N
N

N

HAL

open science

Towards certification of software-intensive mixed-critical
systems in automotive industry

Peter Reichenpfader, Mario Driussi, Florian Polzlbauer

» To cite this version:

Peter Reichenpfader, Mario Driussi, Florian Polzlbauer. Towards certification of software-intensive
mixed-critical systems in automotive industry. Workshop CARS 2016 - Critical Automotive applica-

tions: Robustness & Safety, Sep 2016, Goteborg, Sweden. hal-01375451

HAL Id: hal-01375451
https://hal.science/hal-01375451v1
Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01375451v1
https://hal.archives-ouvertes.fr

Towards certification of software-intensive
mixed-critical systems 1in automotive industry

Peter Reichenpfader
Virtual Vehicle Research Center
Graz, Austria
peter.reichenpfader @v2c2.at

Abstract—Next-generation cars will provide a multitude of
advanced driver assistance systems (ADAS) functionality up to
full autonomous driving support [1]. These functions require
high computational power and continuous software-maintenance
(e.g. over-the-air update). Hence powerful general-purpose multi-
core hardware and dynamic software-platforms/OS are being
introduced to automotive systems. Furthermore these systems
need to be certified according to safety standards. In this paper
we highlight several challenges associated with the certification
process. We thereby mainly focus on multi-core hardware archi-
tecture and RTOS aspects. One main question is whether Linux
(with the PREEMPT_RT patch) can be utilized and certified
accordingly.

Keywords-certification; software-intensive; mixed-critical; au-
tomotive; Linux; PREEMPT_RT; real-time;

I. INTRODUCTION

The EU has set the goal to halve the overall number
of road deaths within the European Union by 2020 [2f]. In
order to achieve this goal, driver assistance systems (ADAS)
become ever more important. This leads to a rising number
of sensors, actuators and electronic components, whereupon a
huge amount of data must be processed in real-time to respond
to hazards in traffic. As a consequence these systems must
operate as safely and reliably as reasonably possible. Driver
assistance systems must not lead to uncontrollable conditions
which can no longer be handled by the driver. Such a view
on safety has consequences: Devices must be designed not
only sufficient fail-safe, they also must return to a safe state
when an incident occurs. Therefore, these factors have a strong
influence on the entire development process of the system.

II. STATE OF THE ART & RESEARCH QUESTION

In order to ensure an appropriately safe development of
safety-critical products, the ISO 26262 standard [3] was in-
troduced into the automotive industry. It is derived from the
generic standard IEC 61508 [4]. Ultimately, the objective of
both standards is to determine a system safety integrity level
(ASIL or SIL accordingly), which must be taken into account
in subsequent development steps for system-, hardware- and
software-development. However, a closer look at future ADAS
reveals a set of challenges:

e Hardware components, which are currently used in
the automotive industry, meet the recommendations of
the safety-standard. However, they have insufficient
computing-power for real-time environment-detection,
and they are still associated with high costs.

Mario Driussi
Virtual Vehicle Research Center
Graz, Austria
mario.driussi@v2c2.at

Florian Polzlbauer
Virtual Vehicle Research Center
Graz, Austria
florian.poelzlbauer @v2c2.at

o Commonly used hardware platforms from the consumer
sector (e.g. ARM, Intel , Nvidia, ...) would provide suffi-
cient computing-power at significant low cost. However,
these hardware-platforms are not approved for use in
safety-critical systems, since they were designed for dif-
ferent development goals. They offer no safety measures,
which in turn raises the question of reliability.

« The development-methods of the safety-standards require
a static software system, where all the states of the
software are already known at design-time. However,
future applications of ADAS make extensive demands on
the underlying software platform (e.g. RTOS) and thus
introduce “dynamics”:

— Dynamic memory allocation

— Software-update without garage visit

— Software-security (e.g.: authentication, authorization,
secure boot, ...)

e Many software-platforms which are used in automotive
environments meet these requirements only insufficiently
or not at all. This contrasts with software-platforms from
the consumer sector (e.g. Linux) which already meet all
these requirements, but were not designed for safety-
critical applications.

All these challenges raise two research questions:
1) Can Linux be certified for safety critical applications?
2) If so, is Linux a cost-effective alternative, compared to
adapting existing and certified software-platforms?

III. SIL2LINUXMP PROJECT

The research project SIL2LinuxMP [5] has set itself the
goal of developing a reference process that allows certifi-
cation of software-intensive safety-critical systems. On the
one hand, it involves the development process (which leads
to the evidence for certification). On the other hand, the
basic components (bootloader, root filesystem, kernel, ¢ library
bindings to access the Linux kernel) of Linux shall be certified
for SIL 2. Figure [I| provides an overview.

VIRTUAL VEHICLE supports the project by providing an
automotive use-case, which serves 3 purposes: (1) providing
realistic application-software; (2) acting as source of safety-
related technical requirements for RTOS and hardware; (3)
evaluating effectiveness of reference development process;

IV. USeE-CASE: E-QUAD

Within the use-case, two software-applications will be im-
plemented. The first application is a steer by wire appli-

Development Process

Use-Case Quad

Hazards
Safety Goals

Safety Requirements

Technical Requirementss

¥

System

(5 | [oo | [o]

v

Evidence for
Certification

Fig. 1. Overview of the SIL2LinuxMP Project

cation, which needs to satisfy SIL 2. The second application is
an object detection ADAS application, which can be
developed according to Q

A fully electric test vehicle (E-QUAD) will be retrofitted
with the necessary sensors (e.g.: angle-sensor, camera, ...),
actuators (i.e. steering motor), as well as a corresponding
computing-hardware. Figure [2] shows the schematic structure
of the use-case.

App1: Steer by wire

ﬂ/ /
/
=/ |
I)\ppZ.: Object Detection
App2
Fig. 2. Use Case E-QUAD
Application Description

Steer by Wire
(SIL 2)

Measuring of current steering-angle; Closed-loop
control of steering via stepper-motor according to de-
sired steering-angle; This function could later on be
used for future applications (e.g. automatic parking,
autonomous driving). The function will not require
much computational-power.

Object Detection
QM)

Sampling of environment based on camera; Object-
detection within camera-picture based upon OpenCV
library [6]]; In case that an object is detected, output
collision-warning (e.g. light-bulb or acoustic); This
application will be computational-intensive and re-
quires dynamic resources. Hence it can provide two
benefits: it is representative of future, computational-
intensive applications, and it will stress the system
in a realistic manner.

TABLE I
DESCRIPTION OF USE CASE APPLICATIONS

IThe term QM (Quality Management) is used to state that a system or
component does not have any safety-related requirements, and thus does not
require to comply to a safety-standard.

The system integrates a safety critical application (steer by
wire) and a non-safety-critical yet computationally intensive
application (object detection) on a multi-core system. The
object-detection will be camera-based, and will only be used to
output a warning-signal. It will not control steering or break-
ing. Hence it can be developed according to QM. Figure [3]
shows an overview of the applications and the underlying
computing-platform.

I SIL 2 il SiL2 1l QM |
I i il |
: monitoring :I drive by wire H object detection :
I] il |
I i il |
: core 0 H core 1 H core 2 :
—_— 1
RAM
Fig. 3. Computing-Platform and Applications
V. TECHNICAL CHALLENGES
Current safety-standards (such as ISO 26262 or

IEC 61508) require freedom from interference
or independence of execution between software-
components. This means that a non-critical software-
component must not interfere onto a critical software-
component (or at least the interference must be within
acceptable bounds). One of our technical goals is to
investigate if freedom from interference can be achieved for
systems which are based upon Linux with the PREEMPT_RT
patch which are executed on a general-purpose multi-core
platform. If so, which configuration must be used? If not,
which parts of Linux and/or the PREEMPT_RT patch would
need to be modified?

The term interference relates to a scenario where the exe-
cution of a low-critical software has a negative impact onto
a higher-critical software. This applies to normal operation,
but especially to error cases. Interference can act upon two
dimensions: time and space (i.e. memory)

In order to address the issue of interference, the system
(SW-platform and/or OS) must provide effective protection-
mechanisms at runtime. Here, the AUTOSAR standard [7]]
provides a set of timing-protection mechanisms (such as
execution-time monitoring, inter-arrival rate monitoring, ...) as
well as memory-protection mechanisms. Hence the questions
arise: Does Linux provide similar protection mechanisms? If
so, are they sufficient in order to satisfy the requirements of
the safety-standards? If not, which aspects of the mechanisms
have to be improved (or implemented)?

A. Timing-Protection Mechanism

One key timing-protection mechanism of AUTOSAR (ver-
sion 4.x) is execution-time monitoring (ETM). If activated,
it monitors the execution-time of a task. In case the task’s
execution-time exceeds a pre-defined value (i.e. the execution-
time budget) the OS stops the task. This monitoring method
is especially useful, since estimating the worst-case execution
time (WCET) of a task is one of the hardest challenges in

computer science. This is especially true for modern (multi-
core) computing-platforms. Hence execution-time monitoring
provides a powerful tool for ensuring safe task execution.

Figure [] shows a gantt-chart which demonstrates how
execution-time monitoring can mitigate interference due to
execution-time overruns. We see a system which contains 4
tasks (T1, T2, T3, T4). At the top we see an error case
without execution-time monitoring: After 3ms, an error occurs
inside task T3, which causes the task to execute for additional
2ms. During this time, T4 cannot execute due to pre-emption
by T3. Once T3 finishes, T1 and T2 execute according to
their priorities. Finally, T4 can execute. However, due to the
prolonged pre-emption, T4 misses its deadline.

In the bottom view we see how the same error scenario
performs, if T3 is subject to execution-time monitoring. Again,
T3 is prolonged due to an error. However, after 4ms, its
execution-time budget is consumed, and the OS stops T3. This
leads to T4 being able to start executing. After a short pre-
emption by T1 and T2, task T4 can resume its execution and
finish before its deadline.

TaskTL
Prio: 30 ims

Fig. 4. Timing Protection: Execution-Time Monitoring of Tasks
Top: Error-case without Execution-Time Monitoring
Bottom: Error-case with Execution-Time Monitoring of T3

Once such timing-protection mechanisms are in place inside
the OS, follow-up questions arise: How to configure the
mechanisms in an appropriate manner? Which task needs to
be protected? Which protection-mechanism needs to be used?
What are appropriate budgets for certain tasks? etc. In order to
answer these questions, at least 3 building-blocks are needed:

1) We need a model of the system, which captures the

main timing-attributes of the system. However, the main
challenge is not the model itself, but to retrieve the
timing-values from the real system.

2) We need an analysis method, which allows us to analyse
how the system will behave in certain cases. Hence the
analysis-method needs to be aware of the protection-
mechanisms.

3) We need to identify all relevant error-cases which need
to be analysed, in order to feed them into the analysis-
method.

VIRTUAL VEHICLE has implemented a timing-analysis
method accordingly. It is based upon the response-time analy-
sis (RTA) approach, but is extended such that it also considers
timing-protection mechanisms. It can handle both execution-
time monitoring as well as inter-arrival rate monitoring.
Currently we are working on a systematic approach to identify
error-cases, which shall be analysed by the timing-analysis
method.

B. Memory-Allocation Mechanism

In the context of timing-analysis, memory access strategies
become increasingly important. This is due to the completely
different memory and hardware architectures and configu-
rations of the systems (e.g. an automotive micro-controller
with some KBs of RAM, 1 level cache and fixed memory
allocation of data and code at design-time vs. general-purpose
architectures with several GBs of RAM allocated on 2, 4, or
more DIMMs with dynamic memory allocation at run-time).

Dynamic memory is a crucial shared resource, especially for
multi-core systems. An inconvenient allocation could thwart
the system-performance significantly. For example, mecha-
nisms like the address space layout randomization (ASLR) or
load balancing algorithm arrange the address space position of
memory pages randomly. Hence, performance can significantly
vary between best case and worst case.

For example, let’s consider a system with 4 cores, shared
cache, and shared RAM (see figure E]) in which tasks allocate
memory at run-time. In the worst case scenario, every core
Cx allocates memory pages Mx, on the same RAM DIMM.
If C1, C2, C3, and C4 try to access their memory pages M1,
M2, M3 and M4 at the same time tl, concurrent address- and
data-bus access to the memory starts. If C1 wins the arbitration
process C2, C3 and C4 have to wait accordingly. Hence, the
time to access instructions and data in memory can become
unpredictable.

Therefore, memory access time could be a bottleneck
for safety-critical systems on general-purpose hardware. This
raises other questions: Is it possible to configure a dynamic
system in a way that the measured system behavior of a
test run is meaningful? Do the test-runs output reproducible
results? If not, is it possible to define a metric with barriers
which are acceptable in a safety-critical context? Could we
apply probabilistic timing-analysis methods to predict timing
behaviour of a system?

Within the last years many features have been imple-
mented into Linux to extend the memory management with
respect to safety requirements and to provide support for
process isolation. However, configuring these mechanisms
(Linux containers [8]], cgroups [9], PALLOC [10], or

MemGuard [11] to name just a few) in the right manner, in
order to produce a traceable system behavior, is a challenging
engineering-task. Linux containers for instance are used
to isolate Linux processes into their own little subsystem.
That means it is possible to run multiple isolated Linux
systems (so called containers) on a single host. In contrast
to a virtual machine which emulates the hardware to it’s guest
systems, Linux containers are lightweight and provide a virtual
environment that has its own CPU, memory, block /O, etc.
space and a resource control mechanism. Namespaces and
cgroups provide these features inside the Linux Kernel.
Cgroups provide some other important features to limit,
police and account the resource usage for a set of processes.
With PALLOC we can allocate memory to specific DRAM
banks, allowing us to improve the quality and performance in
a flexible manner and to prevent mutual exclusion of memory
access as described in the scenario above. Figure [5] shows an
inconvenient multi-core memory allocation (on the right) and
an optimized memory allocation with PALLOC (on the left).

Core 1 Core 2 Core 3 Core 4 Core 1 Core 2 Core 3

Last Level Cache

Loy

7 7 P
’ ' .

/ ‘ .
"ll.ast Leyel Cachg . ‘

’ 0 P
’ R .

- -

| Mefnory Contrdiler | ‘ / Memor§ Controller ‘
f) H
[} [} 7
Pob o . Lo

¥ ¥ ¥ DRAMDIMM " DRAM DIMM
Bank 1 Bank 2 Bank 3 Bank 4 Bank 1 Bank 2 Bank 3 Bank 4

a.) Best Case b.) Worst Case

Fig. 5. Memory Protection and Performance

Left: Memory allocation with PALLOC
Right: Adverse memory allocation with loss performance

We are optimistic, that equipped with these features of
the Linux kernel, which are provided by the open source
community, it should be possible to configure a system based
on general-purpose hardware to run safety-critical applications
which can be qualified at least to SIL 2 / ASIL B with
the reference safety process provided by the OSADL project
SIL2LinuxMP.

VI. OUTLOOK

We are still at an early stage of our research project. We
have started developing the use-case (at item and hazard
level), implemented a timing-analysis method for evaluating
timing-protection mechanisms, and identified a set of technical
challenges associated with timing-protection and memory-
allocation.

In order to address these challenges and answer our research
questions, our next steps will be as follows: First, we will
implement both software-components (safety-critical steer by
wire control and non-critical object-detection). The compo-
nents will then be packed into real-time threads. Then, we
will set up methods which allow us to profile the behaviour of
these threads. Special focus will be set of timing (e.g. trigger-
period, execution-time, etc). Based on this setup, we will then
perform our tests:

First, we will profile the behaviour of the system for the case
where only the safety-critical software-component is executed.
This case will act as our reference-point. Second, we will
profile the system-behaviour for the case where both software-
components (safety-critical and non-critical) are executed on
the same multi-core hardware-platform. Our hypothesis is that
the non-critical (yet computational-intensive) software will
stress the system, and thus cause some degree of interference.
This is due to shared hardware-resources (such as RAM
and L2-cache). The question is how large this interference
is and whether it is within acceptable bounds. In case the
interference exceeds acceptable bounds, further analysis will
need to be performed, in order to identify which parts of Linux
would need to be improved. Promising methods / technologies,
which may help to reduce the degree of interference might
be MemGuard [11], PALLOC [10], cgroups [9], Linux
Container [8] and namespaces [12].

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
of the “COMET K2 - Competence Centres for Excellent
Technologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Economy, Family and Youth (BMWEFJ),
the Austrian Research Promotion Agency (FFG), the Province
of Styria and the Styrian Business Promotion Agency (SFG),
the ARTEMIS Joint Undertaking project EMC? (grant agree-
ment nb 621429), and the European Union’s 7th Framework
Programme project eDAS (grant agreement no 608770).

Finally we would like to thank OSADL and the
SIL2LinuxMP project team for their support.

REFERENCES

[1] SAE International, “SAE J 3016: Taxonomy and Definitions for Terms
Related to On-Road Motor Vehicle Automated Driving Systems,” 2014.
[Online]. Available: http://standards.sae.org/j3016_201401/

[2] European Commission, “Towards a European road safety area: policy
orientations on road safety 2011-2020,” 2010.

[3] International Organization for Standardization, “ISO 26262: Road vehi-
cles — functional safety,” 2011.

[4] International Electrotechnical Commission, “IEC 61508: Functional
safety of electrical/electronic/programmable electronic safety-related
systems,” 2010.

[5] Open Source Automation Development Lab, “SIL2LinuxMP.” [On-
line]. Available: https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.
0.html

[6] “Open Source Computer Vision (OpenCV).” [Online]. Available:
http://opencv.org

[71 AUTOSAR Development Partnership, “AUTomotive Open System
ARchitecture (AUTOSAR).” [Online]. Available: http://www.autosar.org

[8] “Linux Containers.” [Online]. Available: https://wiki.archlinux.org/
index.php/Linux_Containers

[9] “Cgroups.” [Online]. Available: https://wiki.archlinux.org/index.php/

Cgroups

H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM

bank-aware memory allocator for performance isolation on multicore

platforms,” in IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS), 2014, pp. 155-166.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-

Guard: Memory bandwidth reservation system for efficient performance

isolation in multi-core platforms,” in IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2013, pp. 55-64.

M. Kerrisk, “Namespaces in operation, partl: namespaces overview,”

2013. [Online]. Available: https://lwn.net/Articles/531114/

[10]

[11]

[12]

http://standards.sae.org/j3016_201401/
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
http://opencv.org
http://www.autosar.org
https://wiki.archlinux.org/index.php/Linux_Containers
https://wiki.archlinux.org/index.php/Linux_Containers
https://wiki.archlinux.org/index.php/Cgroups
https://wiki.archlinux.org/index.php/Cgroups
https://lwn.net/Articles/531114/

	Introduction
	State of the Art & Research Question
	SIL2LinuxMP Project
	Use-Case: E-QUAD
	Technical Challenges
	Timing-Protection Mechanism
	Memory-Allocation Mechanism

	Outlook
	References

