcticus	supplies	the	Rubus	RTOS	that	has	been	utilized	in	a	wide	variety	of	real-time	applications.	

Rubus	Kernel	that	is	integrated	with	the	application	software	and	further	integrated	into	the	customers	
products.	

Rubus	 Simulator	 that	 provides	 for	 testing	 and	 verifying	 the	 composite	 of	 the	 Rubus	 Kernel	 and	
application	software.	

Fig. 3. System-level modeling and timing analysis of a distributed embedded system.

advanced data path analysis algorithms and supports mul-
tiple networks, black box nodes (whose internal software
architectures are not available), message interference and
redundant data paths [13], [12], [18].

• Rubus Run-time Model (RRM) - Viewpoint of the run-
time platform model: The RCM design together with
the RAM analysis is utilized to synthesize the code for
the actual run-time platform. This automated synthesis
prevents error-prone and costly integration errors. The
run-time platform may be the Rubus Kernel or some other
Real Time Operating System.

C. Certified Real-time Operating System
. The Rubus Real Time Operating System (RTOS) provides

support for RCM in achieving an optimized real-time software
system. The Rubus RTOS has been utilized in a wide variety of
real-time applications. The main features of the Rubus RTOS
are as follows:

• it supports the execution of time-triggered threads also
called the Red threads;

• it supports the execution of interrupt-triggered threads
also called the Green threads;

• it supports the execution of event-triggered threads also
called the Blue threads;

• it supports communication between different types of
threads;

• it supports static allocation of resources;
• and it supports scalability and portability.
The combination of a dynamic and static scheduling sup-

ported by the Rubus Kernel enables the design of optimized
real-time software systems. The Rubus Kernel can be ported
to various targets and development environments on cus-
tomer’s request and includes, amongst others, Freescale MPC-
processors, Texas DSP, Infineons xc167-processors and vari-
ous C-compiler environments such as Green Hills, WindRiver,
Tasking, Microsoft VS and, GCC.

It is important to note that the Rubus Kernel has been ap-
proved as a certifiable ASIL D out of context element for real-
time systems according to the automotive ISO 26262 standard
(Road vehicle Functional Safety). There is an ongoing project
to certify the Rubus Tool Suite according to this standard.

These concepts have proven to be effective in providing
scalability from small to large real-time applications im-

plemented by various organizations including Haldex, Borg
Warner, Volvo Construction Equipment and BAE Systems
(Hägglunds).

III. RELATED MODELS AND TOOLS

There are several technologies and frameworks that support
model- and component-based software development of embed-
ded systems such as AADL [19], SCADE [20], MARTE [21],
MAST [22], SysML, just to name a few. This paper targets
the vehicular domain where the main focus is on EAST-ADL
and EAST-ADL-like models for functional modeling and on
AUTOSAR [23] and Rubus for execution modeling. Fig. 4
shows some of the models, approaches and tools that are used
at four different abstraction levels defined by the EAST-ADL
methodology. A detailed comparison of Rubus with several
other models and tools is presented in [9]. It is important to
note that with the implementation of some recent research
results in Rubus Tool Suite, identified by ComSIS 2013 [13],
ModComp 2014 [24], MASE 2015 [16], RTSCA 2015 [18],
CBSE 2016 [25], ITNG 2016 [26] and SEAA 2016 [17] in
Fig. 4, the tool suite now supports modeling and end-to-end
timing analysis of distributed embedded systems at all the
abstraction levels.

Im
pl
em

en
ta
tio

n
Le
ve
l

IBM	Rational Rhapsody
TADL2

De
sig

n
Le
ve
l

An
al
ys
is

Le
ve
l

Ve
hi
cle

Le
ve
l

RCM
Rubus-ICE

CBSE	2016

RTCSA	2015
ITNG	2016

ModComp 2014
MASE	2015
ComSIS 2013

ProCom
COMDES-IIDaVinci

TADL2

Papyrus

Rubus-EAST

SystemWeaver

MetaEdit+
No	Magic

RCM
Rubus-ICE

SEAA	2016

Fig. 4. Support for modeling and end-to-end timing analysis at various
abstraction levels of EAST-ADL.



IV. SUMMARY AND FUTURE DIRECTIONS

The Rubus approach to providing both deterministic and
non-deterministic service for vehicle systems has been proven
by its usage as well as the certification of the Rubus Kernel
according to the ISO 26262:2011 safety standard with respect
to ASIL D. The evolution of Rubus from early experiences
with deterministic solutions of automatic train control as
well as the cooperation in the Vehicle Internal Architecture
project that established the approach to mixing deterministic
and non-deterministic services established the basis for the
Rubus Kernel. The continued evolution both as a commercial
product as well as a basis for research and development
has stimulated cooperation between Arcticus Systems and
Mälardalen University. This has included in provisioning of
a Model-Driven Development tool suite that incorporates a
variety of tools based upon research results.

In addition to the cooperation with Mälardalens Univer-
sity, Arcticus has participated in several European Research
projects including TIMMO2USE2, CRYSTAL3, EMC24 and
ASSUME5.

Concerning the future, there are on going efforts to provide
Rubus for Multi-core processors as well as developing a
generic approach to model transformations in order to ex-
change information with other models and tool suites.

REFERENCES

[1] Lawson, H., Wallin, S., Bryntse, B., and Friman, B., “Twenty years of
safe train control in sweden,” in International Symposium and Workshop
on Systems Engineering of Computer Based Systems, Washington, DC.,
2001.

[2] ——, “Keynote address: Provisioning of safe train control in nordic
countries,” in History of Nordic Computing Conference (HiNC3), 2008.

[3] Lawson, H., “Journey through the systems landscape,” in College
Publications Systems Series, Volume 1, Kings College, London, 2010.

[4] H. A. Hansson, H. W. Lawson, M. Strömberg, and S. Larsson, “Base-
ment: A distributed real-time architecture for vehicle applications,” Real-
Time Systems, vol. 11, no. 3, pp. 223–244, 1996.

[5] H. Hansson, H. Lawson, O. Bridal, C. Eriksson, S. Larsson, H. Lon,
and M. Stromberg, “Basement: an architecture and methodology for
distributed automotive real-time systems,” IEEE Transactions on Com-
puters, vol. 46, no. 9, pp. 1016–1027, Sep 1997.

[6] Eriksson, C., Lawson, H. and Lundbck, K-L., “A real-time kernel inte-
grated with an off-line scheduler,” in IFAC/IFIP Workshop on Algorithms
and Architecture for Real-Time Control, 1997.

[7] Lawson, H. and Lundbck, K-L, “Provisioning of highly reliable real-
time systems,” in History of Nordic Computing Conference (HiNC3),
2010.

[8] K. Hänninen et.al., “The Rubus Component Model for Resource Con-
strained Real-Time Systems,” in 3rd IEEE International Symposium on
Industrial Embedded Systems, June 2008.

[9] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Communications-Oriented
Development of Component- Based Vehicular Distributed Real-Time
Embedded Systems,” Journal of Systems Architecture, vol. 60, no. 2,
pp. 207–220, 2014.

2https://itea3.org/project/timmo-2-use.html
3http://www.crystal-artemis.eu
4http://www.artemis-emc2.eu/
5https://itea3.org/project/assume.html

[10] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and M. Sjödin,
“Bounding shared-stack usage in systems with offsets and precedences,”
in 20th Euromicro Conference on Real-Time Systems, July 2008.

[11] J. Mäki-Turja and M. Nolin, “Tighter response-times for tasks with off-
sets,” in Real-time and Embedded Computing Systems and Applications
Conference (RTCSA), August 2004.

[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Integrating Mixed Trans-
mission and Practical Limitations with the Worst-Case Response-Time
Analysis for Controller Area Network,” Journal of Systems and Software,
2014.

[13] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

[14] “EAST-ADL Domain Model Specification, V2.1.12,,” http://www.east-
adl.info/Specification/V2.1.12/EAST-ADL-Specification V2.1.12.pdf.

[15] A. Bucaioni, A. Cicchetti, and M. Sjödin, “Towards a metamodel for
the rubus component model,” in 1st International Workshop on Model-
Driven Engineering for Component-Based Software Systems, September
2014.

[16] A. Bucaioni, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, and
M. Sjödin, “Anticipating implementation-level timing analysis for driv-
ing design-level decisions in east-adl,” in International Workshop on
Modelling in Automotive Software Engineering, September 2015.

[17] A. Bucaioni, A. Cicchetti, F. Ciccozzi, S. Mubeen, M. Sjödin, and
A. Pierantonio, “Handling uncertainty in automatically generated im-
plementation models in the automotive domain,” in 42nd Euromicro
Conference series on Software Engineering and Advanced Applications,
September 2016.

[18] S. Mubeen, M. Sjödin, T. Nolte, J. Lundbäck, M. Gålnander, and K.-L.
Lundbäck, “End-to-end Timing Analysis of Black-box Models in Legacy
Vehicular Distributed Embedded Systems,” in 21st International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Aug. 2015.

[19] P. Feiler, B. Lewis, S. Vestal, and E. Colbert, “An Overview of the SAE
Architecture Analysis & Design Language (AADL) Standard: A Basis
for Model-Based Architecture-Driven Embedded Systems Engineering,”
in Architecture Description Languages, ser. The International Federation
for Information Processing (IFIP). Springer US, 2005, vol. 176, pp.
3–15.

[20] SCADE Suite, http://www.esterel-technologies.com/products/scade-
suite, accessed May, 2014.

[21] “The UML Profile for MARTE: Modeling and Analysis of Real-
Time and Embedded Systems,” January 2010. [Online]. Available:
http://www.omgmarte.org/

[22] MAST–Modeling and Analysis Suite for Real-Time Applications,
http://mast.unican.es/, accessed Mar. 2015.

[23] “AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The
AUTOSAR Consortium, Oct., 2013,” http://autosar.org.

[24] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Translating timing con-
straints during vehicular distributed embedded systems development,”
in 1st International Workshop on Model-Driven Engineering for
Component-Based Software Systems, September 2014.

[25] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, M. Gålnander, and K.-
L. Lundbäck, “Modeling of Legacy Distributed Embedded Systems
at Vehicle Abstraction Level,” in 19th International Symposium on
Component Based Software Engineering, Apr. 2016.

[26] S. Mubeen, T. Nolte, J. Lundbäck, M. Gålnander, and K.-L. Lundbäck,
“Refining Timing Requirements in Extended Models of Legacy Ve-
hicular Embedded Systems Using Early End-to-end Timing Analysis,”
in 13th International Conference on Information Technology: New
Generations (ITNG), Apr. 2016.


