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Abstract — This paper presents and compares different 

methods for evaluating the relative importance of variables 

involved in insulation lifespan models. Parametric and non-

parametric models are derived from accelerated aging tests on 

twisted pairs covered with an insulating varnish under 

different stress constraints (voltage, frequency and 

temperature). Parametric models establish a simple stress-

lifespan relationship and the variable importance can be 

evaluated from the estimated parameters. As an alternative 

approach, non-parametric models explain the stress-lifespan 

relationship by means of regression trees or random forests 

(RF) for instance. Regression trees naturally provide a 

hierarchy between the variables. However, they suffer from a 

high dependency with respect to the training set. This paper 

shows that RF provide a more robust model while allowing a 

quantitative variable importance assessment. Comparisons of 

the different models are performed on different training and 

test sets obtained through experiments. 

Index Terms — design of experiments, lifespan, modeling, 

random forest, regression tree, response surface, outliers, 

twisted pairs, variable importance 

I. INTRODUCTION 

HE aerospace industry is moving towards the design 

of More Electrical Aircrafts (MEA) by replacing 

heavy mechanical and pneumatic based systems with 

more electrical based systems [1]-[2]-[3]. This concept 

offers significant benefits in terms of reliability, much lower 

operating costs, less impact on the environment, and 

improved performance [2]. However, the increase in power 

demand for the electrical equipment supply requires higher 

voltages and operating frequencies [1], increasing the 

potential risk of partial discharge (PD) in the insulation 

systems [4], previously designed for lower voltages. 

Consequently, the lifespan of electrical insulation materials 

becomes a key issue for aircraft reliability assessment. In 

addition to high electrical constraints, other operating stress 

factors such as temperature, humidity, and mechanical stress 

contribute to the degradation of the insulating materials [5]. 

Empirical and physical models have been developed to 

relate the insulation aging mechanism or lifespan with 

applied stress factors [6]-[7]-[8]. These models are 

restrictive since they take into account a single aging factor 

as in the case of the Arrhenius law, or two factors as in the 

case of the electrothermal Crine model. In practice, the 

insulation lifespan is sensitive to numerous factors and to 

their interactions. Moreover, most of these models include 

physical parameters related to the studied material, whose 

estimation requires complex experiments. In recent years, 

statistical methods have been successfully used in electrical 

engineering for lifespan modeling based on accelerated 

aging tests [9]-[10]. These tests consider extreme constraints 

to speed up the degradation mechanism and to obtain 

measurable lifespan data [11]. Based on this principle, 

complete insulation lifespan models are provided in this 

paper by considering three main aging factors: voltage, 

frequency and temperature, as well as their interactions. 

Experiences are organized by Design of Experiments (DoE) 

[12] and Response Surface (RS) [13] methods. Some extra 

experiments are also carried out, without constrained levels, 

for model validation. Then the overall measurements are 

considered to derive either parametric models based on DoE 

and RS, or non-parametric models based on recursive 

partitioning methods as regression trees [14] and random 

forests (RF) [15]. The common aspect in these different 

models is the high number of variables (factors and 

interactions). This paper focuses on methods allowing the 

assessment of each variable effect and contribution in the 

resulting lifespan model. This study allows the identification 

of the least significant variables that can be eliminated, 

leading to a simpler and more accurate model, with a 

reduced number of required experiences. The paper is 

organized as follows: section II describes the experimental 

setup and the testing methodology. The measured data are 

analyzed in section III. In sections IV and V insulation 

lifespan is modeled through parametric and non-parametric 

methods, with an evaluation of relative errors and variable 

importance. Finally, conclusions and future works are 

discussed in section VI.              

II. EXPERIMENTAL SETUP AND METHODOLOGY 

A. Materials 

The tested samples were selected among the most widely 

used materials in rotating machine wiring insulation for 

aeronautics applications [9]-[10].  Each sample consists of a 

twisted pair covered with a double layer of insulating 

T



varnish of Poly-Ether-Imide (PEI) and Po

(PAI) with a thermal class of 200°C (Eder

diameter of 0.5mm), as shown in Fig. 1. Tw

manufactured according to the American Na

[16].  

 

 
 

Fig. 1.  Twisted pairs EDERFIL C200 as test samp

insulating varnish of Poly-Ether-Imide (PEI) and Poly-A
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are considered in the following lifespan mod

C. Accelerated aging tests 

In order to get realistic lifetime measurem

are tested under high stress levels, i.e. high

operation conditions. This procedure, known

Life Test, is widely used in aging studies in 

the lifetime of materials under test [11].  

This study deals with insulation degrad

mainly due to PD phenomenon, occurring a

and frequencies. Temperature values vary i

corresponding to the different operating c

rotating machine. They are also chosen wit

class of the studied insulation materials. T

amplitude and frequency ranges of the a

stress, as well as the temperature range. 
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Fig. 2.  Climatic chamber and pow

insulation materials.   
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B. Response form 

The measured lifespans are used to derive either 

parametric or non-parametric models. In parametric models, 

only a single value is needed to represent the lifespan of 

each experiment. The mean value can be considered, 

provided that outliers have been removed. However, the 

sample median is more robust to extreme values than the 

sample mean [19]. Therefore, by computing the median of 

all the repeated measures for each experiment, there is no 

need for a prior detection of outliers. In non-parametric 

models, outliers of each experiment are identified and 

removed. All the remaining lifespans are considered instead 

of a single value per experiment.   

IV. PARAMETRIC MODELS 

In this section, the model of the insulation lifespan 

Log(L) is designed as a linear additive function of the 

covariates Log(10V), Log(F), exp(-bT) and their 

interactions. In each studied method, the number of 

covariates and the required set of experiments composing 

the training set are specified. The remaining dataset is then 

used to test the validity of the model. Model parameters are 

estimated by Ordinary Least Square (OLS) method.  

A. Methods 

The values of stress factors are specified according to 

Design of Experiments (DoE) and Response Surface (RS) 

methods [9]-[10]. For experiment organization purpose, 

these two methods impose particular levels to each factor. 

Moreover, these methods consider normalized levels instead 

of real values.  

According to DoE, experiments are organized such that 

each configuration involves a combination of the levels of 

the investigated factors [12]. This allows the study of the 

different effects of the factors simultaneously, increasing 

accuracy and reducing the number of required experiments.  

Two levels (±1) are considered in the lifespan DoE model. 

Consequently, with three factors, 2
3
 = 8 experiments are 

needed. The lifespan model can be expressed as in (1): 

 
Log(L)DoE = M + EVLog(10V) + EFLog(F) + ETexp(-bT) 

+ IVFLog(10V).Log(F) + IVTLog(10V).exp(-bT) + 

IFTLog(F).exp(-bT) + IVFTLog(10V).Log(F).exp(-bT) 
(1) 

 

RS method [13] is then used to extend the DoE model 

and to improve its accuracy by adding quadratic forms of 

the three factors that can also have a significant effect on the 

response. The lifespan model becomes (2):  

 
Log(L)RS = Log(L)DoE + IVVLog(10V)2 + IFFLog(F)2 + 

ITTexp(-2bT) 
(2) 

 

Therefore, three additional levels are required. The 

design configuration is specified according to Central 

Composite Design defined by:  

 A complete 2
3
 DoE design, 

 Two axial points situated on the axis of each factor at a 

distance µ from the design center, defining two extra 

levels (± µ), 

 n0 central points at the design center, i.e. all factors at 

the 0 level. 

n0 and µ values are set to 4 and √2 respectively, so that the 

obtained design is orthogonal. Thus the total number of 

required experiments is 18. 

B. Required experiments 

 Table II displays the different configurations of the 

experiments required by DoE and RS methods. Levels are 

then defined in Table III.  

 
TABLE II 

LEVELS OF THE STRESS CONSTRAINTS REQUIRED FOR DOE AND RS  

 

Experiences 
Level for 

factor V 

Level for 

factor F 

Level for 

factor T 

R
S

 

DoE -1 -1 -1 

DoE -1 -1 1 

DoE -1 1 -1 

DoE -1 1 1 

DoE 1 -1 -1 

DoE 1 -1 1 

DoE 1 1 -1 

DoE 1 1 1 

Axial Point -√2 0 0 

Axial Point √2 0 0 

Axial Point 0 -√2 0 

Axial Point 0 √2 0 

Axial Point 0 0 -√2 

Axial Point 0 0 √2 

4 Central Points 0 0 0 

 
TABLE III 

NORMALIZED LEVELS OF THE STRESS FACTORS  

 

Levels Log(10V) (kV) Log(F) (kHz) Exp(-bT) (°C) 

-√2 Log(10*1) Log(5) Exp(55b) 

-1 Log(10*1.174) Log(5.872) Exp(34.82b) 

0 Log(10*1.73) Log(8.7) Exp(-26.12b) 

+1 Log(10*2.554) Log(12.77) Exp(-119.74b) 

+√2 Log(10*3) Log(15) Exp(-180b) 

 

C. Results 

Equations (1) and (2) can be seen as linear regression 

models relating the response vector Y = Log(L) composed 

of median lifespans with the covariate levels Log(10V), 

Log(F), etc. composing the covariate matrix X. Let  be the 

unknown parameter vector to be estimated, thus (1) and (2) 

can be written in the matrix form: Y = X , where  can be 

estimated by the OLS method. 



1) DoE model 

The first lifespan model is derived from only 8 

experiments according to the DoE method. The model is 

applied on the remaining 24 experiments composing the test 

set. Relative errors between predicted and measured 

responses in the test set range from 0.84% to 234% with an 

average value of 31%.  

The estimated parameters (average lifespan M, factor 

effects, and interaction effects) and the comparison between 

measured and predicted responses are displayed in Fig. 4. 

From the bar graph of Fig. 4, it can be observed that voltage 

and temperature have higher effects than the frequency, 

which also explains why their interaction is the most 

influential with respect to the other interactions.  

 
 

 
 
Fig. 4.  DoE model: estimation of variable effects (right side) and 

comparison between measured and estimated lifespans (left side).   

 

2) RS model 

The factor effects obtained by DoE model reflect the 

practical reality, regarding the high influence of voltage and 

temperature. However, the model seems to be insufficient 

since some test points present very high errors (>100%). 

The model is thus extended by adding quadratic terms, 

leading to RS model. The training set now consists of 18 

experiments. The results are depicted in Fig. 5.  

 

 

 

 

Fig. 5.  RS model: estimation of variable effects (right side) and 
comparison between measured and estimated lifespans (left side).   

 

In addition to the high effects of V, T and their 

interaction, the RS model reveals a significant contribution 

of the quadratic term T
2
. The maximum and average relative 

errors computed on the test set decreases down to 53% and 

25% respectively.  

Therefore, this model is more accurate than the DoE 

model since it takes more significant effects into account, 

and it leads to lower errors in the test set. 

V. NON-PARAMETRIC MODELS 

Previous models assume a linear additive relationship 

between the response and the predictors. However, it may 

be of interest to relax these assumptions and to provide a 

different lifespan-stress relationship with no explicit 

parametric form. Multivariate non-parametric methods 

present an alternative approach to linear regression models 

and are much more appropriate when models include a large 

number of predictor variables. In the following, non-

parametric lifespan models are provided by means of two 

methods based on recursive partitioning. 

A. Regression trees 

1) Overview 

Classification and regression trees were introduced by 

Breiman et al. in 1984 [14] for both exploring and modeling 

categorical (classification) or numeric (regression) data. 

Trees explain the variation of a single response variable 

(output) by one or more explanatory variables (inputs). In 

this study, only regression trees are considered, both 

predictors and response variables being numeric.  

The basic idea behind regression trees is to recursively 

split the data into smaller and more homogeneous groups. 

At each node, the splitting explanatory variable and its 

corresponding threshold value are selected so that the 

homogeneity of the two resulting groups is maximized. At 

the end, each leaf is characterized by the mean value of the 

response variable in the corresponding final group [14]. 

There are several benefits for using this technique in 

modeling tasks: 

 The relation between the response and the predictor 

variables is explained through simple if-then rules, 

 For a new observation, the response can be easily 

predicted by following the appropriate path throughout 

the tree, 

 The hierarchical structure of the tree allows to compare 

the relative importance of the variables, 

 Only the most significant predictors are included.  

On the other hand, there are two main drawbacks. First, a 

large number of observations is required so that the 

algorithm is able to split the data into several groups. 

Secondly, trees are unstable. Depending on the training set, 

different trees may be obtained with completely different 

inputs in the splitting rules, thus leading to completely 

different interpretations. 

2) Application to lifespan modeling 

 Before applying the regression tree algorithm on the 

lifespan data, the following rules are defined: 

 Inputs: as in RS model, explanatory variables are the 

main factors (Log(10V), Log(F) and exp(-bT)), their 

quadratic terms and their interactions. Normalized 

levels are used. 

 Output: the response variable is the measured lifespan 

logarithm. For each experiment, all repeated 



measurements - outliers excluded - 

account instead of the unique median va

 Minimum number of observations per l

Given that regression trees are unstable, p

of the scope of this study.  The focus is

modeling part. The tree is computed using a

(32 experiments). The result is displayed in F

 

 
Fig. 6.  Regression tree constructed with 32 experim

lifespan modeling. 

3) Discussion 

 The first analysis of the obtained tr

following observations: 

 The voltage is the first splitting variabl

it is the most influent factor, 

 The voltage divides the lifespan data

subgroups: short lifespans (high 

subtree) and long lifespans (low voltage

 At low voltages, only the temperature h

effect on the lifespan,  

 Voltage, frequency and temperature app

of their relative importance (V, T then F

 T
2
 is the most influent quadratic ter

important than the main factors. 

 Obviously, the model obtained with the

reveals some similarities with the parametr

models: the decreasing effect of V on th

relative importance of V, F and T, and the s

of the quadratic term T
2
 (see Fig. 5).  

 However, the interaction between V a

appear as a significant variable with this tre

hand, this interaction becomes a splitting var

the RS training set is used to construc

experiments).  

Therefore, there is a real dependency

splitting variables selected by the algorithm 

set. Conclusions regarding the variable 

unstable. In order to obtain more robust re

attempt to improve this model, random fores

are taken into 

alue. 

leaf: 15. 

prediction is out 

s rather on the 

all available data 

Fig. 6. 
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B. Random forests 

1) Overview 

In order to overcome the

and their low prediction 

reduced training set, ense

developed. The basic idea is

trees (ntree) and to aggregate

predictions. Based on this p

[15] were introduced by Bre

few years, RF have become 
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Fig. 7.  Random forest general algor
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 Variable importance (VI): the RF algorithm estimates 

the importance of a variable by averaging, over all the 

trees, the increase in OOB errors (mean decrease in 

accuracy) when the observed values of this variable are 

randomly permuted in the OOB samples, all other 

variables left unchanged. 

2) Variable importance measure in lifespan model 

Unlike regression trees, RF are a robust tool for VI 

assessment. This is demonstrated by examining VI obtained 

by RF in three different cases. In the following, RF 

parameters ntree and mtry are set to 500 and 3, respectively. 

As in regression trees, response variable is the measured 

lifespan logarithm, and the explanatory variables values are 

the levels of Log(10V), Log(F), etc.  

The first RF is generated from all lifespan data (32 

experiments). In the second case, only RS experiments are 

used to generate the RF. VI estimated in these two cases are 

displayed in Fig. 8 and Fig. 9 respectively. Finally, 50 

different RF were generated by randomly selecting a 

proportion of 2/3 from all the data at each run. For each 

variable, the computed VI (50 values) are displayed by 

means of boxplots, Fig. 10.  

By comparing the VI magnitudes and medians in the bar 

diagrams and boxplots respectively, the same conclusions 

are drawn, meaning that in RF, the measure of VI is robust 

regardless of the RF training set. It is thus much more 

convenient to rely on RF rather than regression trees in 

evaluating variables’ relative importance.   

 

 
Fig. 8.  Variable importance (VI) computed by RF with all the data as a 

training set.  

 

 
Fig. 9.  Variable importance (VI) computed by RF with RS experiments as 

a training set.  

 
Fig. 10.  Variable importance (VI) computed by RF with a randomly 
selected training set (50 runs).   

 

Once again, voltage and temperature are the most 

influential factors. On one hand, the interaction between V 

and T is also the most important with respect to the other 

interactions. On the other hand, V
2
 appears also as an 

important quadratic term in addition to T
2
. This is the only 

difference with RS variable effects.  

3) Error comparison 

Table IV summarizes the relative errors computed on the 

test sets of DoE, RS and RF models (with RF generated 

from RS training set). Despite all the advantages of non-

parametric RF (flexibility, robustness, variable importance 

quantification), predictions are less accurate than those of 

the parametric RS model. Note that in all these models, high 

relative errors correspond to very short lifespans (< 1 min). 

Fortunately, these points are out of our interest since we are 

rather concerned in modeling long lifespans.  

 
 TABLE IV 

TEST POINTS RELATIVE ERRORS 

 

Method 
Minimum 

Error 

Maximum 

Error 

Average 

Error 

DoE 0.84% 234% 31% 

RS 2.04% 53% 25% 

RF - Case 2 3.39% 91% 33% 

VI. CONCLUSIONS AND PERSPECTIVES 

In this paper, insulation lifespan of twisted pairs covered 

with varnish is modeled through statistical parametric and 

non-parametric methods. These different approaches allow 

the evaluation of the variable importance from different 

points of view.  

In parametric DoE and RS models, the lifespan is 

expressed as a linear additive function of the predictors and 

their effects (unknown parameters to be estimated). The 

most influent factors and interactions are identified as those 

having the highest estimated effects: the voltage, the 

temperature, their interaction, and the term T².   

Although these models are straightforward and accurate, 

non-parametric regression trees and random forests offer 

another framework and methodology to model the insulation 



lifespan and to rate the variable importance. In regression 

trees, it is possible to identify the most influent factors by 

following their hierarchy. However, with different training 

sets (all lifespan data, and only RS training set), different 

trees are obtained, leading to different conclusions about the 

variable importance. The unstable nature of trees is 

overcome by random forests that combine a large number of 

trees and average their results. Another advantage of RF is 

that they allow the quantification of variable importance. 

The robustness of RF variable importance assessment is 

demonstrated through three different training sets. 

In future works, the RF importance metric (error increase 

due to variable permutation) will be applied to evaluate the 

variable importance in DoE and RS models, for a 

comparison purpose. On the other hand, regression trees and 

random forests will be used to determine different lifespan 

models according to the constraint ranges. The results will 

then be validated by developing a piecewise linear 

regression model, with the same purpose of obtaining more 

restricted lifespan models. 
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