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Abstract—Automotive software and electronics contribute to 

much of both value and cost for next generation vehicles. Virtual 

integration and continuous integration and delivery are 

increasingly used to cut development time, improve product 

performance and reduce development risk. In this paper, we 

report on findings from the HeavyRoad project concerning these 

areas. We elaborate on how modeling patterns for the controller, 

plant and environment help securing consistency during 

integration and testing. An architecture pattern as well as a set of 

views providing appropriate perspectives on the engineering 

information are introduced. A continuous integration framework 

is also described. Its intent is to integrate automotive software 

with models of physical components for the purpose of 

simulation-based testing. Using these technologies, it was shown 

how cycle times for software development could be reduced 

significantly. The paper uses a simple automotive application to 

illustrate the concepts. 

Keywords—Automotive, Embedded Systems, Continuous 

Integration, Virtual Integration, Model Based Engineering  

I.  INTRODUCTION 

The authority, criticality and influence of automotive 
embedded systems increase steadily, while the acceptable 
development times decrease. Consequently, development 
methodology must evolve to maintain vehicle quality in spite 
of shorter lead times and higher product expectations.  

Virtual integration is a powerful enabler that allows vehicle 
and system properties to be analyzed before physical 
prototypes are available. Continuous development, i.e. iterative 
and incremental development with comprehensive engineering 
automation, is another key enabler that provides risk reduction 
and efficiency through fast and precise feedback on 
engineering activities. 

The HeavyRoad research project addresses both these 
areas. In this paper, we will describe  preliminary contributions 
related to i) modeling patterns for virtual integration, ii) model 
viewpoints for automotive integration verification and iii) a 
continuous integration framework that supports several 
verification techniques including simulation-based testing of 
automotive embedded systems.  

II. RELATED WORK 

Model based systems and software engineering is a mature 
area, with many notations and tools. Model based software 
engineering is often synonymous to behavioral modeling and 
code generation in notations such as SCADE, Simulink or 
UML. Model based systems engineering relies on architecture 
representations, to allow properties and requirements to be 
formulated and assessed in the context of the system 
description. SysML [9], AADL [2] and EAST-ADL [4] are 
established architecture description languages with some 
variations in scope and generality. AUTOSAR [2] provides 
description mechanisms for software architecture. By using 
AUTOSAR together with EAST-ADL, system representation 
from abstract feature content down to software components and 
its constituents can be represented with semantic and 
syntactical alignment. In order to support model based 
integration of model-, software- and hardware-in-the-loop 
simulations based on the same model, the core architecture 
descriptions need to be complemented with modeling patterns 
and model transformations which is addressed in the 
HeavyRoad project. 

Virtual integration is often performed with the purpose to 
simulate a representation of the system. Behavioral modeling 
tools typically provide simulation capabilities of components, 
but there is limited support for system aspects such as 
execution and communication coordination beyond component 
level. In such simulations, concurrency, contention and  
interaction among components are typically not represented. 
To include these aspects, architecture models can provide 
system descriptions and a general execution framework can 
provide for simulations that respect timing, triggering and 
concurrency aspects. 

 There are several such of-the-shelf integration frameworks 
for the automotive domain such as Silver [10], CANoE [11] 
and Scalexio [3]. However, such tools are mainly intended for 
interactive, desktop use rather than large scale engineering 
automation. Further, they are difficult to tailor for company 
specific needs or refine towards new capabilities concerning 
work flow, representation, test execution, etc. These issues are 
investigated further in the HeavyRoad project. 
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Fig. 1. Modelling Pattern for Embedded System, with interfaces at appropriate locations. 

 
Below we will describe a modelling pattern and a set of 

viewpoints established in the HeavyRoad project, appropriate 
for the various simulation and analysis use cases typically 
pursued during automotive system development. We will then 
go on to describe the integration and simulation framework 
developed in the project. Next, we describe how this 
framework is part of a continuous integration flow. The 
concepts are then illustrated with an example, before the paper 
is closed with summary and conclusions.  

III. MODELLING PATTERNS 

The chosen pattern for the information model is based on 
the SimArch simulation architecture [12] and extended based 
on EAST-ADL [4] concepts. We have contributed with a 
refined representation of structure and behavior and added 
concepts for plant interfacing, see Fig. 1.  The pattern 
distinguishes between five parts: i) an application part that is 
typically realized by software but in some cases by models, ii) 
an I/O part representing sensors, actuators and electrical 
interfacing, iii) a plant that represents the in-vehicle physical 
elements, iv) an environment that represents elements outside 
the ego-vehicle and finally v) the stimuli and expected response 
for the purpose of specification and verification. 

By applying this pattern and maintaining the corresponding 
interfaces, it is possible to reuse the model parts for different 
verification use cases. The unidirectional arrows in Fig.1 show 
suitable interfaces for such experiments. The leftmost  arrow 
(1) represents the boundary of application software 
corresponding to an engineering units interface for application 
software-in the loop and model-in-the loop. The boundary may 
be extended to the electrical interface (2) and thus include the 
sensor/actuator abstraction. The software boundary (3) includes 
the platform and is aligned with processor-in-the-loop or 
virtual targets for target-compiled binaries. The control unit 

boundary (4) is the electrical interface to sensors and actuators 
and corresponds to hardware-in-the-loop. The sensor or 
actuator boundary (5) is the physical interface between the 
complete embedded system and corresponds to e.g. rapid 
control prototyping, i.e. where preliminary control systems are 
used in a mule truck. Finally the vehicle boundary (6) is the 
external interface of the vehicle, i.e.  “tires-to-road”.  

Examples of how modeling elements are reused in different 
use cases include running a real control unit together with 
models of the sensors, plant and environment, or executing 
binaries on a virtual processor together with models of 
electronics, and the same models for sensors/actuators, plant 
and environment. Similarly, models of the embedded system 
can be connected to sensors and actuators in a real truck and 
tested in the field.  

It should be noted that the granularity can vary depending 
on the purpose of the experiment. For example, sometimes the 
I/O part is simplified and not decomposed into 
sensor/electronics/sensor software while in other cases also the 
electronics part may be decomposed into wiring harness and 
discrete electronic components.  

IV. VIEWPOINTS AND VIEWS 

The information model can be considered from a set of five 
viewpoints [8], see Fig. 2: 1) a logical view collecting 
functional aspects of software and electronics, 2) an operational 
view representing components and calibration 3) a plant view 
representing in-vehicle elements outside the EE architecture, 4) 
an environment view for elements surrounding the vehicle and 
5) an external behavior view. Note that the operational view (2) 
and the external behavior view (5) have the same structural 
scope, but the latter concerns the emerging behavior of the 
complete vehicle.  

 

Fig. 2. Information model pattern and Views with correlation relations 
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Fig. 3. ADAPT Simulation platform  

In the HeavyRoad project, these views have been 
considered critical to support key roles and process steps 
during vehicle development. For example, functional testing 
focuses on the external behavior, design and analysis of 
subsystems need the logical view, and manufacturing and 
configuration use the operational view.  

V. INTEGRATION AND SIMULATION  

The HeavyRoad project has specified and developed an 
integration and simulation framework called Adapt. Adapt can 
execute AUTOSAR software components together with 
models of preliminary functions, sensors, actuators, plants and 
environment. Fig. 3 shows Adapt with a set of modules 
representing application software, platform, electronics, plant 
and environment. The interface module exchanges data with 
external entities e.g. a visualization tool connected over UDP. 
Modules are triggered by the Adapt framework and exchange 
data over a virtual signal bus, which can be viewed as a 
generalization of the AUTOSAR virtual function bus concept. 

AUTOSAR application software components are cross-
compiled for Windows, but configuration files are taken 
directly from the production ECU models. The platform 
software of AUTOSAR is normally emulated to reduce 
complexity and execution time. In case platform software 
should be part of the validation, there is a prototype 
implementation for integrating the open source Arccore 
AUTOSAR platform in Adapt and let it manage application 
software, bus communication, i/o, diagnostics, etc. 

Non-software parts of the system as well as models of 
software are represented by Functional Mockup Units, FMUs 
[5]. The FMU has a description file stating its external interface 
and an executable part compiled for the host PC. Adapt 
executes the FMU:s together with the software components and 
exchanges data over the virtual signal bus. 

High execution speed of the simulation is crucial to be able 
to execute test cases faster than real-time. With a typical 
experiment setup, the simulation speed has been observed to be  
an order of magnitude faster than real-time. Some vehicle 
software were not part of the simulation, but it still gives an 
indication  since only a mid range PC was used.  

VI. CONTINUOUS INTEGRATION AND DELIVERY 

Adapt is part of a continuous integration flow currently in 
use at Volvo Trucks, where engineers provide application code, 
compiled models and configuration definitions to build servers, 
which  
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Fig. 4. Continuous Integration Flow 

1. Build application software 

2. Integrate application software with executable, 
compiled models of surrounding system elements 

3. Run tests on complete system 

4. Report back to the engineer 

Through this automated flow, engineers get fast feedback 
on changes and are able to sustain an iterative development 
style with loop times of a few minutes for the basic 
verification. These loop times are substantially shorter than 
what was possible without the continuous integration flow. 
Because plant models of the physical system are included in 
the simulations, integration tests cover the complete system 
from end to end. More elaborate verification and analysis can 
be scheduled on a less frequent basis, to strike the correct 
balance between feedback time and verification confidence. 

VII. EXAMPLE 

To illustrate the HeavyRoad concepts and tooling described 
above, we will use a simple windscreen wiper system in a 
model-in-the-loop scenario. Fig. 5 shows an EAST-ADL 
model represented in the EATOP framework [5]. The example 
illustrates the modeling pattern with a functional architecture 
with wiper controller (i application), wiper stalk, motor and 
sensor with corresponding electronics (ii I/O part), windscreen  
(iii plant) and weather (iv environment). 

The input from the driver is not part of the model, but 
provided from the virtual stalk in the visualization framework, 
see Fig. 6 that captures the ADAPT simulation of controller, 
plant and environment components. These exchange data over 
a virtual signal bus, which also transfer data to the interface 
that communicates with the external visualization and 
interaction components. The latter uses geometries from the 
CAD systems, allowing early and iterative visualization of the 
product behavior. This scenario is real-time and interactive and 
suitable for explorative purposes in an early phase of 
development.  

Another use case is accelerated simulation of production 
software. The ADAPT framework then executes the production 
code of the wiper system together with the same plant and 
environment models. The test automation part of the 
integration framework provides stimuli and verifies response.  



 
Fig. 5. Functional architecture of Wiper controller and plant 

 

VIII. SUMMARY AND CONCLUSIONS 

This paper has described a modeling pattern and viewpoints 
suitable for virtual integration of automotive embedded 
systems. By organizing the system model appropriately, parts 
of the model can be used for varying purposes ranging from 
hardware-in-the loop to model-in-the-loop simulation. Further, 
it is possible to mix simulation constituents, for example 
different parts of the system may be represented by the 
production code, models or the real hardware. 

We have also described a continuous integration platform 
that allows virtual integration and verification of automotive 
software together with models of plant and environment. This 
is a key enabler for continuous integration and delivery, as 
meaningful tests can be performed on software before the rest 
of the vehicle is available. Virtuality is also an enabler for tests 
that could not be performed on real vehicles e.g. because of 
safety concerns, instrumentation problems, time consumption, 
cost or vehicle availability. Using project results we have 
observed development loop times being reduced to minutes, 
and verification rate of virtually integrated systems is an order 
of magnitude faster than with real systems.  

Rigor in the representation of engineering information 
together with the ability to integrate and simulate early and 
iteratively is a key enabler in meeting future demands on short 
development cycles. 

While many flaws can be efficiently detected with an 
analysis and simulation-based approach, testing of the 
embedded system and the complete vehicle is still necessary. 
Software is simulated in a way that cannot completely avoid 
inaccuracies in timing and resource handling. Electronics, I/O 
and mechanical parts rely on models with a limited fidelity and 
assumptions that may be wrong or inaccurate compared to the 
real vehicle. These experiment risks are mitigated by validation 
and calibration, but testing of real systems allows confidence to 
be increased even further. 
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Fig. 6. Adapt wiper system simulation together with visualization tools 


