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Abstract—The high integration of (sub-) systems performing
safety critical automotive functions characterizes the current
development in the automotive industry. The development and
analysis is challenged by an increasing complexity resulting
from product customization and variance in implementations
by software-hardware solutions. In order to save costs for such
scenarios, a systematic analysis of the dependencies between
functions, as well as the functional and technical variance, is
required. In this paper we introduce a new approach which
allows to compactly represent and analyze a function with its
different configurations, states, hardware modules, and software
variants—also: Product Line Fault Tree (PLFT)—in a unified
data structure based on Multi-valued Decision Diagrams (MDDs).
The methodology allows to represent the function’s architecture
within an MDD and transfer it in Fault Tree (FT)- and Minimal
Cut Sets (MCSs)-MDDs. Therefore, complete fault trees are
analyzed in one step—opposed to stepwise analyzing FTs of all
configurations, software variants, and states. Summing up, this
article introduces a systematic approach allowing to analyze fault
propagation in variant-rich and stateful functions.

Index Terms—Fault Tree, Multi-Valued Decision Diagram, De-
pendability Analysis, States, Product Line Engineering, Minimal
Cut Sets

I. INTRODUCTION

The current challenge in the automotive industry is to enable
piloted driving. Therefore a part to realize piloted driving is
to combine and interact the state of the art assistant functions
with each other. Moreover, additional assistant functions are
developed to increase road safety or to offer new in-vehicle
services.

Each assistant function and the interaction of these operate
with respect to different contexts and contain a high number of
sensors, actuators, and embedded software. This is why auto-
motive functions are marked by variance and high complexity.
Mostly all innovative functions are realized by software and
many of them are safety related. Therefore functional safety
is of considerable importance.

To manage the increasing complexity model-based develop-
ment has been established in the automotive sector—mainly
induced by highly-integrated Electronic Control Units (ECUs)
and the growing number of variant-rich and stateful functions
[1]. In this context an automotive safety standard is given
by the ISO 26262 [2] postulating normative requirements to
ensure functional safety within electrical and electronic vehicle
systems. These include a hazard and risk analysis, a functional

and technical safety concept, as well as safety analysis and
safety case just to name a few. Consequently, the overall
safety assessment is labor-intensive and time-consuming. As
an example: available software tools that ought to support
traceability or semi-automated consistency and completeness
checks often do not meet specific user expectations.

Summing up, to enable piloted driving or develop a new
innovative safety critical assistant function which contains
all safety mechanisms is time-consuming with state-of-the-
art safety analysis methods such as Fault Tree Analysis (FTA).
This is because on the one hand, functions are marked by
numerous configurations (cf. Table I), states (cf. Table II),
and software variants and on the other hand due to the lack
of appropriate methods and tools to compactly represent and
efficiently analyze such safety-critical functions. In this paper
the characterization of configurations, states, hardware modules,
and software variants is also called Combined Automotive
Properties (CAP).

Therefore, in this article a new approach is established
allowing to compactly represent the function’s architecture
with its CAP in one data structure. Given that, a CAP-Fault
Tree (FT) is established using Multi-valued Decision Diagrams
(MDDs), cf.: Product Line Fault Tree (PLFT)—also referred as
150% model. Based on such compact MDD-FT representations,
the proposed method allows to generate an MDD representation
of the Minimal Cut Sets (MCSs) of the system including all
CAP. This data structure, accordingly, enables one to extract
the MCSs of specific configurations, software variants and
states. Moreover, for a given MCS, the proposed method allows
to identify the variants and states where the corresponding MCS
will cause the system to fail.

This article is structured as follows: Section II introduces
related work. Section III presents a systematic approach to
analyze safety-critical functions by means of MDDs. Finally,
in Section IV, we summarize the article and suggest future
research.

II. RELATED WORK

The related work on the overlapping areas of the safety
method FTA and Product Line Engineering (PLE) are intro-
duced.

Dehlinger proposed how to attach commonality and variabil-
ity attributes to the PLFT and managed it as a core asset [3].



Lu’s work [4] extends Dehlinger’s work and is another way to
obtain the same result for product lines. The so-called Fault
Contribution Tree (FCT) is a variability tree for the product line
where nodes are features instead of events (or conditions) [5].
Feng’s work [6] is another extension of Dehlinger’s contribution
constructing a software fault tree in a different manner: the
method begins considering commonality and variability analysis
as well as the product line architecture to obtain the so-called

Extended Commonality and Variability Analysis (XCA). After
that, the Software Fault Tree Analysis (SFTA) is carried out
based on the XCA and the Software Failure Modes and Effects
Analysis (SFMEA). Noda [7] proposes a method assuming the
fault of features from the feature diagram. A feature is selected
and turned into the root node of the FT, then this structure is
analyzed to identify all paths to the root node. Based on that,
countermeasures are identified—like adding optional features
to the diagram.

In [8], the authors carry over product lines to the Component
Fault Tree (CFT) approach. By doing so, the product line is
steadily maintained over time and information on variability is
considered w.r.t. FTAs. This method, for example, considers a
component (" Ventilation System”) to be reused from a previous
Gas Turbine PL (SGT 500) within another Gas Turbine PL
(SGT 400), the component is analyzed whether it is marked
by the same software behavior, functions and structure. In
the end, if the component is fully compatible with required
characteristics, it is suited for the new product line [9].

In contrast to these articles and the corresponding modeling
approaches, this paper will rather focus on a systematic ap-
proach with a specific data structure to analyze fault propagation
of variant-rich and stateful safety-critical automotive functions
using MDDs.

III. SYSTEMATIC APPROACH TO ANALYZE
SAFETY-CRITICAL FUNCTIONS

In this section a systematic approach is presented to derive
safety analysis concepts. The objective is to analyze and
compare MCSs and identify fault propagations of different
configurations and software (SW) variants of a specific safety-
critical function in one data structure. These functions are
highly distributed, incorporate commercial off-the-shell com-
ponents, and are developed by different supplier and Original
Equipment Manufacturer (OEM) business units. In this case,
neglecting of safety-critical fault propagations—which could
lead to harm people—may result in costly redesigns during later
development phases. Therefore, a systematic data structure
approach is introduced to analyze safety-critical functions on an
early development phase (architecture concepts). The advantage
of an Multi-valued Decision Diagram (MDD) structure is,
to store all feasible function architecture possibilities (due
to CAPs) and their corresponding Fault Trees (FTs) in one
framework. Moreover, a Minimal Cut Set (MCS) analysis of
the different stored FTs are possible in this data structure.

In Figure 1 the transfer and encoding of properties within
MDDs is shown. Specific algorithm steps are necessary to
evaluate the approach and achieve the results of the shown
MDDs. For reasons of simplicity, the algorithm steps are

e.g., cardinal number of
Minimal Cut Sets

Combined MDD
(CAP-MDD)

Product Line Fault Tree MDD
(PLFT-MDD)

Minimal Cut Set MDD
(MCS-MDD)

Analysis approaches

Figure 1. Systematic transfer of properties within different MDDs

illustrated with different MDDs. The starting MDD is the
encoded Combined Automotive Properties (CAP)-MDD, where
the properties of all feasible interconnection architectures of
a function are contained. A given ordered and reduced CAP-
MDD is the basis for the corresponding safety analysis. The
next step is to generate a Product Line Fault Tree (PLFT)-MDD
of the encoded CAP-MDD. The last MDD is the MCS-MDD,
which is generated from the PLFT-MDD. With the MCS-
MDD specific analysis methods can be applied, for example,
a comparison of the MCSs of feasible configurations, states,
and SW variants of a safety-critical function.

First, we outline the CAP-MDD generation. Secondly,
we illustrate the properties which are transfered from the
CAP-MDD to an PLFT-MDD. Thirdly, the concept of
the construction of an MCS-MDD from an PLFT-MDD is
explained.

A. Coding CAP to an MDD

Hence, safety analysis techniques on architecture concepts
are increasingly applied at early design states [2]. State of the
art methods are Failure Mode and Effects Analysis (FMEA)
and Fault Tree Analysis (FTA). Techniques like code review,
hardware (HW) review, and development audits are usually
done at later design stages. To identify both single and multiple
faults, it is common to use the FT technique due to the complex
interaction of different systems (cf. assistant functions).

Nowadays, for each vehicle configuration, each state, and
each SW variant an FT is developed. Therefore, plenty of
product FTs with their corresponding MCSs are stored in
different documents. A formal model has to be designed to
contain all CAP in one framework and to allow the systematic
transfer from a function to its safety analysis. Next, we describe
the approach of encoding the set of CAP by using an MDD.
This MDD, which is called @, shows the set of all possibilities
to develop an architecture for a function without any constraints.
An edge connects an attribute of the upper layer with a node on
the lower layer and hence encodes all combinations—Cartesian
product—of the attribute and the attributes of the node. This in
turn means that each path of the structure—from the top layer
to the bottom layer—represents one element of Q.

The top layers represent the configuration domains. Each
of those contains all corresponding attributes. Next, the
architecture properties are given. First, the HW and SW
variants are depicted, followed by the input and output of each
possible component. Each layer of a HW domain contains all
corresponding HW modules. The following layers represent



the SW variant domains, the input domains and output domains.
The last layers of the MDD encode the state space. Therefore,
each layer represents a state domain and every of those contains
all corresponding attributes.

Furthermore, constraints are necessary to determine all
feasible configurations, SW variants, HW modules, and states.
For example, to offer piloted driving specific technologies
(e.g., specific functions, sensors, cameras etc.) are needed
and different safety critical states (vehicle accelerates, lane
change etc.) are possible. All constraints of the configuration
space, the state space, the architecture space, and the CAP-
space, are constructed in a similar way (if-then paradigm).
Based on the MDD-representations of () and the constraints
we successively apply the intersection operator to generate the
MDD representation of ) named CAP-MDD. A pre-condition
of the operation is that the orders of the layers match. During
the intersection the constraints are verified with respect to self-
consistency by checking if the resulting set is empty after each
intersection task.

As a result of the intersection of () with the constraints, the
number if nodes increases. In order to keep the systematic
approach practicable, it is important to investigate the impact
of diverse variable ordering methods—cf. ( [10]-[12])—upon
the MDD-based representations of all, the CAP, the PLFT, and
the MCS.

With the encoded @ the systematic transfer is initialized. In
the following the task for the MDD transfers are introduced.

B. CAP-MDD to PLFT-MDD

The general starting point to construct a Binary Decision
Diagram (BDD) representation of a single FT is the Top Level
Event (TLE). Given that, a depth-first-search is carried out—by
doing so, all gates and events are encoded by the BDD nodes.
During this procedure all cyclic dependencies between gates
have to be resolved. Finally, each component of the FT is
represented by a variable (also: level) of the BDD.

In [13] an MDD-based analysis of FTs whose components
have three states is described—this approach is extended to
any number of states in [14]. This idea can also be carried
over to systems that might be distinguished by several phases
or different fault conditions [15], [16]. Moreover, we take this
approach and carry it over to the automotive challenges with
different CAP.
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Figure 2. Derivation of FTs with an example of component C3

For a specific architecture such as in Figure 2, the input and
output properties as well as the corresponding SW variants and

HW modules are contained in the CAP-MDD. To generate a
FT the inputs of a component are used as basic events and the
output as top level event (cf. Figure 2).

Note, a drawn connection can also represent more input and
output signals which are transmitted between two components
due to SW variants or different configuration strategies. Based
on Figure 2 the parallel input signals (/1 and /2) are summa-
rized with an OR gate which propagates to the intermediate
event [ fault. The component by itself is seen as a black box
where an internal fault (Internal) can occur. Due to the serial
connection of [ fault and Internal , the intermediate event
I fault and the internal fault Internal is summarized with an
OR gate and propagate to the output event (top level event)
O1. This FT generation process is done for all components
with HW modules and many different SW variants in one
(sub)-architecture. The complete FT of an architecture can be
generated by composing the sub-FTs [9]. The PLFT-MDD
stores all FTs of each feasible architecture of a function. With
a valid PLFT-MDD a MCS-MDD can be generated.

C. PLFT-MDD to MCS-MDD

This approach is an extension of the common identification
of the MCSs, which can be directly constructed from a product
FT. This extension approach and its application represent a
determination of all MCSs of a PLFT [17].

First, we introduce basic terms and definitions. The BDD
representation of a Boolean function is based on Boole’s
expansion theorem (also: Shannon decomposition):

F(vi,..vn) = 0. Fy=1 + 0. Fy, =0 (1)

Here F,,—1 and F),— denote the function F' with argument
v; set to 1 or 0, respectively. This theorem can be extended to
the multi-valued case:

F:{1,2,...,s}" - {0,1} )

F(vy,...,vn) = (v; = 1).Fy,=1 + (v = 2).

3)
Fui=2 —|— e —|— (Ui = 5)-Fvi=s

The assignment of values to F’s variables can be written as
minterm!. In the Boolean case, the literal v; denotes the assign-
ment v; = 1 and the literal v; denotes the assignment v; = 0.
Considering multi-valued functions, the literal v; ; corresponds
to the variable assignment v; = 7. Obviously, minterms only
contain one literal of each variable. A conjunction term is
a set of literals which are exclusively connected by logical
’and’ (also: conjunction)—accordingly minterms are special
conjunction terms. Conjunction terms yielding F' = 1 are
called implicants of the function. Implicants that cannot be
further reduced are called prime terms. According to [18] and
based on a given set of literals L (also: ’literals of interest’), the
set of MCSs of a function F' is defined as the set of all prime
terms given that all literals [ ¢ L are removed. In static FTs
no temporal sequences of faults are considered. Let a static FT

'A minterm is a product term in which each variable appears once. Boolean
functions can be expressed as sum of minterms where each minterm corresponds
to a row of the function’s truth table whose final value—the function’s output—
is 1.



and the corresponding Boolean function F' be given. According
to [19] and based on the decomposition F' = v.F} 4 v.Fy, the
MCS can be derived as follows:

MCS[F] = MCS; UMCS, 4)
MCSy = MCS[FO] )
MCS; = {v.wr|r € MCS[F; 4+ Fo] \ MCSo} (6)

The minimal cut set analysis for each FT in the PLFT-MDD
is performed. Afterwards the superpositon of each MCSs
generates the MCSs-MDD.

The MDD-based MCSs representation allows to efficiently
investigate several scenarios: for example the identification
of the MCSs w.r.t. CAP—or for given MCSs one might be
interested in the configuration, state, or SW variant which
are affected. Such queries are based on intersect operations
and MDD-based structures encoding the query (for example a
specific vehicle configuration).

IV. CONCLUSION AND FUTURE WORK

The automotive state-of-the-art method is to generate for each
valid architecture a FT and its corresponding MCS. The novel
approach in this paper is more efficient compared to the state-of-
the-art method due to the reason, that all valid architectures of
a specific function are analyzed and compared in one iteration
and in one data structure approach. Therefore, all different
fault propagations of variant-rich and stateful safety-critical
functions are determined and stored in one framework. The
automatic generation is given due to the fact, that each input is
used as basic event and each component has an internal fault.
The underlying data structure is given as MDDs which are not
only used to encode the fault propagation of all configurations,
states, and SW variants of a function but also to represent
the corresponding MCSs in one framework. Moreover, the
systematic approach how to transfer the function development
into a MDD-based safety analysis was explained.

An ongoing work is the development of a formal model
which combines the architecture, the configuration, and the
state space to transfer the necessary properties in an MDD
structure.

In the near future, we will evaluate the presented approach
with piloted driving systems. Moreover, following basic analyze
options will be evaluated:

e Searching of MCSs for each valid variant and state.

 Identification of all affected variants and states of a
function with a given MCS.

o Comparison of the MCSs of configurations, SW variants,
and states of a safety-critical function, and analysis which
cardinal number is equal or not.

« Identification of similar or differing safety mechanisms
in configurations, SW variants, and states of a function.

Based on that, we want to identify metrics to improve our
approach, and to measure the impact of change requests
affecting the vehicle configuration and feasible states of a
function. However, we plan to integrate the MDD analysis
approach into an extended model-based safety and variant
management framework (cf. [20], [21]). Finally, in order to

keep the approach practicable, we want to investigate the impact
of diverse variable ordering methods—cf. [10], [11]—upon the

MDD-based representations of both, the PLFT and the MCSs.
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BDD Binary Decision Diagram

CAP Combined Automotive Properties
CFT Component Fault Tree

ECU Electronic Control Unit

FCT Fault Contribution Tree

FMEA Failure Mode and Effects Analysis
FT Fault Tree

FTA Fault Tree Analysis

HW hardware

MCS Minimal Cut Set

MDD Multi-valued Decision Diagram
OEM Original Equipment Manufacturer
PLE Product Line Engineering

PLFT Product Line Fault Tree

SFMEA  Software Failure Modes and Effects Analysis
SFTA Software Fault Tree Analysis

SwW software

TLE Top Level Event

ACRONYMS

APPENDIX

Table T

EXTRACTION OF PROPERTIES TO DEFINE CONFIGURATIONS

Table II

EXTRACTION OF PROPERTIES TO DEFINE STATE SPACE

Domain [ Attribute | Property
ION Ignition on
IOF Ignition off
. EON Engine on
Dign(Ignition) EOF Engine off
SE Stop Engine
vTS Vehicle traction standby
VHAC Vehicle accelerates
Do (Speed) VHSD Vehicle decelerates
Spe(>P COSP Constant speed
VHST Vehicle stopped
FL Fast Line
OM Overtaking Maneuver
Djs(Interstate) ClI Cutting In

[ Domain [ Attribute | Property
DS Dynamic Steering
. FS Front Steerin
Dy (Steering) RS Rear Steeringg
CS Combined Steering
D (Drive) FWD Front-wheel drjve
RWD Rear-wheel drive
AW D 4-wheel drive
US Ultrasonic Sensor
D > (Environment MC Mono Camera
Detection) SC Stereo Camera
RS Radar Sensor
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