
Virtual Integration on the Basis of a Structured

System Modelling Approach

Henrik Kaijser, Henrik Lönn

Advanced Technology and Research

Volvo Group

Gothenburg, Sweden

Peter Thorngren

Vehicle Engineering

Volvo Group

Gothenburg, Sweden

Abstract—Automotive software and electronics contribute to

much of both value and cost for next generation vehicles. Virtual

integration and continuous integration and delivery are

increasingly used to cut development time, improve product

performance and reduce development risk. In this paper, we

report on findings from the HeavyRoad project concerning these

areas. We elaborate on how modeling patterns for the controller,

plant and environment help securing consistency during

integration and testing. An architecture pattern as well as a set of

views providing appropriate perspectives on the engineering

information are introduced. A continuous integration framework

is also described. Its intent is to integrate automotive software

with models of physical components for the purpose of

simulation-based testing. Using these technologies, it was shown

how cycle times for software development could be reduced

significantly. The paper uses a simple automotive application to

illustrate the concepts.

Keywords—Automotive, Embedded Systems, Continuous

Integration, Virtual Integration, Model Based Engineering

I. INTRODUCTION

The authority, criticality and influence of automotive
embedded systems increase steadily, while the acceptable
development times decrease. Consequently, development
methodology must evolve to maintain vehicle quality in spite
of shorter lead times and higher product expectations.

Virtual integration is a powerful enabler that allows vehicle
and system properties to be analyzed before physical
prototypes are available. Continuous development, i.e. iterative
and incremental development with comprehensive engineering
automation, is another key enabler that provides risk reduction
and efficiency through fast and precise feedback on
engineering activities.

The HeavyRoad research project addresses both these
areas. In this paper, we will describe preliminary contributions
related to i) modeling patterns for virtual integration, ii) model
viewpoints for automotive integration verification and iii) a
continuous integration framework that supports several
verification techniques including simulation-based testing of
automotive embedded systems.

II. RELATED WORK

Model based systems and software engineering is a mature
area, with many notations and tools. Model based software
engineering is often synonymous to behavioral modeling and
code generation in notations such as SCADE, Simulink or
UML. Model based systems engineering relies on architecture
representations, to allow properties and requirements to be
formulated and assessed in the context of the system
description. SysML [9], AADL [2] and EAST-ADL [4] are
established architecture description languages with some
variations in scope and generality. AUTOSAR [2] provides
description mechanisms for software architecture. By using
AUTOSAR together with EAST-ADL, system representation
from abstract feature content down to software components and
its constituents can be represented with semantic and
syntactical alignment. In order to support model based
integration of model-, software- and hardware-in-the-loop
simulations based on the same model, the core architecture
descriptions need to be complemented with modeling patterns
and model transformations which is addressed in the
HeavyRoad project.

Virtual integration is often performed with the purpose to
simulate a representation of the system. Behavioral modeling
tools typically provide simulation capabilities of components,
but there is limited support for system aspects such as
execution and communication coordination beyond component
level. In such simulations, concurrency, contention and
interaction among components are typically not represented.
To include these aspects, architecture models can provide
system descriptions and a general execution framework can
provide for simulations that respect timing, triggering and
concurrency aspects.

 There are several such of-the-shelf integration frameworks
for the automotive domain such as Silver [10], CANoE [11]
and Scalexio [3]. However, such tools are mainly intended for
interactive, desktop use rather than large scale engineering
automation. Further, they are difficult to tailor for company
specific needs or refine towards new capabilities concerning
work flow, representation, test execution, etc. These issues are
investigated further in the HeavyRoad project.

This work was sponsored by VINNOVA FFI grant 2014-03947.

Electrical
(Logical)

Engineering
Units

ElectricalElectrical
(Bit pattern)

En
viro

n
m

en
t

P
lan

t

A
ctu

ato
r

Electro
n

ics

P
latfo

rm

Sen
so

r/act.
SW

C

A
p

p
licatio

n

Layer x

A
p

p
licatio

n
Layer y

Engineering
Units
(Logical)

Engineering
Units

i) ii) iii) iv)

Fig. 1. Modelling Pattern for Embedded System, with interfaces at appropriate locations.

Below we will describe a modelling pattern and a set of

viewpoints established in the HeavyRoad project, appropriate
for the various simulation and analysis use cases typically
pursued during automotive system development. We will then
go on to describe the integration and simulation framework
developed in the project. Next, we describe how this
framework is part of a continuous integration flow. The
concepts are then illustrated with an example, before the paper
is closed with summary and conclusions.

III. MODELLING PATTERNS

The chosen pattern for the information model is based on
the SimArch simulation architecture [12] and extended based
on EAST-ADL [4] concepts. We have contributed with a
refined representation of structure and behavior and added
concepts for plant interfacing, see Fig. 1. The pattern
distinguishes between five parts: i) an application part that is
typically realized by software but in some cases by models, ii)
an I/O part representing sensors, actuators and electrical
interfacing, iii) a plant that represents the in-vehicle physical
elements, iv) an environment that represents elements outside
the ego-vehicle and finally v) the stimuli and expected response
for the purpose of specification and verification.

By applying this pattern and maintaining the corresponding
interfaces, it is possible to reuse the model parts for different
verification use cases. The unidirectional arrows in Fig.1 show
suitable interfaces for such experiments. The leftmost arrow
(1) represents the boundary of application software
corresponding to an engineering units interface for application
software-in the loop and model-in-the loop. The boundary may
be extended to the electrical interface (2) and thus include the
sensor/actuator abstraction. The software boundary (3) includes
the platform and is aligned with processor-in-the-loop or
virtual targets for target-compiled binaries. The control unit

boundary (4) is the electrical interface to sensors and actuators
and corresponds to hardware-in-the-loop. The sensor or
actuator boundary (5) is the physical interface between the
complete embedded system and corresponds to e.g. rapid
control prototyping, i.e. where preliminary control systems are
used in a mule truck. Finally the vehicle boundary (6) is the
external interface of the vehicle, i.e. “tires-to-road”.

Examples of how modeling elements are reused in different
use cases include running a real control unit together with
models of the sensors, plant and environment, or executing
binaries on a virtual processor together with models of
electronics, and the same models for sensors/actuators, plant
and environment. Similarly, models of the embedded system
can be connected to sensors and actuators in a real truck and
tested in the field.

It should be noted that the granularity can vary depending
on the purpose of the experiment. For example, sometimes the
I/O part is simplified and not decomposed into
sensor/electronics/sensor software while in other cases also the
electronics part may be decomposed into wiring harness and
discrete electronic components.

IV. VIEWPOINTS AND VIEWS

The information model can be considered from a set of five
viewpoints [8], see Fig. 2: 1) a logical view collecting
functional aspects of software and electronics, 2) an operational
view representing components and calibration 3) a plant view
representing in-vehicle elements outside the EE architecture, 4)
an environment view for elements surrounding the vehicle and
5) an external behavior view. Note that the operational view (2)
and the external behavior view (5) have the same structural
scope, but the latter concerns the emerging behavior of the
complete vehicle.

Fig. 2. Information model pattern and Views with correlation relations

Virtual Signal Bus / Triggering

Interface
SWC:s
Application SW

SWC:s
Application SW

SWC:s
Application SW

Tester

Command

Interface

IP
Visualization

Related

Simulators

...

SWC:s
Application SW

SWC:s
Application SW
FMU:s

Fcn, Plant, ...

SW Components
Functional
Mockup Units

Fig. 3. ADAPT Simulation platform

In the HeavyRoad project, these views have been
considered critical to support key roles and process steps
during vehicle development. For example, functional testing
focuses on the external behavior, design and analysis of
subsystems need the logical view, and manufacturing and
configuration use the operational view.

V. INTEGRATION AND SIMULATION

The HeavyRoad project has specified and developed an
integration and simulation framework called Adapt. Adapt can
execute AUTOSAR software components together with
models of preliminary functions, sensors, actuators, plants and
environment. Fig. 3 shows Adapt with a set of modules
representing application software, platform, electronics, plant
and environment. The interface module exchanges data with
external entities e.g. a visualization tool connected over UDP.
Modules are triggered by the Adapt framework and exchange
data over a virtual signal bus, which can be viewed as a
generalization of the AUTOSAR virtual function bus concept.

AUTOSAR application software components are cross-
compiled for Windows, but configuration files are taken
directly from the production ECU models. The platform
software of AUTOSAR is normally emulated to reduce
complexity and execution time. In case platform software
should be part of the validation, there is a prototype
implementation for integrating the open source Arccore
AUTOSAR platform in Adapt and let it manage application
software, bus communication, i/o, diagnostics, etc.

Non-software parts of the system as well as models of
software are represented by Functional Mockup Units, FMUs
[5]. The FMU has a description file stating its external interface
and an executable part compiled for the host PC. Adapt
executes the FMU:s together with the software components and
exchanges data over the virtual signal bus.

High execution speed of the simulation is crucial to be able
to execute test cases faster than real-time. With a typical
experiment setup, the simulation speed has been observed to be
an order of magnitude faster than real-time. Some vehicle
software were not part of the simulation, but it still gives an
indication since only a mid range PC was used.

VI. CONTINUOUS INTEGRATION AND DELIVERY

Adapt is part of a continuous integration flow currently in
use at Volvo Trucks, where engineers provide application code,
compiled models and configuration definitions to build servers,
which

Binaries

System

Models

Plant

Models

ADAPT

Generator

ADAPT

Executor
<XML>

<XML><XML>
<XML><XML>
<XML><XML>
<XML><XML>

<XML>
<XML><XML>
<XML><XML>
<XML><XML>
<XML><XML>

<XML>
<XML><XML>
<XML><XML>
<XML><XML>
<XML><XML>

Configuration

Files

Fig. 4. Continuous Integration Flow

1. Build application software

2. Integrate application software with executable,
compiled models of surrounding system elements

3. Run tests on complete system

4. Report back to the engineer

Through this automated flow, engineers get fast feedback
on changes and are able to sustain an iterative development
style with loop times of a few minutes for the basic
verification. These loop times are substantially shorter than
what was possible without the continuous integration flow.
Because plant models of the physical system are included in
the simulations, integration tests cover the complete system
from end to end. More elaborate verification and analysis can
be scheduled on a less frequent basis, to strike the correct
balance between feedback time and verification confidence.

VII. EXAMPLE

To illustrate the HeavyRoad concepts and tooling described
above, we will use a simple windscreen wiper system in a
model-in-the-loop scenario. Fig. 5 shows an EAST-ADL
model represented in the EATOP framework [5]. The example
illustrates the modeling pattern with a functional architecture
with wiper controller (i application), wiper stalk, motor and
sensor with corresponding electronics (ii I/O part), windscreen
(iii plant) and weather (iv environment).

The input from the driver is not part of the model, but
provided from the virtual stalk in the visualization framework,
see Fig. 6 that captures the ADAPT simulation of controller,
plant and environment components. These exchange data over
a virtual signal bus, which also transfer data to the interface
that communicates with the external visualization and
interaction components. The latter uses geometries from the
CAD systems, allowing early and iterative visualization of the
product behavior. This scenario is real-time and interactive and
suitable for explorative purposes in an early phase of
development.

Another use case is accelerated simulation of production
software. The ADAPT framework then executes the production
code of the wiper system together with the same plant and
environment models. The test automation part of the
integration framework provides stimuli and verifies response.

Fig. 5. Functional architecture of Wiper controller and plant

VIII. SUMMARY AND CONCLUSIONS

This paper has described a modeling pattern and viewpoints
suitable for virtual integration of automotive embedded
systems. By organizing the system model appropriately, parts
of the model can be used for varying purposes ranging from
hardware-in-the loop to model-in-the-loop simulation. Further,
it is possible to mix simulation constituents, for example
different parts of the system may be represented by the
production code, models or the real hardware.

We have also described a continuous integration platform
that allows virtual integration and verification of automotive
software together with models of plant and environment. This
is a key enabler for continuous integration and delivery, as
meaningful tests can be performed on software before the rest
of the vehicle is available. Virtuality is also an enabler for tests
that could not be performed on real vehicles e.g. because of
safety concerns, instrumentation problems, time consumption,
cost or vehicle availability. Using project results we have
observed development loop times being reduced to minutes,
and verification rate of virtually integrated systems is an order
of magnitude faster than with real systems.

Rigor in the representation of engineering information
together with the ability to integrate and simulate early and
iteratively is a key enabler in meeting future demands on short
development cycles.

While many flaws can be efficiently detected with an
analysis and simulation-based approach, testing of the
embedded system and the complete vehicle is still necessary.
Software is simulated in a way that cannot completely avoid
inaccuracies in timing and resource handling. Electronics, I/O
and mechanical parts rely on models with a limited fidelity and
assumptions that may be wrong or inaccurate compared to the
real vehicle. These experiment risks are mitigated by validation
and calibration, but testing of real systems allows confidence to
be increased even further.

REFERENCES

[1] Architecture Analysis & Design Language, SAE Standard AS-5506

[2] Autosar Development Partnership: AUTOSAR 4.2, www.autosar.org

[3] DSpace Scalexio – product information. http://www.dspace.com

[4] EAST-ADL Association: EAST-ADL 2.1.12, www.east-adl.eu

[5] Eclipse: EAST-ADL Tool Platform. www.eclipse.org/eatop

[6] FMI development group: FMI 2.0, www.fmi-standard.org

[7] HeavyRoad: HeavyRoad web site, www.heavyroad.eu

[8] IEEE: Standard 42010, Systems and software engineering —
Architecture description.

[9] Object Modelling Group: OMG Systems Modeling Language,
www.omgsysml.org

[10] QTronic Silver – Product Information. http://www.qtronic.com

[11] Vector CANoe – product information. http://www.vector.com

[12] Vinter, Jonny: Simarch Final Report, V-ICT Project SimArch, Sweden,
2010

IP

Virtual Signal Bus / Triggering

Comm

IF

Rainsensor
FMUWiper

Controller
FMU

Windscreen
FMU

Weather
FMU

Wiper motor
FMU

Wiper mechanics
FMU

Fig. 6. Adapt wiper system simulation together with visualization tools

