
HAL Id: hal-01375445
https://hal.science/hal-01375445

Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Academic-industrial Collaboration in the Vehicle
Software Domain: Experiences and End-user Perspective

Saad Mubeen, Jukka Mäki-Turja, John Lundbäck, Mattias Gålnander,
Kurt-Lennart Lundbäck, Mikael Sjödin, Bud Lawson

To cite this version:
Saad Mubeen, Jukka Mäki-Turja, John Lundbäck, Mattias Gålnander, Kurt-Lennart Lundbäck, et al..
Academic-industrial Collaboration in the Vehicle Software Domain: Experiences and End-user Per-
spective. CARS 2016 - Critical Automotive applications : Robustness & Safety, Sep 2016, Göteborg,
France. �hal-01375445�

https://hal.science/hal-01375445
https://hal.archives-ouvertes.fr


Academic-industrial Collaboration in the Vehicle
Software Domain: Experiences and End-user

Perspective
Saad Mubeen∗, Jukka Mäki-Turja∗, John Lundbäck†, Mattias Gålnander†, Kurt-Lennart Lundbäck†,

Mikael Sjödin∗, Harold “Bud” Lawson‡
∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems AB, Järfälla, Sweden
‡ Lawson Konsult AB, Lidingö, Sweden

∗{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se
†{john.lundback, mattias.galnander, kurt.lundback}@arcticus-systems.com

‡bud@lawson.se

Abstract—In this paper we present a success story of academic-
industrial collaboration in the vehicular domain. The collabora-
tion has resulted in the development and evolution of a model-
and component-based software development tool chain that is
used to develop safety-critical, robust, and certified, control soft-
ware for vehicles. The tool chain has been successfully used in the
vehicle industry for about 20 years. The sustained development
of the tool chain is based one a unique collaboration, described
in this paper, where the collaborators form a clear value chain
from academia, through tool-developer, to the end-users of the
technology. We describe experiences of each collaborator with a
focus on the end-user’s perspective. Moreover, we highlight some
ongoing and future works within this collaboration.

I. INTRODUCTION

A large share of innovation and customer value in modern
vehicles comes from advanced computer-controlled function-
ality. With the increasing volume of such functionality, the
vehicle software has tremendously increased in size and com-
plexity in the past few years [1], [2]. The distributed nature
of this software over several Electronic Control Units (ECUs)
further adds to its complexity. Moreover, the safety-critical
nature of several vehicle functions puts real-time requirements
on them. The developers of such functions are required to
ensure that the functions are predictable, i.e., they behave in
a timely manner when executed. The software complexity can
be managed by using the tools that employ the principles of
component-based software engineering [3], [4] and model-
driven engineering [5]. On the other hand, predictability of
the functions is guaranteed by the tools that implement real-
time schedulability analysis [6], [7], [8]. Such analysis can
validate the timing requirements, without performing exhaus-
tive testing, before the functions are deployed in the target
platforms.

In this paper, we consider the case of one such tool
chain: Rubus [9]. The Rubus tool chain supports model- and
component-based development of vehicle software and its
predictable execution on a real-time operating system (RTOS)
that is certified to ISO 26262:2011 safety standard according
to ASIL D. In this paper, we describe the experiences of
various collaborators in the academic-industrial collaboration
that has resulted in the development of the Rubus tool chain
and its evolution based on the state-of-the-art research results,
industrial needs and feedback from the end-users. One unique
characteristic of the selected collaboration is that it offers a

clear value chain from academia (mainly Mälardalen Univer-
sity); through tool developer (Arcticus Systems1); and finally,
to the end users of the technology (e.g. Volvo Construction
Equipment2 and BAE Systems Hägglunds3) as shown in Fig. 1.
This figure shows the flow of information within the selected
academic-industrial collaboration.

Volvo
Construction
Equipment

Fig. 1. Example of flows of information within the collaboration.

II. THE RUBUS TOOL CHAIN AND PERSPECTIVE OF THE
TOOL PROVIDER

There is a large number of tool providers in the vehicle
domain such as Arcticus Systems, Vector, Symta Vision, Sys-
temite, Mentor Graphics, IBM, Arccore, ETAS, Continental,
dSpace, Berner & Mattner, Fraunhofer, just to name a few. In
this paper, we consider the case of the Rubus tool chain that
is developed by Arcticus Systems in close collaboration with
several academic and industrial partners. The main reasons
for selecting Rubus are as follows. The software developed
using Rubus has a small run-time foot print (timing and
memory overhead) as compared to several other component-
based development technologies including AUTOSAR [10].
While most of the tool chains and models need complementary
tools from other vendors to support the software development
at all abstraction levels of EAST-ADL [11], the Rubus tool
chain is applicable to all the abstraction levels. A detailed
comparison of the Rubus tool chain with other related models
and tool chains is discussed in [12]. Arcticus Systems and
their customers are relatively open in discussing the theories

1http://www.arcticus-systems.com
2https://www.volvoce.com
3http://www.baesystems.com



and details about their tools, use cases and experiences with
the research community. Finally, the Rubus tool chain has been
successfully used in the vehicle industry for about 20 years.

The main products in the Rubus tool chain include Rubus-
ICE (Integrated component model Development Environment)
and Rubus RTOS as portrayed in Fig. 2. A real-time applica-
tion developed using Rubus-ICE can be executed on a variety
of platforms, that is, various hardware and real-time operat-
ing systems. Rubus-ICE is utilized by several international
companies including Volvo Construction Equipment, Volvo
Group, BAE Systems Hägglunds, Elektroengine, BorgWarner,
Hoerbiger and Knorr-Bremse in developing, simulating and
implementing time-critical and non-time critical applications.
Rubus provides for the implementation of the model-driven
development concept by providing the following properties.

Confidential/proprietary	information	of	Arcticus	Systems	AB	is	contained	herein	and	may	not	be	disclosed,	displayed,	used	reproduced	or	copied	
without	prior	written	consent.	Failure	to	comply	with	this	notice	may	result	in	liability	for	costs,	damages	or	losses.	

©	2015,	Arcticus	Systems	AB.	All	rights	reserved.	Rubus®	is	a	registered	trademark	of	Arcticus	Systems.	 5	

• RCM	-	Viewpoint	of	the	developer/development	team	model:	The	developer	designs	the	system,	
in	 a	 platform	 independent	 manner	 that	 focuses	 upon	 the	 application.	 Timing	 and	 resource	
constraints	are	expressed	in	the	model.			

• RAM	-	Viewpoint	of	the	analysis	model:	The	resulting	RCM	design	 is	formal	and	lends	 itself	to	
static	analysis	that	is	mapped	to	the	actual	run-time	platform.	The	analysis	includes	type	checking,	
execution	order,	real-time	requirements	such	as	response	times	and	worst-case	execution	times.	
This	analysis	helps	in	reducing	late,	costly	and	time-consuming	testing	efforts	of,	e.g.,	temporal	
errors.	 Furthermore,	 mathematical	 models	 and	 supporting	 tools	 provide	 formal	 evidence	 of	
fulfilling	requirements.		

• RRM	 -	 Viewpoint	 of	 the	 run-time	 platform	 model:	 The	 RCM	 design	 together	 with	 the	 RAM	
analysis	 is	 utilized	 to	 synthesize	 the	 code	 for	 the	 actual	 run-time	 platform.	 This	 automated	
synthesis	prevents	error	prone	and	costly	integration	errors.		The	run-time	platform	may	be	the	
Rubus	Kernel	or	some	other	Real	Time	Operating	System.	

These	 concepts	 have	 proven	 to	 be	 effective	 in	 providing	 scalability	 from	 small	 to	 large	 real-time	
applications	implemented	by	various	organizations.	

4 Rubus	Products	
The	main	products;	namely	Rubus	Tool	Suite	and	Rubus	RTOS	that	Arcticus	delivers	to	its	customers	are	
portrayed	in	Figure	3.		It	is	important	to	note	that	the	real-time	application	developed	using	Rubus	Tool	
Suite	can	be	executed	on	a	variety	of	real-time	platforms,	that	is,	various	hardware	and	various	real-time	
operating	systems.	

 

Figure	3:	The	Rubus	Product	Suite.	

4.1 The	Rubus	Tool	Suite	Product	
The	 Rubus	 Tool	 Suite	 (Integrated	 Component	 Model	 Development	 Environment)	 that	 is	 utilized	 by	
customers	 in	 developing,	 simulating	 and	 implementing	 time	 critical	 and	 non-time	 critical	 applications.		

Fig. 2. The Rubus tool chain.

• Raises the level of abstraction thus addressing the increas-
ing complexity problem for embedded software.

• Formal and early reasoning. The system architecture can
be described early in the system life cycle as high-level
models and alternative designs can be rapidly developed
and analyzed to try out different solutions. Note that
the design can be analyzed without writing any source
code. Furthermore, system model documentation facili-
tates maintenance and further development activities.

• Code synthesis. There is a separation between the run-
time model and the program code. The user works on
a platform independent model, then selects the specific
target platform, and Rubus-ICE generates the framework
code. Productivity is increased since the auto-generation
automates code generation that is often error prone.

• Traceability. The system architecture documentation is
kept up to date with the implementation resulting in
traceability from design to implementation and vice versa.

The Rubus Designer is used to interactively describe and
analyse the application developed using the Rubus Compo-
nent Model (RCM)[13]. The structure of the application is
developed by means of Software Circuits (SWCs), lowest-level
hierarchical components, and their interconnections. The user
defines the input and output ports of SWCs and connects them
in a manner similar to hardware diagrams.
The Rubus Inspector supports platform-independent formal
and semi-formal “Model-in-the-Loop testing environment. It
provides for unit testing (SWCs and assemblies, i.e., containers
of SWCs) as well as for sub-system testing (node and network)
or complete system testing (distributed system with multiple
nodes and networks). Test inputs are provided by the user
however, it is also possible to generate tests that utilize
LabView/Simulink and Matlab environments.
The Rubus Analyser provides for the user-friendly pre-
sentation of off-line and on-line information about the ex-
ecution behavior of the system. It enables connection with

the development host system to download information such
as trace data and run-time information in real-time. Post-
run-time analysis of host data for formal analysis can be
compared with the original model data to verify the real-
time properties initially set by the designer. Another powerful
characteristic of the Rubus Analyser is its support for pre-run-
time timing analysis including response-time analysis of tasks
with offsets [14], shared-stack analysis [15], response-time
analysis of Controller Area Network (CAN) and its higher-
level protocols [16], distributed end-to-end delay analysis [17],
[7], as well as early timing analysis of black box nodes (whose
internal software architectures are not available) [18].
Rubus RTOS. The Rubus tool chain is complemented by
Rubus RTOS that is certified in ISO 26262:2011 safety stan-
dard. Rubus Kernel provides support for RCM in achieving
an optimal real-time software system. Its main features in-
clude support for both time- and event-triggered execution
of threads, inter-thread communication, static allocation of
resources, scalability and portability. The combination of a
dynamic and static scheduling supported by the Rubus Kernel
enables the design of optimal real-time software systems. The
kernel can be ported to various targets and development en-
vironments including Freescale MPC-processors, Texas DSP,
Infineon’s xc167-processors and various C-compiler environ-
ments such as Green Hills, WindRiver, Tasking, Microsoft VS
and GCC. Rubus Simulator provides for testing and verifying
the composite of the Rubus Kernel and application software.

III. ACADEMIC PERSPECTIVE

Since the conception of the first Rubus products, coopera-
tion with Mälardalen University (and other academic institu-
tions) has been of great importance to drive the development
of the Rubus tool chain. Vice versa, experience and feedback
from industrial use of Rubus have inspired many research
projects over the years. A graphic history of different com-
ponent models that have been developed in academia and by
Arcticus Systems is shown in Fig. 3.

Confidential/proprietary	information	of	Arcticus	Systems	AB	is	contained	herein	and	may	not	be	disclosed,	displayed,	used	reproduced	or	copied	

without	prior	written	consent.	Failure	to	comply	with	this	notice	may	result	in	liability	for	costs,	damages	or	losses.	
©	2015,	Arcticus	Systems	AB.	All	rights	reserved.	Rubus®	is	a	registered	trademark	of	Arcticus	Systems.	 8	

Rubus	Kernel	provides	support	for	the	Rubus	Component	Model	(RCM)	in	achieving	an	optimal	real-time	

software	system.	The	main	features	of	the	Rubus	Kernel	are:	

• Support	the	execution	of	Time-Triggered	Red	threads.	
• Support	the	execution	of	Interrupt-Triggered	Green	threads.	
• Support	execution	of	Event-Triggered	Blue	threads.	
• Support	communication	between	different	types	of	threads.	
• Support	statically	allocated	resources.	
• Support	scalability	and	portability.	
• Support	the	instrumentation	of	runtime	analysis.	

The	combination	of	a	dynamic	and	static	scheduling	supported	by	the	Rubus	Kernel	enables	the	design	of	

optimal	real-time	software	systems.	

The	Rubus	Kernel	can	be	ported	to	various	targets	and	development	environments	on	customer	request	

and	 includes,	 amongst	 others,	 Freescale	 MPC-processors,	 Texas	 DSP,	 Infineons	 xc167-processors	 and	

various	C-compiler	environments	such	as	Green	Hills,	WindRiver,	Tasking,	Microsoft	VS	and,	GCC.	

5 Contributions	from	Mälardalens	University	
Since	 the	 conception	 of	 the	 first	 Rubus	 products,	 cooperation	 with	Mälardalen	 University	 (and	 other	

academic	 institutions)	has	been	of	great	 importance	to	drive	the	development	of	the	Rubus	tool-suite.	

Vice	versa,	experience	and	feedback	from	industrial	use	of	Rubus	have	inspired	many	research	projects	

over	the	years.	A	graphic	history	of	different	component-models	that	have	been	developed	in	academia	

and	by	Arcticus	is	shown	in	Figure	7.	

	

Figure	7:	Contributions	to	the	Rubus	Component	Model.	

As	mentioned	above,	Rubus	was	 initially	developed	 from	the	 joint	academic	and	 industrial	project	VIA	

project	BASEMENT	and	its	conceptual	component-model.	In	development	of	the	first	Rubus	tools,	MDH	

ArcticusAcademia

BASEMENT
RCM1&2

SaveComp

ProSave/ProSys

RCM3

RCM4

1994

2002

2005

2005

1996

2012

(a)	Academic	component	models (b)	Versions	of	the	Rubus	Component	Model

Fig. 3. Contributions to the Rubus Component Model and tool chain.

Rubus was initially developed from the joint academic and
industrial project VIA, project BASEMENT and its concep-
tual component model [19]. Later, an SSF-funded project,
SAVE, coordinated by Mälardalen University with partners
from KTH, Linköping University, and Uppsala University
based the SaveComp component model on the BASEMENT-
concept and the experiences from early Rubus models. In
a technology-transfer project MULTEX, funded by KKS,
Mälardalen University worked with Arcticus Systems to define



the next version of RCM using concepts from SaveComp. This
resulted in the first version of Rubus where components could
be used in time-, event- and interrupt-triggered threads. In
2006, a KKS-funded project at Mälardalen University, called
PROGRESS, provided the ProCom component model [20] that
inspired further development of RCM. A new technology-
transfer project, EEMDEF, funded by KKS resulted in the ex-
tension of RCM and Rubus tool chain to support the modeling
and development of distributed embedded systems [12].

Another KKS-funded project FEMMVA resulted in the
extension of timing analysis framework in Rubus tool chain to
support the specification, analysis and validation of end-to-end
path delay constraints namely age and reaction [17], [7], [10].
Further, the results of the project provided foundations for
the translation of timing constraints and design-level models
from EAST-ADL to RCM. Since 2012, and the finalization
for Rubus Component Model Version 4.0, Arcticus has further
intensified the academic cooperation with Mälardalen Univer-
sity and with participation in several larger European projects.
Many projects are a result of the continued cooperation with
Mälardalen University. Finally, a Worst Case Execution Time
(WCET) analysis project done in cooperation with Mälardalen
University provided an important step toward adding WCET
analysis of the C-source code as a complement to measurement
on target processors.

IV. PERSPECTIVE OF THE END USER

We consider two end-users of the Rubus tool chain as part
of the selected collaboration.

A. BAE Systems Hägglunds
BAE Systems is a renowned global manufacturer of ad-

vanced defense, combat and security systems that can be
used in the air, land and sea. BAE Systems Hägglunds excels
at manufacturing state-of-the-art combat vehicles. According
to BAE Systems Hägglunds, the main reasons for selecting
RCM and Rubus tool chain for the development of embedded
software in their products are as follows.

• Requirement for the time- and event-triggered execu-
tion: They require time-triggered architectural approach
that is needed to execute the software threads that com-
pose majority of the repetitive functions in their products.
The support for event-triggered execution of threads is
needed to service various internal and external events in
the system. Both the time- and event-triggered modeling
and execution of software circuits are fully supported by
RCM, Rubus-ICE and Rubus RTOS.

• Requirement to support background threads and
services: They require the support to implement back-
ground threads that are appropriate for services of diverse
character such as diagnostics as well as vital functions for
the implementation of communication protocols such as
TCP/IP. This requirement is fully supported by the Rubus
tool chain.

• Requirement of pre-runtime timing analysis: They
require pre-runtime guarantees on the predictability of
both time- and event- triggered threads. Using RCM and
the Rubus tool chain, they provide pre-runtime guarantees
for time-triggered software circuits by using the correct-
by-construction offline schedule that is generated by the
Rubus scheduler. Whereas in the case of event-triggered
software circuits, response-time analysis and end-to-end

delay analysis in Rubus-ICE provides pre-run-time guar-
antees on the timing behavior of the software circuits.

• Requirement of coupling the software components
with Simulink: The behavior of control functions are
developed using Simulink. There is a requirement to cou-
ple each software component in the software architecture
with Simulink. The coupling to Simulink is achieved at
a suitable level via a modified code generator such that
the generated code becomes an entry point for a software
circuit. The software circuit is then allocated to a time-
triggered chain with an appropriate periodicity.

After their adoption of the Rubus tool chain, they have
provided the industrial needs, requirements and use cases
during the evolution of the Rubus tool chain. Moreover, they
have provided evaluation of the methods, techniques, results
as well as corresponding extensions in the Rubus tool chain
in a realistic industrial environment.

B. Volvo Construction Equipment (VCE)
VCE is the oldest and one of the world-leading manufactur-

ers of heavy construction-equipment vehicles, e.g., wheel load-
ers, articulated haulers and excavators. The company has been
successfully applying model-based software development, us-
ing the Rubus tool chain, to provide computer-controlled
functionality in the vehicles since 1997. VCE has used Rubus
in almost all of their products, most notably, for controlling the
gear shift and various other ECUs. According to VCE, Rubus
has proven to work efficiently from small applications with
only a few objects up to very large applications with thousands
of objects. Some of their experiences are listed below.

• Development and testing times: Small development
time is of essence for VCE. The component concept
in Rubus offers advantages such as divide-and-conquer
strategies, i.e., breaking down of an application into
smaller components that can be distributed to a large
number of developers. This enables development of vehi-
cle functionality in parallel, hence resulting in shortening
the development time. The support for model-in-the-loop
testing and creation of unit tests for each component in
the Inspector, one of the tools in Rubus-ICE, has resulted
in reduction of the amount of bugs that end up during the
integration of a system. As a result, time to test has been
shortened after using the Rubus tool chain.

• Support for interoperability: Interoperability of infor-
mation and models during the development of vehicle
software is very important for VCE. Such a support
is provided by the Rubus tool chain since it allows
integration with other tools such as Simulink/Matlab.
Using Rubus, there are various means of either using the
application programming interfaces to read/write data or
directly access the model information using scripts such
as Python.

• Information management: Rubus tool suit uses XML-
files as an exchange format. Such a format enables the
use of existing change management systems such as SVN,
ClearCase and GIT. Merging is also facilitated since the
information is human readable but still possible for a
machine to process. It also means that creating model
information from other tools or means is relatively easy.
Hence, information management becomes easier.

• Pre-runtime timing analysis: A lot of functionality in
the vehicles, produced by VCE, have real-time require-



ments. VCE is required to verify such requirements be-
fore the functionality is deployed in the vehicles. The pre-
runtime timing analysis support in Rubus-ICE, including
response-time analysis and distributed end-to-end delay
analysis, has proven to yield good results in respect to
early verification, feasibility validation and timing checks.

• Certification: VCE needs to deliver certified vehicle
functionality according to safety standards. Since the
Rubus RTOS is certified according to ISO-26262:2011
ASIL-D, it serves the purpose for VCE. The Rubus tool
suite is currently undergoing the certification process.

VCE has contributed to the evolution of the Rubus tool
chain by not only supplying industrial needs, requirements and
use cases but also providing the efficacy of the new methods,
techniques, results and corresponding extensions.

V. SUMMARY

In this section we summarize our experiences by a set of
quotes from key stake-holders in our collaboration.

• “In order to be competitive as a tool provider in the
embedded systems domain, we strive to be active, ag-
ile and fast in identifying the needs and challenges of
our customers and provide them solutions based on the
state-of-the-art techniques and research results” (Arcticus
Systems).

• “To remain academically excellent, and scientifically
relevant, we find the long-term cooperation within the
team highly invigorating. Over the years the collaboration
have had a profound impact on our whole research
environment at MDH” (Prof. Mikael Sjödin, Mälardalen
University).

• “Based upon my long-term cooperation with Arcticus
Systems, I am pleased with their work towards imple-
menting a very useful real-time kernel and supporting
tool suite. It has been personally satisfying since Arcticus
Systems has made usage of several of the concepts that
I previously developed” (Harold “Bud” Lawson).

• “From the end-user’s perspective some remarkable fea-
tures of Rubus include user-friendly tools, simplicity to
understand and use by the engineers, light run-time foot
print and automation” (VCE).

• “The good thing about Rubus is that it supports both time-
and event-triggered execution. With the time-triggered
execution, majority of our functions are supported well
due to their repetitive nature. The communication and
diagnostic services in our systems are well supported by
utilizing the event-triggered execution in Rubus. Interop-
erability between Rubus and Simulink eases our effort
for the development of control logic” (BAE Systems).

“Automated interoperability to support information ex-
change among tools and models during the development of
cyber-physical systems is going to be the next big thing in the
vehicle industry (industrial members of the collaboration).”

VI. ONGOING WORK

In modern vehicles, contemporary functions and advanced
features require new levels of computational power and more
complex coordination among subsystems. Multi-core plat-
forms offer an efficient support for running such computation-
intensive vehicle functions by executing various activities in
parallel. However, multi-core platforms are more prone to un-
predictable behavior as compared to the single-core platforms.

How to provide predictable execution of vehicle software
in parallel on a contemporary multi-core ECU with shared
caches and memory banks? It is still an unsolved problem.
This problem is expected to increase in the future with the
introduction of more advanced architectures with cluster sets
of cores having more advanced memory interconnects. A
seamless tool chain for model- and component-based devel-
opment of vehicle software its predictable execution on multi-
core platforms is missing in the state of the practice. Currently,
the selected collaboration is working to achieve these goals in
the ongoing projects4 such as EMC2, DPAC, ASSUME and
PreView. Another ongoing work includes certification of parts
of the tool chain according to the ISO 26262 safety standard.

REFERENCES

[1] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann, “Engineering
automotive software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356
–373, feb. 2007.

[2] R. N. Charette, “This Car Runs on Code,” Spectrum, IEEE, vol. 46,
no. 2, 2009, http://spectrum.ieee.org/green-tech/advanced-cars/this-car-
runs-on-code.

[3] I. Crnkovic and M. Larsson, Building Reliable Component-Based Soft-
ware Systems. Norwood, MA, USA: Artech House, Inc., 2002.

[4] T. A. Henzinger and J. Sifakis, “The Embedded Systems Design
Challenge,” in 14th International Symposium on Formal Methods (FM),
Lecture Notes in Computer Science. Springer, 2006, pp. 1–15.

[5] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.

[6] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling: an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[7] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

[8] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, vol. 152, no. 2, pp. 148–166, March 2005.

[9] “Rubus models, methods and tools,” http://www.arcticus-systems.com.
[10] “AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The

AUTOSAR Consortium, Oct., 2013,” http://autosar.org.
[11] “EAST-ADL Domain Model Specification, V2.1.12,,” http://www.east-

adl.info/Specification/V2.1.12/EAST-ADL-Specification V2.1.12.pdf.
[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Communications-Oriented

Development of Component- Based Vehicular Distributed Real-Time
Embedded Systems,” Journal of Systems Architecture, vol. 60, no. 2,
pp. 207–220, 2014.

[13] K. Hänninen et.al., “The Rubus Component Model for Resource Con-
strained Real-Time Systems,” in 3rd IEEE International Symposium on
Industrial Embedded Systems, June 2008.

[14] J. Mäki-Turja and M. Nolin, “Tighter response-times for tasks with off-
sets,” in Real-time and Embedded Computing Systems and Applications
Conference (RTCSA), August 2004.

[15] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and M. Sjödin,
“Bounding shared-stack usage in systems with offsets and precedences,”
in 20th Euromicro Conference on Real-Time Systems, July 2008.

[16] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Integrating Mixed Trans-
mission and Practical Limitations with the Worst-Case Response-Time
Analysis for Controller Area Network,” Journal of Systems and Software,
2014.

[17] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional
Framework for End-to-End Path Delay Calculation of Automotive Sys-
tems under Different Path Semantics,” in Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems, dec. 2008.

[18] S. Mubeen, M. Sjödin, T. Nolte, J. Lundbäck, M. Gålnander, and K.-L.
Lundbäck, “End-to-end Timing Analysis of Black-box Models in Legacy
Vehicular Distributed Embedded Systems,” in 21st International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Aug. 2015.

[19] H. Hansson, H. Lawson, O. Bridal, C. Eriksson, S. Larsson, H. Lon,
and M. Stromberg, “Basement: an architecture and methodology for
distributed automotive real-time systems,” IEEE Transactions on Com-
puters, vol. 46, no. 9, pp. 1016–1027, Sep 1997.

[20] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A
Component Model for Control-Intensive Distributed Embedded Sys-
tems,” in CBSE 2008, pp. 310–317.

4http://www.arcticus-systems.com/research/


