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Tunneling between two classically disconnected regular regions can be strongly affected by the
presence of a chaotic sea in between. This phenomenon, known as chaos-assisted tunneling, gives rise
to large fluctuations of the tunneling rate. Here we study chaos-assisted tunneling in the presence
of Anderson localization effects in the chaotic sea. Our results show that the standard tunneling
rate distribution is strongly modified by localization, going from the known Cauchy distribution
in the ergodic regime to a log-normal distribution in the strongly localized case. We develop an
analytical single-parameter scaling theory which accurately describes the numerical data, for both
a deterministic and a disordered model. Several possible experimental implementations using cold
atoms, photonic lattices or microwave billiards are discussed.

Tunneling has been known since early quantum me-
chanics as a striking example of a purely quantum effect
that is classically forbidden. However, the simplest pre-
sentation based on tunneling through a one-dimensional
barrier does not readily generalize to more generic situ-
ations. Indeed, in dimension two or higher or in time-
dependent systems, the dynamics becomes more com-
plex with various degrees of chaos, and the tunneling
effect can become markedly different [1]. An especially
spectacular effect of chaos in this context is known as
chaos-assisted tunneling [2]: in this case, tunneling is
mediated by ergodic states in a chaotic sea, and tunnel-
ing amplitudes have reproducible fluctuations by orders
of magnitude over small changes of a parameter. This is
reminiscent of universal conductance fluctuations which
arise in condensed matter disordered systems. There, re-
producible fluctuations of the conductance when e.g. a
magnetic field is varied are an interferential signature of
the disorder configuration [3].

A typical example of chaos-assisted tunneling arises for
systems having a mixed classical dynamics where reg-
ular zones with stable trajectories coexist with chaotic
regions with ergodic trajectories. In the presence of a
discrete symmetry, one can have two symmetric regu-
lar zones which are classically disconnected in the sense
that classical transport between these two zones is forbid-
den. In the quantum regime however, transport between
these two structures is possible through what is called dy-
namical tunneling [4]. Regular eigenstates are regrouped
in pairs of symmetric and antisymmetric states whose
eigenenergies differ by a splitting δ inversely proportional
to the characteristic tunneling time. If a chaotic region
is present between the two regular structures, tunneling
becomes strongly dependent on the specificities of the en-
ergy and phase-space distributions of the chaotic states.
It results in strong fluctuations of the tunneling split-
tings which is known to be well-described by a Cauchy
distribution [5]. Chaos-assisted tunneling has been ex-
tensively studied in different contexts, both theoretically
[6–12] and experimentally [13–21].

However, states in a chaotic sea are not necessarily

ergodic; indeed, it is well-known that in condensed mat-
ter, quantum interference effects can stop classical diffu-
sion and induce Anderson localization [22–24]. In chaotic
systems, a similar effect known as dynamical localiza-
tion can take place where states are exponentially local-
ized with a characteristic localization length ξ [25–28].
When the size L of the chaotic sea is much smaller than
ξ, chaotic states are effectively ergodic, whereas a new
regime arises when ξ ≪ L where strong localization ef-
fects should change the standard picture of chaos-assisted
tunneling. Indeed, it is well known for disordered systems
that in quasi-1D universal Gaussian conductance fluctu-
ations are replaced by much larger fluctuations in the
localized regime with a specific characteristic log-normal
distribution [29]. Moreover, for chaotic systems, it was
shown in [30] that tunneling is drastically suppressed by
dynamical localization, and that the Anderson transition
between dynamical localization and diffusive transport
manifests itself as a sharp enhancement of the average
tunneling rate at the transition [31].

In this paper, we study the hitherto unexplored ef-
fect of Anderson localization on the statistics of chaos-
assisted tunneling in quasi-1D systems. We show that the
distribution of level splittings changes from the Cauchy
distribution characteristic of the ergodic regime to a log-
normal distribution in the strongly localized regime. We
consider two models to study these effects: a determinis-
tic model having a mixed phase space and whose quan-
tum chaotic states display dynamical localization, and a
disordered model based on the famous Anderson model
[22]. This allows us to study numerically the two extreme
ergodic and localized regimes as well as the full crossover
between them. The numerical data are found to follow a
one-parameter scaling law with ξ/L. We present a sim-
ple analytical theory which accounts for the observed be-
haviors throughout the full range of parameters studied
for both models. This shows that the fluctuations of
chaos-assisted tunneling precisely characterize the differ-
ent physical regimes of transport in these systems.

Models.— The deterministic model that we use is a
variant introduced in [30] of the quantum kicked rotor.
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FIG. 1. (Color online). (a) Splitting distribution P(ln δ) for the deterministic model (1) in the localized (left), intermediate
(middle) and ergodic (right) regimes. Green dashed line: fit with a log-normal distribution. Blue dashed-dotted line: fit by the
Cauchy distribution. Red solid line: analytical theory Eq. (6) with Γ and δtyp fitting parameters (see Fig. 2b). In the localized
(ergodic) regime the log-normal (Cauchy) distributions overlap almost perfectly with Eq. (6). The data correspond to K = 30,
pr = 0.4n (n = 2048) and 6400 values of h̄ in a small range around h̄ = 0.85, 0.45, 0.25 respectively. (b) Phase-space (Husimi)
distribution of the initial wave function (color shades) superimposed on the classical phase space of the deterministic model
(1), with h̄ = 0.25, K = 30, pc = 10 and pr = 1024. (c) Splittings δ as a function of ξ/L showing single-parameter scaling
behavior. There are 16 sets (different colors) corresponding to fixed values of K = 20, 30, 40, 50 and pr varies from 0.1n to 0.7n
(n = 2048 is the system size) for 1600 values of h̄ ∈ [0.1, 1.5]. Big red dots: typical value of δ averaged over all data sets.

The Hamiltonian is given by:

Ĥ = T (p) +K cos(x)

∞
∑

n=−∞

δ(t− n), (1)

where ph̄ is momentum, x is a dimensionless position (or
phase) with period 2π, t is time and K is the strength
of the kicks. The dispersion relation T (p) is chosen
such that the phase space is divided into well-separated
chaotic and regular (integrable) regions (cf. Ref. [30]):

T (p) =
(h̄p)2

2
for |p| ≤ pr/2, (2a)

T (p) =ω|p|+ ω0 for |p| > pr/2. (2b)

The value of ω should be irrational, throughout this work
we use ω = 2

√
5 ≈ 4.4721 . . . . ω0 is chosen such that

T (p) is continuous. A discrete symmetry p → −p exists;
the region of phase space |p| ≤ pr/2 is strongly chaotic
for K ≫ 1. The characteristic size of the chaotic sea
is L = pr + K/[h̄ sin(ω/2)] (see Fig. 1b). The two re-
gions |p| > L/2 correspond to two momentum symmet-
ric regular zones. In the following, we will consider an
initial state located on a classical torus in the regular
part of phase space as obtained using Einstein-Brillouin-
Keller quantization (see [30]), with initial mean momen-
tum 〈p〉(t = 0) = pc + L/2. The distance to the chaotic
sea pc is set to pc = 10 such that the coupling to the

chaotic sea is constant. In Fig. 1b we portray this initial
state superimposed on the classical phase space represen-
tation of (2).
The second model we use is a disordered system based

on the Anderson model:

ĤA =
∑

i6=1,L

wia
†
iai +

∑

〈i,j〉

a†iaj +H.c.

+ tc(a
†
1a2 + a†LaL−1 +H.c.) (3)

where the summation 〈i, j〉 is over indices 1 ≤ |i− j| ≤ 3
(i, j 6= 1, L), L is the lattice size and a(†) are anni-
hilation (creation) operators. The on-site energies wi

are independent random numbers, uniformly distributed
∈ [−W/2,W/2], with the important constraint that the
wi’s are symmetric with respect to the center of the lat-
tice (creating the analog of the discrete symmetry p →
−p for model (1)). The coefficient tc ≪ 1 represents a
weak coupling of edge sites to the disordered chain. Tun-
neling beyond the nearest neighbor |i− j| > 1 is required
to reach the effective quasi-one-dimensional regime, as
the Anderson model with only nearest-neighbor hopping
permits only localized and ballistic behavior.
One can identify two extreme regimes in these systems,

characterized by the ratio of the localization length ξ to
the size of the chaotic/disordered sea L : i) ξ ≫ L: the
ergodic regime and ii) ξ ≪ L: the localized regime. We do
not consider the ballistic regime where L is much smaller
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FIG. 2. (Color online). (a) Splitting distribution P(ln δ) for the disordered model (3), for W = 3, 1, 1/2 from left to right. Note
the strong similarity with the distributions for the deterministic model (1) of Fig. 1a. Colored lines: as in Fig. 1. L = 256,
tc = 0.001, N = 5 channels, and 10000 realizations (see text). (b) Scaling behavior of δtyp as a function of ξ/L. Disordered
model (3): L = 128 (blue triangles), L = 256 (magenta squares) and L = 512 (green stars), parameters as in (a). Black circles:
deterministic model (1), K = 30, 6400 values of h̄ in a small range around 0.25, 0.45, 0.65, 0.85, 1.45, pr = 0.4n (n = 2048). Red
solid line: theoretical prediction δtyp = δch,typ exp(−2L/ξ), with δch,typ fitted to L = 512 data. (c) Scaling behavior of Γ (see
Eq. (6)) as a function of ξ/L (symbols defined as in the left panel). Red solid line: theoretical prediction Γ = L/ξ.

than the mean free path.

Splitting statistics for the deterministic model.—

The dynamics of the model (1) can be integrated
over one period to give the evolution operator
Û = e−

i

2h̄
T (p)e−

i

h̄
K cos(x)e−

i

2h̄
T (p), where we have chosen

a symmetric version of the map. Tunneling may be stud-
ied through the properties of the Floquet eigenstates |Ψα〉
of Û with associated quasi-energies εα obeying Û |Ψα〉 =
eiεα |Ψα〉. Classically, transport to the chaotic sea or the
other regular island is forbidden by the presence of in-
variant curves. However, in the quantum regime, the
initial state, having a certain expectation value of mo-
mentum 〈p〉(t = 0) = pc + L/2, will tunnel trough the
chaotic sea to the other side characterized by an oscil-
lation period Tosc, so that 〈p〉(Tosc/2) = −〈p〉(t = 0).
Tosc can be identified with 2π/δ, where δ = εS − εA is
the splitting between the symmetric and anti-symmetric
Floquet eigenstates having the largest overlap with the
initial state.

In Fig. 1a we show the distributions of ln δ in the dif-
ferent regimes of the chaotic sea: localized ξ ≪ L, er-
godic ξ ≫ L and intermediate ξ ≈ L. One can see
that the distributions are markedly different: we recover
the known Cauchy distribution in the ergodic regime
whereas a log-normal distribution is observed in the lo-
calized regime. In the crossover regime, an intermedi-
ate distribution is obtained with a non-trivial shape to
be discussed later. In order to reveal which scales con-
trol these behaviors, we considered the splittings δ for
many different parameters (see caption of Fig. 1). In
Fig. 1c we show that, strikingly, the data follow a sin-
gle parameter scaling law as a function of ξ/L, where
the localization length obeys the known expression [32]
ξ = (K2/4h̄2)[1 − 2J2(K̃)(1 − J2(K̃))] (J2 denotes the
Bessel function) with K̃ = (2K/h̄) sin h̄/2.

Splitting statistics for the disordered model. — The
disordered model (3) can be used to describe chaos-

assisted tunneling, with the localization length in po-
sition space, dependent on W , analogous to the local-
ization length in momentum space of the deterministic
model (1), dependent on K and h̄. The splitting δ is de-
termined by computing the eigenfunctions most strongly
overlapping with the first site (due to symmetry, this is
equivalent to the last site). The corresponding splitting
distributions for this model are shown in Fig. 2a. Strik-
ingly, very similar behavior is observed in this disordered
model compared to the deterministic model. In partic-
ular, we recover the Cauchy distribution at small values
of W where the disordered sea has delocalized ergodic
states, whereas for large W (localized states) the distri-
bution has a log-normal shape, with again an interme-
diate behavior at the crossover. In Fig. 2b we show, for
both the deterministic and disordered models, the scaling
behaviors of δtyp = exp(ln δ), where ln δ denotes the en-
semble average of ln δ, and the fitted parameter Γ related
to the width of the distribution (see Eq. (6) below). Here
we approximate ξ in the disordered model (3) according
to ξ ≈ Nξ1D, where N = 5 is the number of channels (re-
lated to the number of neighbors to which particles can
hop), and the localization length for a 1D Anderson chain
obeys ξ−1

1D = ln(1+W 2/16)/2+4 arctan(W/4)/W−1 [33].

Analytical theory.— We can derive an expression for
the splitting distribution valid in all regimes, includ-
ing the crossover regime, for both the disordered model
(3) and the deterministic model (1). Following [5],
the splitting between the symmetric and antisymmetric
regular states can be obtained from the displacements
δS,A of their quasi-energies due to the coupling to the
chaotic/disordered sea. Because this coupling v is classi-
cally forbidden, it is exponentially small and a perturba-
tion theory can be used to obtain: δS,A ≈ v2/(E−ES,A

ch ),

with ES,A
ch the energy of the near resonant chaotic state

of the same symmetry of the regular state of energy E
[34]. The splitting δ is then given by δ = δS − δA. In the
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delocalized ergodic regime, the overlap between chaotic
states is large which excludes that symmetric states are
resonant concomitantly with antisymmetric states, thus
δS and δA are uncorrelated. The splitting distribution
is then given by the distribution of δS,A, and follows a
Cauchy law [5].

In the localized regime, symmetric and antisymmetric
chaotic states have exponentially small overlap, therefore
δS and δA are strongly correlated. This correlation is at
the origin of the departure of the splitting distribution
from the Cauchy law (see [2, 5] for similar correlations
arising due to partial classical barriers in the chaotic sea).
Defining the auxiliary quantities ES

ch = Eloc− δloc/2 and
EA

ch = Eloc+δloc/2, with δloc the splitting of the localized
chaotic states, |δloc| ≪ |E−Eloc| in the localized regime,
which yields:

δ = |δS − δA| ≈
∣

∣

∣

v2

E − Eloc

δloc
E − Eloc

∣

∣

∣
. (4)

In the first factor, v = vch exp(−2Lreg/ξloc) where vch
is the usual coupling strength to the chaotic sea in the
case where it has ergodic states. exp(−2Lreg/ξloc) de-
scribes the effect of localization of the chaotic state,
with localization length ξloc, located at a distance Lreg

from the regular border. In the second factor of (4),
δloc = ∆exp(−2Lloc/ξloc) where Lloc is the distance be-
tween the two peaks of the localized (anti)symmetric
chaotic state whereas E−Eloc ≈ ∆ the mean level spac-
ing. As L = 2Lreg + Lloc, the splitting can be approxi-
mated by the simple expression:

δ = δch exp(−2L/ξloc) (5)

with δch the “standard” chaos-assisted tunneling split-
ting. The first term of (5) has the known Cauchy distri-

bution Pch(ln δch) = 2eln δ̂ch/[π(1 + e2 ln δ̂ch)], where δ̂ ≡
δ/δtyp. In our case δch,typ = exp

(

ln δch
)

depends only
on tc or pc (see also [11]). Because the inverse localiza-
tion length 1/ξloc in quasi-1D has a normal distribution
with width ∝ 1/L, the second term δ̃loc ≡ exp(−2L/ξloc)
of (5) has a log-normal distribution, analogous to that
of conductance in the strongly localized limit [29, 35]:
Ploc(ln δ̃loc) = (1/4Γ

√
2π) exp[−(ln 1/δ̃loc − 2Γ)2/8Γ],

where Γ = L/ξ, ξ = exp
(

ln ξloc
)

denoting the typical
localization length. The total distribution P (ln δ) can be
obtained by convolution and is given by:

P (ln δ) =
1

4
exp

(

− ln δ̂ + 2Γ
)[

1 + erf
(−4Γ + ln δ̂√

8Γ

)

+ exp(2 ln δ̂)erfc
(4Γ + ln δ̂√

8Γ

)]

. (6)

The expression (6) can be fitted to the distributions ob-
tained numerically (see Fig. 1a and Fig. 2a). A very good
agreement is found with the numerical data, both in the

two extreme localized and ergodic regimes where (6) de-
scribes a log-normal or Cauchy distribution, respectively.
The intermediate regime (ξ/L ≈ 1) is characterized by
log-normal behavior in the center of the distribution,
around δ = δtyp, with Cauchy-type behavior in the tails.
The fitted values of δtyp and Γ are represented in Fig. 2b
for both models. A good agreement is found with the ex-
pected behavior δtyp = δch,typ exp(−2L/ξ) and Γ = L/ξ
in the localized regime.

Experimental implementation.— We have shown that
the effects we have presented are observable for both de-
terministic chaotic or disordered systems, provided they
are in the localized regime. It is possible to implement
a realistic version of the model (1) using a variant of
the well-known cold-atom implementation of the quan-
tum kicked rotor [27, 28, 36]. The dispersion relation
(2) cannot be implemented directly. However, in the
atomic kicked rotor, the kicking potential is usually real-
ized through a sequence of short impulses of a stationary
wave periodic in time. By truncating the Fourier series of
this sequence at some specified harmonic pr, one realizes
a mixed system with a classically ergodic chaotic sea be-
tween −pr and pr [37] which realizes an experimentally
accessible version of (1) (see [38] for experimental details
on an analogous system). The disordered model (3) can
be implemented readily using photonic lattices [39–41]. A
spatially symmetric disorder can be implemented in the
direction transverse to propagation, and tunneling will
result in oscillations in this transverse direction which can
be easily measured. Lastly, both chaos-assisted tunnel-
ing [13–17] and Anderson localization [42, 43] have been
observed in microwave chaotic billiards. In this context,
both disordered and deterministic models could be im-
plemented and can yield very precise distributions of the
tunneling rate.

Conclusion.— We have shown that the presence of
localization in the chaotic sea brings a new regime to
chaos-assisted tunneling, manifested by a distinctive dis-
tribution of tunneling rates. Remarkably, the crossover
from the ergodic to the localized regimes is governed by a
single-parameter scaling law. The simple analytical the-
ory presented describes accurately the different behav-
iors for both disordered and deterministic models, both
of which could be implemented experimentally.

Our results show that chaos assisted tunneling could
be used as a probe of the non-ergodic character of the
chaotic sea. It would be interesting to generalize these
ideas in higher dimensional systems where localization
properties can be markedly different, with e.g. multifrac-
tal states at the Anderson transition.
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[21] M. Lenz, S. Wüster, C. J. Vale, N. R. Heckenberg,
H. Rubinsztein-Dunlop, C. A. Holmes, G. J. Milburn,

and M. J. Davis, Phys. Rev. A 88, 013635 (2013).
[22] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[23] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355

(2008).
[24] E. Abrahams, 50 years of Anderson Localization, Vol. 24

(World Scientific, 2010).
[25] G. Casati, B. V. Chirikov, F. M. Izraelev, and J. Ford, in

Stochastic behavior in classical and quantum Hamiltonian

systems (Springer, 1979) pp. 334–352.
[26] D. R. Grempel, R. E. Prange, and S. Fishman, Phys.

Rev. A 29, 1639 (1984).
[27] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sun-

daram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598
(1995).
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