
HAL Id: hal-01375453
https://hal.science/hal-01375453

Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain-Specific Languages for the Definition of
Automotive System Requirements

Florian Bock, Reinhard German, Sebastian Siegl

To cite this version:
Florian Bock, Reinhard German, Sebastian Siegl. Domain-Specific Languages for the Definition of
Automotive System Requirements. Workshop CARS 2016 - Critical Automotive applications : Ro-
bustness & Safety, Sep 2016, Göteborg, Sweden. �hal-01375453�

https://hal.science/hal-01375453
https://hal.archives-ouvertes.fr


Domain-Specific Languages for the Definition of
Automotive System Requirements

Florian Bock and Reinhard German
Department of Computer Science 7

Friedrich-Alexander-University of Erlangen-Nuremberg
D-91058 Erlangen, Germany

Email: {florian.inifau.bock,reinhard.german}@fau.de

Sebastian Siegl
Audi AG

D-85045 Ingolstadt, Germany
Email: sebastian.siegl@audi.de

Abstract—Over the last decades, the complexity of modern
cars and the included hardware and software has vastly increased.
To maintain a constant development and release cycle for car
manufacturers, more sophisticated development methods are
required. The fields of requirements engineering and test man-
agement have high optimization potential. In order to improve
the transitions between the different development stages, the
combination of a controlled natural language and a domain-
specific language can be used, which is drafted in this paper. It
enables the user to specify requirements textually with automotive
vocabulary and generate artifacts such as functional models.

Keywords—Software Engineering, Automotive, Artifact Gener-
ation, DSL.

I. INTRODUCTION

Modern cars include a wide variety of complex software
functions, ranging from essential types such as engine control-
ling to user-assisting types such as driver assistance functions.
The amount of software code required for this functions is con-
stantly increasing. That is why software engineering methods
used over the last decades are no longer sufficient to be able
to maintain the established development cycle and at the same
time produce the necessary quantity of code. New methods
such as agile development techniques are introduced and thus,
a larger variety of tools are employed. These tools differ in
their characteristics as well as in their field of application.
Generally speaking, the development process can be separated
into several phases mainly based on the V-model [1]:

• Specification: The system is specified in an abstract
way, with focus on the use cases, actors and system
boundaries.

• Design: The system is enriched with more details,
the system architecture is defined and technical char-
acteristics such as required hardware/software and
interfaces to other systems are included.

• Implementation: The system design is transformed
into code, either via code generation or manually.

Each of these phases is linked to an individual testing phase.
To accumulate all relevant information of a single development
phase, artifacts are used, e.g. models, diagrams or documents.
The degree of detail of these artifacts increases during the
development process. Because the phases are based one on
the other, the artifacts should be reused in subsequent phases
to avoid duplication of effort caused by regenerating them.

Especially in large projects, a single engineer cannot handle
all phases at once, so separate engineers treat each devel-
opment phase. Due to different reasons such as the lack of
communication, local separation of the engineers or complex
hierarchical structures, the desired reuse of the artifacts either
does not occur at all or is carried out manually in a superficial
way.

A possible solution for this would be to use mandatory
guidelines for all engineers. Such guidelines are quite hard
to define due to the great variety of involved modeling tech-
niques and tools. In addition, they have to be complied with
manually. A key point in this discussion is the designation of
the master in the development process. Different approaches
are possible, from implementation-driven (requirements ac-
cording to the implementation, often used in predevelopment
phases) to specification-driven (implementation according to
the requirements). Many of the projects in the automotive
domain start implementation-driven whereas the desired trend
is focused more towards specification-driven projects, where
the specification is created first and is used to derive basic
models and diagrams for any subsequent development phase.
This can be performed manually, though an at least partly
automated derivation is more efficient and less prone to errors.

Such a derivation can be achieved by the combination
of a Controlled Natural Language (CNL) and a Domain-
Specific Language (DSL) for system specification, which are
drafted in this paper. They are particularly designed for the
automotive domain and include an automatic generation of
various required artifacts (e.g. models) for the development
process.

II. CONCEPT

A CNL is based on a natural language such as English,
but is limited in terms of grammar and vocabulary. There is
no general definition of a DSL in the literature, but it can
be summarized as a programming language designed for a
specific domain with the capability of generating predefined
target artifacts.

Contrary to CNLs, which typically use a textual form
of presentation due to their relation with common natural
languages, a DSL can either be textual, graphical or use a
combination, which is called hybrid. This choice is based on
the target stakeholders and the requirements of the project



environment. In the automotive domain, many system spec-
ification documents are currently created and modified in IBM
Rational DOORS in form of plain textual requirements without
any embedded functionality. If diagrams or models have to
be included due to the project settings, they are attached as
manually created pictures or simple models (e.g. as Microsoft
PowerPoint documents). Therefore, a hybrid approach is most
appropriate for our case, because textual requirements match
the existing documents and additional graphical information in
form of models can be directly embedded.

The adoption of such a newly introduced methodology to
specify systems mainly depends on the acceptance among the
established system architects. To minimize the familiarization
difficulties, the presentation and the terminology have to be
leaned on already available documents and editors. That is
to say the syntax and semantics of the specification should
be as similar as possible to existing requirements in DOORS.
For this, a detailed analysis of available requirements have
to be carried out, so that common phrases, established terms
and the intended underlying information can be collected
and abstracted. The level of detail of the requirements differ
depending on the current development phase, the personal
capabilities and project experience of the specifier and the
target audience. The inclusion of technical information such
as interface specifications, detailed algorithms or code are not
unusual. Such information are typically extracted manually
afterwards and used in the system design and implementation.

The following categories of information embedded in the
requirements have already been identified:

• Functional requirements, which can be used to create
behavior models (e.g. state machines, activity models
or timing models).

• Constraints, which specify technical or legal limita-
tions which have to be taken into account in the system
architecture.

• Descriptive requirements, which provide system de-
tails used for documentation.

• Test or scenario descriptions, which can be used to
formulate test cases or formal test scenarios.

A future extension of this list is likely and depends on the
investigated existing requirements and the individual project
settings.

Besides the structure and representation of the DSL, the
desired output artifacts have to be specified and the proper
generators for each artifact have to be implemented. In the
automotive domain, a vast variety of development tools and
methods are used, ranging from specification instruments (e.g.
DOORS) to implementation methods (e.g. C++), so an indi-
vidual selection of desired target artifacts for a specific project
scenario has to be defined.

The concept of our CNL/DSL-combination for the given
scenario consists of a worflow divided into four steps:

1) As initial situation, the unstructured information
about the system to develop are available in form
of documents, slides or plain ideas.

Fig. 1: Concept workflow

2) These information are aggregated, structured, and a
predefined lexicon and grammar (based on the En-
glish language and automotive related terminology)
are used for realization in form of a semi-formal
requirements collection. This can be done either by
manually transforming the available data or by using
parsing techniques [2].

3) The data incorporated in the collection are then trans-
ferred into a DSL, where the required information for
the generation process are aggregated. A visualization
of some additional details in the form of state charts
or tracing information are provided. Afterwards, the
generators of the DSL generates the specified target
artifacts.

4) The generated artifacts can be manually enriched with
additional details and then be distributed or used for
the system implementation.

III. RELATED WORK

In case of CNLs, Marko et. al. [3] proposed an implemen-
tation of a CNL for writing requirements in Eclipse XText[4].
The general requirements structure is analyzed and the topic
of a domain specific meta-model is discussed. To integrate
the solution with other tools, the use of the Open Services
for Lifecycle Collaboration (OSLC) standard is suggested.
This paper focuses mainly on the collection of specification
information, generator aspects are not discussed.

Beside the CNLs, there are already several tools available.
For example KPIT medini analyze[5] is a functional safety tool
particularly focused on considering the ISO26262 standard. It
enables the user to specify requirements, design the system and
perform various safety analysis. Nevertheless, neither does it
use requirements in natural language form, nor are generator
aspects included.

Due to the fact, that each DSL is by definition limited
to a specific domain, they cannot be generally used in each
project scenario. Recently, DSLs are becoming more popular
in the automotive domain in the course of ongoing develop-
ment process improvements. Some attempts already have been
published, of which three major examples shall be summarized
and reviewed at this point:

Voelter et. al. proposed a DSL focused on requirements
embedded in the framework mbeddr [6]. The specification is
phrased in a pseudo code notation, which covers additional
features such as tracing, state machines and tables. The goal is
to generate code from the specification, which is supported by
the possibility of embedding code directly in the requirements.
They conclude, that such a DSL offers great advantages at the
expense of reasonable effort.

Ballhause et. al. [7] proposed a DSL focused on require-
ments engineering, which uses a formal pseudo code like



notation to describe use cases and requirements and transform
them to predefined representations, e.g. tabular or graphical di-
agrams. They describe their experiences and problems with the
definition and use of the DSL. They come to the conclusion,
that such a DSL is a benefit for the development process, if
the costs of its definition are acceptable and the DSL is limited
to a specific company. A general approach is possible, but not
expedient in view of effort and complexity.

Trindade et. al. [8] introduced a DSL focused on safety
requirements. They also use a pseudo code notation and
include a generator, which transforms the DSL into code. The
implementation and design is closely related to AUTOSAR and
its components. They proof DSLs as proper mechanism to
automate repetitive generation tasks and to include domain
specific aspects in a formal but easily comprehensible doc-
ument.

Although these examples offer several DSLs, they lack the
extraction and creation techniques of detailed models out of
the requirements and they partly use a pseudo code notation,
which does not reflect the optimized textual presentation form
similar to DOORS, that we intend to achieve.

IV. PROTOTYPE

Several frameworks for the stand-alone definition and
implementation of CNLs are already available [9]. This is
mainly relevant when intending to use parsing technologies to
transform already available textual documents into the CNL.
We confine the first prototype to the direct integration of
the grammar and the lexicon into a drafted DSL, instead
of implementing the CNL separately. This is sufficient to
demonstrate the intended workflow.

For the definition of a DSL, several workbenches exist,
e.g. JetBrains Meta-Programming System (MPS)[10], Eclipse
XText[4] or MetaCase MetaEdit++[11]. They differ in their
features and basic characteristics, but after a comparison,
MPS was chosen as suitable solution for the given project.
One main reason for this choice is MPS being a so-called
projectional editor, the opposite of common source editors.
In a source editor, the code is edited as text, if it should
be compiled, an interpreter converts the text to an abstract
syntax tree and transforms the tree to the target code. Within
a projectional editor, this intermediate step of interpretation is
left out, instead the user directly edits the abstract syntax tree in
the editor. Editing with such an editor is more limited than with
plain text, because only valid commands can be used, which
makes it more sophisticated for the user to use it. However,
it allows the combination of an arbitrary number of DSLs
without worrying about any combination problems, because
the grammars will automatically match. In advance, there are
already many predefined DSLs available, which cover different
aspects, e.g. mathematical equations, and can be integrated in
the new DSL with few effort. As side remark, both the DSLs
and documents which use them are saved in an ASCII-XML
format, which makes them easily versionable in version control
systems such as GIT[12].

The structure and presentation of the drafted DSL is
illustrated in Figure 2. The configuration paragraph allows
the user to specify the artifacts to be generated. With help of
the abbreviation definition of ABS, this acronym can be used

Fig. 2: Textual DSL draft used for system specification

throughout the specification document while guaranteeing, that
the full form can be included in any generated artifact. The
system behavior in requirement REQ1 describes the abstract
algorithm of the whole system. In this case, it consists of
three concatenated rules. In general, any number of rules can
be combined or even divided in and distributed over several
separate requirements. The strength of this approach is the
similarity to natural language specifications, whereas the chal-
lenge for the DSL is to extract the underlying system behavior
in order to transform it into a formal model. Constraints in
any form such as in requirement LIM1 can be used to specify
on the one hand intended or given technical limitations, or on
the other hand legal issues such as dependencies to a specific
standard, e.g. ISO26262.

Essential for the benefit of our DSL are the integratability
and usability of the generated artifacts. Generally speaking, a
generator of a DSL in Jetbrains MPS gathers all information
stored by the specifier in the DSL document, adds relations
and associations and generates Java source code, which then
is finally used to create the desired artifacts. An advantage of
this concept is, that the transformation is not limited to simple
text-to-text transformations, but additional tools or Application
Programming Interface (API)s can be accessed. For example
the generation of Mathworks MATLAB Simulink[13] models
can either be executed by creating the model textually as file,
or by accessing the corresponding API, which is less prone to
errors caused by changes in the file structure.

To show the variety of possible target artifacts, our proto-
type supports the following types:

• Unified Modeling Language (UML)[14] sequence dia-
grams: Behavior specifications such as in requirement
REQ1 are usually illustrated and documented in this
commonly known type of diagram. After preparing the
artifact creation, the generator uses a web API[15] to



Fig. 3: UML sequence diagram

Fig. 4: Behavior model in Simulink

render the final image (cf. Figure 3).

• Mathworks MATLAB Simulink behavior models: Such
models also cover the behavior extracted out of re-
quirement REQ1 (cf. Figure 4). In addition, constraint
information from other requirements such as LIM1 are
included. This type of model is mainly used in the
implementation of the system.

• Electrobit Assist ADTF[16] source code: To a certain
degree, test cases are derivable from requirements and
some test cases can be already defined in the specifi-
cation process. For example, a specific vehicle speed
constraint implies several test cases, which can be
automatically extracted. Such test cases are gathered
and inserted in a predefined test framework in form of
C code. The framework itself is also generated, so ad-
ditional information from the specification document
can be included. As a result, a folder structure and
several source code files are created (cf. Figure 5),
which are compiled and can be executed afterwards.
A manual extraction of the test cases and the repetitive
creation of the source code for the test procedure are
avoided with the automatic generation.

Apart from these artifacts, various additional models and
files are possible. The question, which of these artifacts should
be included in the DSL mainly depends on the intended target
stakeholders. The more implementation-related the stakehold-
ers are, the more technical information and models have to be
generated.

Fig. 5: ADTF folder structure

V. CONCLUSION AND FUTURE WORK

With help of the drafted CNL/DSL-combination, the devel-
opment process for modern software systems in the automotive
domain can be improved. The automatic generation of target
artifacts significantly reduces the required development effort
and supports the process in terms of consistency and trace-
ability. As already mentioned in [7], the key factor for success
of such a DSL is the tailoring to a specific company and its
vocabulary. This is mainly caused by the different in-house
development procedures, wordings and strategic objectives
of the different companies. Obviously, this also includes the
intended and included target artifacts, because they depend on
the used applications. The described DSL implementation is
the first step in the creation of a complete solution for the
given scenario. Ongoing research topics include the collection
of company-related vocabulary and grammar, the creation of
a separate CNL with parsing capabilities, the definition and
implementation of reasonable generators and the trial of our
approach in several actual development projects. The results
will be part of future publications.

REFERENCES

[1] Bröhl, A.P., The V-Model, ser. Software - Application Delevopment -
Information Systems (in German). Munich: Oldenbourg, 1993.

[2] M. Osborne and C. K. MacNish, “Processing Natural Language Soft-
ware Requirement Specifications,” Proceedings of ICRE ’96, 1996.

[3] N. Marko, A. Leitner, B. Herbst, and A. Wallner,
“Combining Xtext and OSLC for Integrated Model-Based
Requirements Engineering.” in EUROMICRO-SEAA. IEEE Computer
Society, 2015, pp. 143–150. [Online]. Available: http://dblp.uni-
trier.de/db/conf/euromicro/euromicro2015.html#MarkoLHW15

[4] Eclipse Foundation, “XText - Language Engineering for Everyone!”
[Online]. Available: https://eclipse.org/Xtext/

[5] KPIT medini Technologies AG, “medini analyze.” [Online]. Available:
http://www.products.kpit.com/medini-analyze

[6] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz, “mbeddr: instantiating
a language workbench in the embedded software domain,” Automated
Software Engineering, vol. 20, no. 3, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10515-013-0120-4

[7] C. Ballhause and J. Leuser, “Anforderungen programmieren - eine
domänenspezifische Sprache (DSL) im Praxiseinsatz (in German),”
OBJEKTspektrum Requirements Engineering 2015, 2015.

[8] R. Trindade, L. Bulwahn, and C. Ainhauser, “Automatically Generated
Safety Mechanisms from Semi-Formal Software Safety Requirements,”
Lecture Notes in Computer Science, 2014.

[9] K. Angelov and A. Ranta, “Implementing Controlled Languages in GF,”
Lecture Notes in Computer Science, Volume 5972, 2009.

[10] JetBrains, “Meta Programming System - DSL Development
Environment.” [Online]. Available: https://www.jetbrains.com/mps/

[11] MetaCase, “MetaEdit++ - Model your idea. Generate the rest.”
[Online]. Available: https://www.metacase.com/

[12] Software Freedom Conservancy, “git –local-branching-on-the-cheap.”
[Online]. Available: https://git-scm.com/

[13] MathWorks, “Simulink - Simulation and Model-Based Design.”
[Online]. Available: http://www.mathworks.com/products/simulink/

[14] Object Management Group, “Unified Modeling Language (UML)
Resource Page.” [Online]. Available: http://www.uml.org

[15] Hanov Solutions Inc., “WebSequenceDiagrams.” [Online]. Available:
https://www.websequencediagrams.com/

[16] Elektrobit, “EB Assist ADTF - Driver assistance sys-
tems start with EB Assist ADTF.” [Online]. Available:
https://automotive.elektrobit.com/products/eb-assist/adtf/

All links were last followed on June 06, 2016.


