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This paper presents and compares different methods for evaluating the relative importance of variables involved in insulation lifespan models. Parametric and nonparametric models are derived from accelerated aging tests on twisted pairs covered with an insulating varnish under different stress constraints (voltage, frequency and temperature). Parametric models establish a simple stresslifespan relationship and the variable importance can be evaluated from the estimated parameters. As an alternative approach, non-parametric models explain the stress-lifespan relationship by means of regression trees or random forests (RF) for instance. Regression trees naturally provide a hierarchy between the variables. However, they suffer from a high dependency with respect to the training set. This paper shows that RF provide a more robust model while allowing a quantitative variable importance assessment. Comparisons of the different models are performed on different training and test sets obtained through experiments.

I. INTRODUCTION

HE aerospace industry is moving towards the design of More Electrical Aircrafts (MEA) by replacing heavy mechanical and pneumatic based systems with more electrical based systems [START_REF] Christou | Choice of optimal voltage for more electric aircraft wiring systems[END_REF]- [START_REF] Fang | Insulation Performance Evaluation of High Temperature Wire Candidates for Aerospace Electrical Machine Winding[END_REF]- [START_REF] Christou | Methods for Partial Discharge Testing of Aerospace Cables[END_REF]. This concept offers significant benefits in terms of reliability, much lower operating costs, less impact on the environment, and improved performance [START_REF] Fang | Insulation Performance Evaluation of High Temperature Wire Candidates for Aerospace Electrical Machine Winding[END_REF]. However, the increase in power demand for the electrical equipment supply requires higher voltages and operating frequencies [START_REF] Christou | Choice of optimal voltage for more electric aircraft wiring systems[END_REF], increasing the potential risk of partial discharge (PD) in the insulation systems [START_REF] Jinkyu | A Stator Winding Insulation Condition Monitoring Technique for Inverter-Fed Machines[END_REF], previously designed for lower voltages. Consequently, the lifespan of electrical insulation materials becomes a key issue for aircraft reliability assessment. In addition to high electrical constraints, other operating stress factors such as temperature, humidity, and mechanical stress contribute to the degradation of the insulating materials [START_REF] Sokolija | A multifactor stress aging model of electrical insulation[END_REF]. Empirical and physical models have been developed to relate the insulation aging mechanism or lifespan with applied stress factors [START_REF] Escobar | A review of accelerated test models[END_REF]- [START_REF] Mazzanti | The combination of electro-thermal stress, load cycling and thermal transients and its effects on the life of high voltage ac cables[END_REF]- [START_REF] Li | Carbon nanotube/polymer nanocomposites: Sensing the thermal aging conditions of electrical insulation components[END_REF]. These models are restrictive since they take into account a single aging factor as in the case of the Arrhenius law, or two factors as in the case of the electrothermal Crine model. In practice, the insulation lifespan is sensitive to numerous factors and to their interactions. Moreover, most of these models include physical parameters related to the studied material, whose estimation requires complex experiments. In recent years, statistical methods have been successfully used in electrical engineering for lifespan modeling based on accelerated aging tests [START_REF] Lahoud | Electrical aging of the insulation of low voltage machines: model definition and test with the design of experiments[END_REF]- [START_REF] Picot | Improvements on lifespan modeling of the insulation of low voltage machines with response surface and analysis of variance[END_REF]. These tests consider extreme constraints to speed up the degradation mechanism and to obtain measurable lifespan data [START_REF] Pulido | Using Accelerated Life Testing Techniques for Preventive Maintenance Scheduling[END_REF]. Based on this principle, complete insulation lifespan models are provided in this paper by considering three main aging factors: voltage, frequency and temperature, as well as their interactions. Experiences are organized by Design of Experiments (DoE) [START_REF] Fisher | The Design of Experiments[END_REF] and Response Surface (RS) [START_REF] Myers | Response Surface Methodology[END_REF] methods. Some extra experiments are also carried out, without constrained levels, for model validation. Then the overall measurements are considered to derive either parametric models based on DoE and RS, or non-parametric models based on recursive partitioning methods as regression trees [START_REF] Breiman | Classification and Regression Trees[END_REF] and random forests (RF) [START_REF] Breiman | Random Forests[END_REF]. The common aspect in these different models is the high number of variables (factors and interactions). This paper focuses on methods allowing the assessment of each variable effect and contribution in the resulting lifespan model. This study allows the identification of the least significant variables that can be eliminated, leading to a simpler and more accurate model, with a reduced number of required experiences. The paper is organized as follows: section II describes the experimental setup and the testing methodology. The measured data are analyzed in section III. In sections IV and V insulation lifespan is modeled through parametric and non-parametric methods, with an evaluation of relative errors and variable importance. Finally, conclusions and future works are discussed in section VI.

II. EXPERIMENTAL SETUP AND METHODOLOGY

A. Materials

The tested samples were selected among the most widely used materials in rotating machine wiring insulation for aeronautics applications [START_REF] Lahoud | Electrical aging of the insulation of low voltage machines: model definition and test with the design of experiments[END_REF]- [START_REF] Picot | Improvements on lifespan modeling of the insulation of low voltage machines with response surface and analysis of variance[END_REF]. Each sample consists of a twisted pair covered with a double layer of insulating T varnish of Poly-Ether-Imide (PEI) and Po (PAI) with a thermal class of 200°C (Eder diameter of 0.5mm), as shown in Fig. 1. Tw manufactured according to the American Na [16]. 

B. Stress factors

The single stress approach offers relative it is inapplicable to real life operating condit service life, the insulation of rotating machi to a combination of different stress fa electrical, mechanical and environmental contributing to reduce its lifetime.

In this paper, a generalized model is insulation lifespan using the multistress app interactions taken into account. Three m considered: the applied voltage (a periodic sq amplitude V), its frequency (F), and the t According to [START_REF] Lahoud | Electrical aging of the insulation of low voltage machines: model definition and test with the design of experiments[END_REF], the insulation lifespan log is supposed to follow an inverse power mod Log(10V), Log(F) and exp(-bT), with 4.825x10 -3 estimated as in [START_REF] Lahoud | Electrical aging of the insulation of low voltage machines: model definition and test with the design of experiments[END_REF]. Consequent are considered in the following lifespan mod

C. Accelerated aging tests

In order to get realistic lifetime measurem are tested under high stress levels, i.e. high operation conditions. This procedure, known Life Test, is widely used in aging studies in the lifetime of materials under test [START_REF] Pulido | Using Accelerated Life Testing Techniques for Preventive Maintenance Scheduling[END_REF].

This study deals with insulation degrad mainly due to PD phenomenon, occurring a and frequencies. Temperature values vary i corresponding to the different operating c rotating machine. They are also chosen wit class of the studied insulation materials. T amplitude and frequency ranges of the a stress, as well as the temperature range. 

III. STATISTICAL ANALY

A. Outlier detection

Outlier detection is a prim Outliers are defined as obse from the expected range and results [START_REF] Sim | Outlier Labeling with Boxplot Procedures[END_REF]. It is therefore lifespan values in the data outliers are identified amon associated to each experim achieved by using the boxpl in Fig. 3. Boxplots give a com the distribution of a varia statistics (the median, the Outliers are observations th Fence) or above the UF (Upp Fig. 3. Boxplot main characteristics a climatic chamber where the t the desired value ranging from electronic system generates a n amplitude (V) and frequency is depicted in Fig. 2. were carried out. Each one is f the stress values: V, F and T. pecified according to a design n section IV, while the other with no particular values for V, tested simultaneously for each lure time of each sample is espan at the considered stress ns range from 7 s to 1 h 21 mn.

wer electronics as a test bench for the YSIS OF MEASURED LIFESPAN mary step in any modeling task. ervations whose values deviate d may lead to biased modeling important to identify aberrant aset prior modeling. Note that ng the six measured lifespans ment separately. This can be ot graphical tool [START_REF] Sim | Outlier Labeling with Boxplot Procedures[END_REF] displayed mpact graphical summary about able, based on a set of order first, and the third quartiles). hat fall below the LF (Lower per Fence).

s.

B. Response form

The measured lifespans are used to derive either parametric or non-parametric models. In parametric models, only a single value is needed to represent the lifespan of each experiment. The mean value can be considered, provided that outliers have been removed. However, the sample median is more robust to extreme values than the sample mean [START_REF] Rousseeuw | Robust statistics for outlier detection[END_REF]. Therefore, by computing the median of all the repeated measures for each experiment, there is no need for a prior detection of outliers. In non-parametric models, outliers of each experiment are identified and removed. All the remaining lifespans are considered instead of a single value per experiment.

IV. PARAMETRIC MODELS

In this section, the model of the insulation lifespan Log(L) is designed as a linear additive function of the covariates Log(10V), Log(F), exp(-bT) and their interactions. In each studied method, the number of covariates and the required set of experiments composing the training set are specified. The remaining dataset is then used to test the validity of the model. Model parameters are estimated by Ordinary Least Square (OLS) method.

A. Methods

The values of stress factors are specified according to Design of Experiments (DoE) and Response Surface (RS) methods [START_REF] Lahoud | Electrical aging of the insulation of low voltage machines: model definition and test with the design of experiments[END_REF]- [START_REF] Picot | Improvements on lifespan modeling of the insulation of low voltage machines with response surface and analysis of variance[END_REF]. For experiment organization purpose, these two methods impose particular levels to each factor. Moreover, these methods consider normalized levels instead of real values.

According to DoE, experiments are organized such that each configuration involves a combination of the levels of the investigated factors [START_REF] Fisher | The Design of Experiments[END_REF]. This allows the study of the different effects of the factors simultaneously, increasing accuracy and reducing the number of required experiments. Two levels (±1) are considered in the lifespan DoE model. Consequently, with three factors, 2 3 = 8 experiments are needed. The lifespan model can be expressed as in [START_REF] Christou | Choice of optimal voltage for more electric aircraft wiring systems[END_REF]:

Log(L) DoE = M + E V Log(10V) + E F Log(F) + E T

exp(-bT) + I VF Log(10V).Log(F) + I VT Log(10V).exp(-bT) + I FT Log(F).exp(-bT) + I VFT Log(10V).Log(F).exp(-bT)

(1) RS method [START_REF] Myers | Response Surface Methodology[END_REF] is then used to extend the DoE model and to improve its accuracy by adding quadratic forms of the three factors that can also have a significant effect on the response. The lifespan model becomes (2):

Log(L) RS = Log(L) DoE + I VV Log(10V) 2 + I FF Log(F) 2 + I TT exp(-2bT) (2)
Therefore, three additional levels are required. The design configuration is specified according to Central Composite Design defined by: A complete 2 3 DoE design, Two axial points situated on the axis of each factor at a distance µ from the design center, defining two extra levels (± µ), n 0 central points at the design center, i.e. all factors at the 0 level. n 0 and µ values are set to 4 and √2 respectively, so that the obtained design is orthogonal. Thus the total number of required experiments is 18. 

B. Required experiments
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C. Results

Equations ( 1) and ( 2) can be seen as linear regression models relating the response vector Y = Log(L) composed of median lifespans with the covariate levels Log(10V), Log(F), etc. composing the covariate matrix X. Let be the unknown parameter vector to be estimated, thus (1) and ( 2) can be written in the matrix form: Y = X , where can be estimated by the OLS method.

1) DoE model

The first lifespan model is derived from only 8 experiments according to the DoE method. The model is applied on the remaining 24 experiments composing the test set. Relative errors between predicted and measured responses in the test set range from 0.84% to 234% with an average value of 31%.

The estimated parameters (average lifespan M, factor effects, and interaction effects) and the comparison between measured and predicted responses are displayed in Fig. 4. From the bar graph of Fig. 4, it can be observed that voltage and temperature have higher effects than the frequency, which also explains why their interaction is the most influential with respect to the other interactions. 

2) RS model

The factor effects obtained by DoE model reflect the practical reality, regarding the high influence of voltage and temperature. However, the model seems to be insufficient since some test points present very high errors (>100%). The model is thus extended by adding quadratic terms, leading to RS model. The training set now consists of 18 experiments. The results are depicted in Fig. 5. In addition to the high effects of V, T and their interaction, the RS model reveals a significant contribution of the quadratic term T 2 . The maximum and average relative errors computed on the test set decreases down to 53% and 25% respectively.

Therefore, this model is more accurate than the DoE model since it takes more significant effects into account, and it leads to lower errors in the test set.

V. NON-PARAMETRIC MODELS Previous models assume a linear additive relationship between the response and the predictors. However, it may be of interest to relax these assumptions and to provide a different lifespan-stress relationship with no explicit parametric form. Multivariate non-parametric methods present an alternative approach to linear regression models and are much more appropriate when models include a large number of predictor variables. In the following, nonparametric lifespan models are provided by means of two methods based on recursive partitioning.

A. Regression trees 1) Overview

Classification and regression trees were introduced by Breiman et al. in 1984 [START_REF] Breiman | Classification and Regression Trees[END_REF] for both exploring and modeling categorical (classification) or numeric (regression) data. Trees explain the variation of a single response variable (output) by one or more explanatory variables (inputs). In this study, only regression trees are considered, both predictors and response variables being numeric.

The basic idea behind regression trees is to recursively split the data into smaller and more homogeneous groups. At each node, the splitting explanatory variable and its corresponding threshold value are selected so that the homogeneity of the two resulting groups is maximized. At the end, each leaf is characterized by the mean value of the response variable in the corresponding final group [START_REF] Breiman | Classification and Regression Trees[END_REF]. There are several benefits for using this technique in modeling tasks:

The relation between the response and the predictor variables is explained through simple if-then rules, For a new observation, the response can be easily predicted by following the appropriate path throughout the tree, The hierarchical structure of the tree allows to compare the relative importance of the variables, Only the most significant predictors are included. On the other hand, there are two main drawbacks. First, a large number of observations is required so that the algorithm is able to split the data into several groups. Secondly, trees are unstable. Depending on the training set, different trees may be obtained with completely different inputs in the splitting rules, thus leading to completely different interpretations.

2) Application to lifespan modeling

Before applying the regression tree algorithm on the lifespan data, the following rules are defined:

Inputs: as in RS model, explanatory variables are the main factors (Log(10V), Log(F) and exp(-bT)), their quadratic terms and their interactions. Normalized levels are used. Output: the response variable is the measured lifespan logarithm. For each experiment, all repeated measurements -outliers excludedaccount instead of the unique median va Minimum number of observations per l Given that regression trees are unstable, p of the scope of this study. The focus is modeling part. The tree is computed using a (32 experiments). The result is displayed in F Fig. 6. Regression tree constructed with 32 experim lifespan modeling.

3) Discussion

The first analysis of the obtained tr following observations:

The voltage is the first splitting variabl it is the most influent factor, The voltage divides the lifespan data subgroups: short lifespans (high subtree) and long lifespans (low voltage At low voltages, only the temperature h effect on the lifespan, Voltage, frequency and temperature app of their relative importance (V, T then F T 2 is the most influent quadratic ter important than the main factors. Obviously, the model obtained with the reveals some similarities with the parametr models: the decreasing effect of V on th relative importance of V, F and T, and the s of the quadratic term T 2 (see Fig. 5).

However, the interaction between V a appear as a significant variable with this tre hand, this interaction becomes a splitting var the RS training set is used to construc experiments).

Therefore, there is a real dependency splitting variables selected by the algorithm set. Conclusions regarding the variable unstable. In order to obtain more robust re attempt to improve this model, random fores are taken into alue. leaf: 15. prediction is out s rather on the all available data Fig. 6. ments for insulation ree reveals the le, meaning that a into two main voltages, right es, left subtree), has a significant pear in the order F), rm, but is less e regression tree ric DoE and RS he lifespan, the significant effect and T does not ee. On the other riable when only ct the tree (18 y between the and the training importance are sults, and in an ts are studied.

B. Random forests 1) Overview

In order to overcome the and their low prediction reduced training set, ense developed. The basic idea is trees (n tree ) and to aggregate predictions. Based on this p [START_REF] Breiman | Random Forests[END_REF] were introduced by Bre few years, RF have become tool for non-parametric m domains [START_REF] Ruiz-Gazen | Storms prediction: logistic regression vs random forest for unbalanced data[END_REF]- [START_REF] Walschaerts | Stable variable selection for right censored data: comparison of methods[END_REF]. They sho are applicable even in high the number of observation number of predictors p) with

In RF, trees are grown s trees but with two main d constructed using a bootstra the sample data. Second, at input variables (denoted by m best split is calculated only m try = p/3. RF general algorit Fig. 7. Random forest general algor An important feature of sample. An OOB sample observations that have not be tree, and thus can be consid for each tree. OOB sample prediction accuracy and then each variable [START_REF] Grömping | Variable Importance Assessment in Regression: Linear Regression versus Random Forest[END_REF]:

Prediction Mean Squa random forest predictio

where n is the total nu the average prediction trees for which this obs e instability of regression trees performance obtained with a emble learning methods were s to generate a large number of e their results for more accurate principle, random forests (RF) eiman in 2001. Within the past a very popular and widely-used modeling in many scientific ow high predictive accuracy and h-dimensional problems (where ns n is much lower than the h highly correlated variables. similarly to classical regression differences. First, each tree is ap sample randomly selected in each node, a given number of m try ) is randomly chosen and the within this subset. By default, thm is depicted in Fig. 7.

rithm.

RF is the Out-Of-Bag (OOB) is composed by the set of een used for building the current dered as internal validation data es are used to estimate the RF n to quantify the importance of ared Error: the accuracy of a on can be estimated as in (3):

(3) umber of observations, is for the i th observation from all ervation has been OOB.

Variable importance (VI): the RF algorithm estimates the importance of a variable by averaging, over all the trees, the increase in OOB errors (mean decrease in accuracy) when the observed values of this variable are randomly permuted in the OOB samples, all other variables left unchanged.

2) Variable importance measure in lifespan model

Unlike regression trees, RF are a robust tool for VI assessment. This is demonstrated by examining VI obtained by RF in three different cases. In the following, RF parameters n tree and m try are set to 500 and 3, respectively. As in regression trees, response variable is the measured lifespan logarithm, and the explanatory variables values are the levels of Log(10V), Log(F), etc.

The first RF is generated from all lifespan data (32 experiments). In the second case, only RS experiments are used to generate the RF. VI estimated in these two cases are displayed in Fig. 8 and Fig. 9 respectively. Finally, 50 different RF were generated by randomly selecting a proportion of 2/3 from all the data at each run. For each variable, the computed VI (50 values) are displayed by means of boxplots, Fig. 10.

By comparing the VI magnitudes and medians in the bar diagrams and boxplots respectively, the same conclusions are drawn, meaning that in RF, the measure of VI is robust regardless of the RF training set. It is thus much more convenient to rely on RF rather than regression trees in evaluating variables' relative importance. Once again, voltage and temperature are the most influential factors. On one hand, the interaction between V and T is also the most important with respect to the other interactions. On the other hand, V 2 appears also as an important quadratic term in addition to T 2 . This is the only difference with RS variable effects.

3) Error comparison

Table IV summarizes the relative errors computed on the test sets of DoE, RS and RF models (with RF generated from RS training set). Despite all the advantages of nonparametric RF (flexibility, robustness, variable importance quantification), predictions are less accurate than those of the parametric RS model. Note that in all these models, high relative errors correspond to very short lifespans (< 1 min). Fortunately, these points are out of our interest since we are rather concerned in modeling long lifespans. 

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, insulation lifespan of twisted pairs covered with varnish is modeled through statistical parametric and non-parametric methods. These different approaches allow the evaluation of the variable importance from different points of view.

In parametric DoE and RS models, the lifespan is expressed as a linear additive function of the predictors and their effects (unknown parameters to be estimated). The most influent factors and interactions are identified as those having the highest estimated effects: the voltage, the temperature, their interaction, and the term T².

Although these models are straightforward and accurate, non-parametric regression trees and random forests offer another framework and methodology to model the insulation lifespan and to rate the variable importance. In regression trees, it is possible to identify the most influent factors by following their hierarchy. However, with different training sets (all lifespan data, and only RS training set), different trees are obtained, leading to different conclusions about the variable importance. The unstable nature of trees is overcome by random forests that combine a large number of trees and average their results. Another advantage of RF is that they allow the quantification of variable importance. The robustness of RF variable importance assessment is demonstrated through three different training sets.

In future works, the RF importance metric (error increase due to variable permutation) will be applied to evaluate the variable importance in DoE and RS models, for a comparison purpose. On the other hand, regression trees and random forests will be used to determine different lifespan models according to the constraint ranges. The results will then be validated by developing a piecewise linear regression model, with the same purpose of obtaining more restricted lifespan models.

Fig. 1 .

 1 Fig. 1. Twisted pairs EDERFIL C200 as test samp insulating varnish of Poly-Ether-Imide (PEI) and Poly-A
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 4 Fig. 4. DoE model: estimation of variable effects (right side) and comparison between measured and estimated lifespans (left side).
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 5 Fig. 5. RS model: estimation of variable effects (right side) and comparison between measured and estimated lifespans (left side).

Fig. 8 .

 8 Fig. 8. Variable importance (VI) computed by RF with all the data as a training set.
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 9 Fig. 9. Variable importance (VI) computed by RF with RS experiments as a training set.
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 10 Fig. 10. Variable importance (VI) computed by RF with a randomly selected training set (50 runs).
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  Table II displays the different configurations of the experiments required by DoE and RS methods. Levels are then defined in Table III.

TABLE II LEVELS

 II OF THE STRESS CONSTRAINTS REQUIRED FOR DOE AND RS

	Experiences	Level for factor V	Level for factor F	Level for factor T

TABLE III NORMALIZED LEVELS OF THE STRESS FACTORS Levels Log(10V) (kV) Log(F) (kHz) Exp(-bT) (°C)

 III 

	-√2	Log(10*1)	Log(5)	Exp(55b)
	-1	Log(10*1.174)	Log(5.872)	Exp(34.82b)
	0	Log(10*1.73)	Log(8.7)	Exp(-26.12b)
	+1	Log(10*2.554)	Log(12.77)	Exp(-119.74b)
	+√2	Log(10*3)	Log(15)	Exp(-180b)

TABLE IV TEST

 IV POINTS RELATIVE ERRORS

	Method	Minimum Error	Maximum Error	Average Error
	DoE	0.84%	234%	31%
	RS	2.04%	53%	25%
	RF -Case 2	3.39%	91%	33%

AUTHORS' INFORMATION