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ABSTRACT

Browsing soundscapes and sound databases generally re-

lies on signal waveform representations, or on more or less

informative textual metadata. The TM-chart representation

is an efficient alternative designed to preview and compare

soundscapes. However, its use is constrained and limited

by the need for human annotation. In this paper, we de-

scribe a new approach to compute charts from sounds, that

we call SamoCharts. SamoCharts are inspired by TM-

charts, but can be computed without a human annotation.

We present two methods for SamoChart computation. The

first one is based on a segmentation of the signal from a set

of predefined sound events. The second one is based on the

confidence score of the detection algorithms. SamoCharts

provide a compact and efficient representation of sounds

and soundscapes, which can be used in different kinds of

applications. We describe two application cases based on

field recording corpora.

1. INTRODUCTION

Compact graphical representations of sounds facilitate their

characterization. Indeed, images provide instantaneous vi-

sual feedback while listening sounds is constrained by their

temporal dimension. As a trivial example, record cov-

ers allow the user to quickly identify an item in a collec-

tion. Such compact representation is an efficient means for

sound identification, classification and selection.

In the case of online databases, the choice of a sound file

in a corpus can be assimilated to the action of browsing. As

proposed by Hjørland, “Browsing is a quick examination

of the relevance of a number of objects which may or may

not lead to a closer examination or acquisition/selection of

(some of) these objects” [1].

Numerous websites propose free or charged sound file

downloads. These files generally contain sound effects,
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isolated sound events, or field recordings. Applications

are numerous, for instance for music, movie soundtracks,

video games and software production. In the context of

the CIESS project 1 , our work focuses on an urban sound

database used for experimental psychology research.

Most of the times, on-line access to sound files and data-

bases is based on tags and textual metadata. These meta-

data are generally composed of a few words description of

the recording, to which may be added the name of its au-

thor, a picture of the waveform, and other technical proper-

ties. They inform about the sound sources, recording con-

ditions or abstract concepts related to the sound contents

(for example “Halloween”).

Natural sonic environments, also called field recordings

or soundscapes [2], are typically composed of multiples

sound sources. Such audio files are longer than isolated

sound events, usually lasting more than one minute. There-

fore, short textual descriptions are very hard to produce,

which makes it difficult to browse and select sounds in a

corpus.

The analysis and characterization of urban sound events

has been reported in different studies. Notably, they can be

merged in identified categories [3], which leads to a tax-

onomical categorization of environmental sounds (see [4]

for an exhaustive review). Outdoor recordings are often

composed of the same kinds of sound sources, for instance

birds, human voices, vehicles, footstep, alarm, etc. There-

fore, the differences between two urban soundscapes (for

example, a park and a street) mostly concern the time of

presence and the intensity of such identified sources. As a

consequence, browsing field recordings based on the known

characteristics of a set of predetermined sound events can

be an effective solution for their description.

Music is also made of repeated sound events. In instru-

mental music, these events can be the notes, chords, clus-

ters, themes and melodies played by the performers. When

electroacoustic effects or tape music parts come into play,

they can be of a more abstract nature. In the case of musique

concrete, the notion of “sound object” (which in practice is

generally a real sound recording) has its full meaning and

1 http://www.irit.fr/recherches/SAMOVA/

pageciess.html



a central position in the music formalization itself [5]. As

long as events are identified though, we can assume that

the previous soundscape-oriented considerations hold for

musical audio files as well.

The TM-chart [6] is a tool recently developed to provide

compact soundscape representations starting from a set of

sound events. This representation constitutes a bridge be-

tween physical measures and categorization, including acous-

tic and semantic information. Nevertheless, the creation of

a TM-chart relies on manual annotation, which is a tedious

and time-consuming task. Hence, the use of TM-charts in

the context of big data sets or for online browsing applica-

tions seems unthinkable.

Besides sound visualization, automatic annotation of au-

dio recordings recently made significant progress. The gen-

eral public has recently witnessed the generalization of speech

recognition system. Significant results and efficient tools

have also been developed in the fields of Music Informa-

tion Retrieval (MIR) and Acoustic Event Detection (AED)

in environmental sounds [7], which leads us to reckon with

sustainable AED in the coming years.

In this paper, we propose a new paradigm for soundscape

representation and browsing based on the automatic iden-

tification of predefined sounds events. We present a new

approach to create compact representations of sounds and

soundscapes that we call SamoCharts. Inspired by TM-

Charts and recent AED techniques, these representations

can be efficiently applied for browsing sound databases. In

the next section we present a state of the art of online sound

representations. The TM-chart tool is then described in

Section 3, and Section 4 proposes a quick review of Audio

Event Detection algorithms. Then we present in Section 5

the process of SamoCharts creation, and some applications

with field recordings in Section 6.

2. SOUND REPRESENTATION

2.1 Temporal Representations

From the acoustic point of view, the simplest and predom-

inant representation of a sound is the temporal waveform,

which describes the evolution of sound energy over time.

Another widely used tool in sound analysis and represen-

tation is the spectrogram, which shows more precisely the

evolution of the amplitude of frequencies over time. How-

ever, spectrograms remain little used by the general public.

While music notation for instrumental music has focused

on the traditional score representation, the contemporary

and electro-acoustic music communities have introduced

alternative symbolic representation tools for sounds such

as the Acousmograph [8], and the use of multimodal infor-

mation has allowed developing novel user interfaces [9].

All these temporal representations are more or less in-

formative depending on the evolution of the sound upon

the considered duration. In particular, in the case of field

recordings, they are often barely informative.

2.2 Browsing Sound Databases

On a majority of specialized websites, browsing sounds is

based on textual metadata. For instance, freeSFX 2 clas-

sifies the sounds by categories and subcategories, such as

public places and town/city ambience. In a given subcate-

gory, each sound is only described with a few words text.

Therefore, listening is still required to select a particular

recording.

Other websites, such as the Freesound project, 3 add a

waveform display to the sound description. In the case of

short sound events, this waveform can be very informative.

On this website it is colored according to the spectral cen-

troid of the sound, which adds some spectral information

to the image. However, this mapping is not precisely de-

scribed, and remains more aesthetic than useful.

The possibility of browsing sounds with audio thumbnail-

ing has been discussed in [10]. In this study, the authors

present a method for searching structural redundancy like

the chorus in popular music. However, to our knowledge,

this kind of representation has not been used in online sys-

tems so far.

More specific user needs have been recently observed

through the DIADEMS project 4 in the context of audio

archives indexing. Through the online platform Telemeta 5 ,

this project allows ethnomusicologists to visualize specific

acoustic information besides waveform and recording meta-

data, such as audio descriptors and semantic labels. This

information aims at supporting the exploration of a corpus

as well as the analysis of the recording. This website il-

lustrates how automatic annotation can help to index and

organize audio files. Improving its visualization could help

to assess the similarity of a set of songs, or to underline the

structural form of the singing turns by displaying homoge-

neous segments.

Nevertheless, texts and waveforms remain the most used

and widespread tools on websites. In the next sections,

we present novel alternative tools, that have been specially

designed for field recording representation.

2 http://www.freesfx.co.uk/
3 https://www.freesound.org/
4 http://www.irit.fr/recherches/SAMOVA/DIADEMS/
5 http://telemeta.org/



3. TM-CHART

3.1 Overview

The Time-component Matrix Chart (abbreviated TM-chart)

was introduced by Kozo Hiramatsu and al. [6]. Based on a

<Sound Source × Sound level> representation, this chart

provides a simple visual illustration of a sonic environment

recording, highlighting the temporal and energetic pres-

ence of sound sources. Starting from a predetermined set

of sound events (e.g. vehicles, etc.), and after preliminary

annotation of the recording, the TM-chart displays percent-

ages of time of audibility and percentages of time of level

ranges for the different sound sources. They constitute ef-

fective tools to compare sonic environment (for instance

daytime versus nighttime recordings).

3.2 Method

Despite a growing bibliography [11, 12], the processing

steps involved in the creation of TM-charts as not been pre-

cisely explained. We describe in this part our understand-

ing of these steps and our approach to create a TM-chart.

3.2.1 Estimation of the Predominant Sound

TM-charts rely on a preliminary manual annotation, which

estimates the predominant sound source at each time. To

perform this task, the signal can be divided in short seg-

ments, for example segments of one second. For each

segment, the annotator indicates the predominant sound

source. This indication is a judgment that relies on both

the loudness and the number of occurrences of the sources.

An example of annotation can be seen on Figure 1.

Afterwards, each segment label is associated to a cate-

gory of sound event, which can be for instance one of car,

voice, birds, or miscellaneous.

Figure 1. Preliminary annotation of a sound recording for the creation

for the creation of a TM-chart.

3.2.2 Computation of the Energy Level

An automatic process is applied to compute the energy of

the signal and the mean energy of each segment (respec-

tively in blue and red curves on Figure 1). We assume that

the sound pressure level can be calculated from the record-

ing conditions with a calibrated dB meter.

In this process, we can notice that the sound level of a

segment is not exactly the sound level of its predominant

source. Indeed the sound level of an excerpt depends upon

the level of each sound sources, and not only the predom-

inant one. However, we assume that these two measures

are fairly correlated.

3.2.3 Creation of the TM-chart

We can now calculate the total duration in the recording (in

terms of predominance) and the main sound levels for each

category of sound. From this information, a TM-chart can

be created.

Figure 2 shows a TM-chart based on the example from

Figure 1. It represents, for each category of sound, the

percentage of time and energy in the soundscape. The ab-

scissa axis shows the percentage of predominance for each

source in the recording. For one source, the ordinate axis

shows the duration of its different sound levels. For exam-

ple, the car-horn is audibly dominant for over 5 % of time.

Over this duration, the sound level of this event exceeds 60

dB for over 80 % of time.

Figure 2. Example of a TM-chart.

3.2.4 Interpretation of the TM-chart

Charts like the one on Figure 2 permit quick interpreta-

tions of the nature of the sound events that compose a

soundscape. We could infer for instance that the sound-

scape has been recorded close to a little traffic road, with

distant conversations (low energy levels). From such inter-

pretation, one can clearly distinguish and compare sonic

environments recorded in different places [6].

The main issue in the TM-chart approach is the need

for manual annotation, a time-consuming operation which

cannot be applied to big data sets. Therefore, the use of

TM-charts seems currently restricted to specific scientific

research on soundscapes. In the next sections we will show

how recent researches and works on sound analysis can be

leveraged to overcome this drawback.



4. AUDIO EVENT DETECTION

Various methods have been proposed for the Audio Event

Detection (AED) from continuous audio sequences recorded

in real life. These methods can be divided in two cate-

gories.

The first category of methods aims at detecting a large

set of possible sound events in various contexts. For in-

stance, the detection of 61 types of sound, such as bus

door, footsteps or applause, has been reported in [7]. In

this work the author modeled each sound class by a Hidden

Markov Model (HMM) with 3 states, and Mel-Frequency

Cepstral Coefficients (MFCC) features. Evaluation cam-

paigns, such as CLEAR [13] or AASP [14], propose the

evaluation of various detection methods on a large set of

audio recordings from real life.

The second category of methods aims at detecting fewer

specific types of sound events. This approach privileges

accuracy over the number of sounds that can be detected.

It generally relies on a specific modeling of the “target

sounds” to detect, based on acoustic observations. For ex-

ample, some studies propose to detect gunshots [15] or wa-

ter sounds [16], or the presence of speech [17].

These different methods output a segmentation of the sig-

nal informed by predetermined sound events. They can

also provide further information that may be useful for

the representation, particularly in the cases where they are

not reliable enough. Indeed, the detection algorithms are

generally based on a confidence score, that allows to tune

the decisions. For instance, Hidden Markov Model, Gaus-

sian mixture models (GMM) or Support Vector Machine

(SVM), all rely on confidence or “likelihood” values. Since

temporal confidence values can be computed by each method

of detection, it is possible to output at each time the proba-

bility that a given sound event is present in the audio signal.

Based on these observations, we propose a new tool for

soundscape visualization, the SamoChart, which can rely

either on automatic sound event segmentation, or on confi-

dence scores by sound events.

5. SAMOCHART

The SamoChart provides a visualization sound recordings

close to that of a TM-chart. At the difference of a TM-

chart, it can be computed automatically from a segmenta-

tion or from temporal confidence values.

In comparison with TM-charts, the use of the automatic

method overcomes a costly human annotation and avoids

subjective decision-making.

5.1 Samochart based on Event Segmentation

5.1.1 Audio Event Segmentation

SamoCharts can be created from Audio Event Detection

annotations. This automatic annotation is an independent

process that can be performed following different approaches,

as mentioned in Section 4. We will suppose in the next part

that an automatic annotation has been computed from a set

of potential sound events (“targets”). For each target sound

event, this annotation provides time markers related to the

presence or absence of this sound in the overall record-

ing. In addition to the initial set of target sounds, we add a

sound unknown that corresponds to the segments that have

not been labeled by the algorithms.

5.1.2 Energy Computation

As in the TM-chart creation process, we compute the en-

ergy of the signal. However, if the recording conditions of

the audio signal are unknown, we cannot retrieve the sound

pressure level. In this case, we use the RMS energy of each

segment, following the equation:

RMS(w) = 20× log10

√

√

√

√

N
∑

i=0

w2(i) (1)

where w is an audio segment of N samples, and w(i) the

value of the ith sample.

5.1.3 SamoChart Creation

From the information of duration and energy, we are able

to create a SamoChart. Figure 3 shows an example of a

SamoChart based on event segmentation considering two

possible sound events.

Figure 3. SamoChart based on event segmentation.

Unlike TM-charts, we can notice from this method that

the total percentage of sound sources can be higher than

100% if the sources overlap.



5.2 Samochart based on Confidence Values

Most Audio Event Detection algorithms actually provide

more information than the output segmentation. In the

following approach, we propose to compute SamoCharts

from the confidence scores of these algorithms.

We use for each target sound the temporal confidence val-

ues outputted by the method, which can be considered as

probabilities of presence (between 0 and 1). The curve on

Figure 4 shows the evolution of the confidence for the pres-

ence of a given sound event during the analyzed recording.

We use a threshold on this curve, to decide if the sound

event is considered detected or not. This threshold is fixed

depending on the detection method and on the target sound.

To obtain different confidence measures, we divide the up-

per threshold portion in different parts.

Figure 4. Confidence measures for a sound event.

With this approach, we infer the probability of presence

for each sound event according to a confidence score. Fig-

ure 5 shows the SamoChart associated to a unique sound

event. In this new chart, the sound level is replaced by the

confidence score.

Figure 5. SamoChart based on confidence value.

5.3 Implementation

We made a JavaScript implementation to create and dis-

play SamoCharts, which performs a fast and “on the fly”

computation of the SamoChart. The code is downloadable

from the SAMoVA web site 6 . It uses an object-oriented

paradigm to facilitate future development.

In order to facilitate browsing applications, we also chose

to modify the size of the chart according to the duration of

the corresponding sound excerpt. We use the equation 2 to

calculate the height h of the Samochart from a duration d

in seconds.

h =















1 if d < 1

2 if 1 ≤ d < 10

2× log
10
(d) if d ≥ 10

(2)

We also implemented a magnifying glass function that

provides a global view on the corpus with the possibility

of zooming in into a set of SamoCharts. Furthermore, the

user can hear each audio file by clinking on the plotted

charts.

6. APPLICATIONS

6.1 Comparison of soundscapes (CIESS project)

Through the CIESS project, we have recorded several ur-

ban soundscapes at different places and times. The sound

events of these recordings are globally the same, for in-

stance vehicle and footstep. However, their numbers of oc-

currences are very different according to the time and place

of recording. As an application case, we computed sev-

eral representations of two soundscapes. Figure 6 shows

the colored waveforms of these extracts as they could have

been displayed on the Freesound website.

Figure 6. Colored waveforms of two soundscapes.

As we can see, these waveforms do not show great differ-

ences between the two recordings.

We used AED algorithms to detect motor vehicle, foot-

step and car-horn sounds on these two example record-

ings [18]. Then, we computed SamoCharts based on the

confidence score of these algorithms (see Figure 7).

The SamoCharts of Figure 7 are obviously different. They

provide a semantic interpretation of the soundscapes, which

reveals important dissimilarities. For instance, the vehicles

are much more present in the first recording than in the

second one. Indeed, the first recording was recorded on an

important street, while the second one was recorded on a

pedestrian street.

6 http://www.irit.fr/recherches/SAMOVA/

pageciess.html



Figure 7. SamoCharts of the two recordings of Figure 6, based on confi-

dence values.

6.2 Browsing a corpus from the UrbanSound project

If the differences between two soundscapes can easily be

seen by comparing two charts, the main interest of the

SamoChart is their computation on bigger sound databases.

UrbanSound dataset 7 has been created specifically for

soundscapes research. It provides a corpus of sounds that

are labeled with the start and end times of sound events

of ten classes: air conditioner, car horn, children playing,

dog bark, drilling, enginge idling, gun shot, jackhammer,

siren and street music. The SamoCharts created from these

annotations allow to figure out the sources of each file, as

well as their duration and their sound level. They give an

overview of this corpus. Figure 8 shows the SamoCharts

of nine files which all contain the source car horn. The

duration of these files range form 0.75 to 144 seconds.

Figure 8. Browsing recordings of the UrbanSound corpus.

6.3 SoundMaps

Other applications can be found from the iconic chart of

a soundscape. Soundmaps, for example, are digital ge-

ographical maps that put emphasis on the soundscape of

every specific location. Various projects of sound maps

7 https://serv.cusp.nyu.edu/projects/

urbansounddataset/

have been proposed in the last decade (see [19] for a re-

view). Their goals are various, from giving people a new

way to look at the world around, to preserving the sound-

scape of specific places. However, as in general with sound

databases, the way sounds are displayed on the map is usu-

ally not informative. The use of SamoCharts on soundmaps

can facilitate browsing and make the map more instructive.

6.4 Music Representations

If the process we described to make charts from sounds

was originally set up to display soundscapes, it could cer-

tainly be extended to other contexts. Indeed, Samocharts

give an instantaneous feedback on the material that com-

pose the sonic environment. Handled with the appropri-

ate sound categories, they could provide a new approach

to overview and analyze a set of musical pieces composed

with the same material.

For example, Samocharts could be used on a set of con-

crete music pieces. The charts could reveal the global uti-

lization of defined categories of sounds (such as bell or

birds songs). In the context of instrumental music analysis,

they could reflect the utilization of the different families of

instrument (e.g. brass, etc.), representing the duration and

musical nuances. Applied on a set of musical pieces or ex-

tracts, they could emphasize orchestration characteristics.

Figure 9 shows an analysis of the first melody (Theme A)

of Ravel’s Boléro, which is repeated nine times with dif-

ferent orchestrations. The SamoCharts on the figure dis-

play orchestration differences, as well as the rising of a

crescendo. The main chart (Theme A-whole) shows how

each family of instrument is used during the whole extract.

Figure 9. Analysis of the first melody of Ravel’s Bolérol (repetitions

number 1, 4 and 9, and global analysis). The horizontal axis corresponds

to the percentage of time where a family of instrument is present. This

percentage is divided by the number of instruments: the total reaches

100% only if all instruments play all the time. The vertical axis displays

the percentage of time an instrument is played in the different nuances.



7. CONCLUSION AND FUTURE WORKS

In this paper, we presented a new approach to create charts

for sound visualization. This representation, that we name

SamoChart, is based on the TM-chart representation. Un-

like TM-charts, the computation of SamoCharts does not

rely on human annotation. SamoCharts can be created

from Audio Event Detection algorithms and computed on

big sound databases.

A first kind of SamoChart simply uses the automatic seg-

mentation of the signal from a set of predefined sound

sources. To prevent eventual inaccuracies in the segmen-

tation, we proposed a second approach based on the confi-

dence scores of the previous methods.

We tested the SamoCharts with two different sound data-

bases. In comparison with other representations, Samo-

Charts provide great facility of browsing. On the one hand,

they constitute a precise comparison tool for soundscapes.

On the other hand, they allow to figure out what kinds of

soundscapes compose a corpus.

We also assume that the wide availability of SamoCharts

would make them even more efficient for accustomed users.

In this regard, we could define a fixed set of color which

would correspond to each target sound.

The concepts behind TM-charts and Samocharts can fi-

nally be generalized to other kind of sonic environments,

for example with music analysis and browsing.
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speech/music classification in audio documents,” En-

tropy, vol. 1, no. 2, p. 3, 2002.

[18] P. Guyot and J. Pinquier, “Soundscape visualization:

a new approach based on automatic annotation and

samocharts,” in Proceedings of the 10th European

Congress and Exposition on Noise Control Engineer-

ing, EURONOISE, 2015.

[19] J. Waldock, “Soundmapping. critiques and reflections

on this new publicly engaging medium,” Journal of

Sonic Studies, vol. 1, no. 1, 2011.


