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BROWSING SOUNDSCAPES

Browsing soundscapes and sound databases generally relies on signal waveform representations, or on more or less informative textual metadata. The TM-chart representation is an efficient alternative designed to preview and compare soundscapes. However, its use is constrained and limited by the need for human annotation. In this paper, we describe a new approach to compute charts from sounds, that we call SamoCharts. SamoCharts are inspired by TMcharts, but can be computed without a human annotation. We present two methods for SamoChart computation. The first one is based on a segmentation of the signal from a set of predefined sound events. The second one is based on the confidence score of the detection algorithms. SamoCharts provide a compact and efficient representation of sounds and soundscapes, which can be used in different kinds of applications. We describe two application cases based on field recording corpora.

INTRODUCTION

Compact graphical representations of sounds facilitate their characterization. Indeed, images provide instantaneous visual feedback while listening sounds is constrained by their temporal dimension. As a trivial example, record covers allow the user to quickly identify an item in a collection. Such compact representation is an efficient means for sound identification, classification and selection.

In the case of online databases, the choice of a sound file in a corpus can be assimilated to the action of browsing. As proposed by Hjørland, "Browsing is a quick examination of the relevance of a number of objects which may or may not lead to a closer examination or acquisition/selection of (some of) these objects" [START_REF] Hjørland | The importance of theories of knowledge: Browsing as an example[END_REF].

Numerous websites propose free or charged sound file downloads. These files generally contain sound effects, isolated sound events, or field recordings. Applications are numerous, for instance for music, movie soundtracks, video games and software production. In the context of the CIESS project 1 , our work focuses on an urban sound database used for experimental psychology research.

Most of the times, on-line access to sound files and databases is based on tags and textual metadata. These metadata are generally composed of a few words description of the recording, to which may be added the name of its author, a picture of the waveform, and other technical properties. They inform about the sound sources, recording conditions or abstract concepts related to the sound contents (for example "Halloween").

Natural sonic environments, also called field recordings or soundscapes [START_REF] Schafer | The tuning of the world[END_REF], are typically composed of multiples sound sources. Such audio files are longer than isolated sound events, usually lasting more than one minute. Therefore, short textual descriptions are very hard to produce, which makes it difficult to browse and select sounds in a corpus.

The analysis and characterization of urban sound events has been reported in different studies. Notably, they can be merged in identified categories [START_REF] Guastavino | Categorization of environmental sounds[END_REF], which leads to a taxonomical categorization of environmental sounds (see [START_REF] Payne | Research into the practical and policy applications of soundscape concepts and techniques in urban areas[END_REF] for an exhaustive review). Outdoor recordings are often composed of the same kinds of sound sources, for instance birds, human voices, vehicles, footstep, alarm, etc. Therefore, the differences between two urban soundscapes (for example, a park and a street) mostly concern the time of presence and the intensity of such identified sources. As a consequence, browsing field recordings based on the known characteristics of a set of predetermined sound events can be an effective solution for their description.

Music is also made of repeated sound events. In instrumental music, these events can be the notes, chords, clusters, themes and melodies played by the performers. When electroacoustic effects or tape music parts come into play, they can be of a more abstract nature. In the case of musique concrete, the notion of "sound object" (which in practice is generally a real sound recording) has its full meaning and a central position in the music formalization itself [START_REF] Schaeffer | Traité des objets musicaux[END_REF]. As long as events are identified though, we can assume that the previous soundscape-oriented considerations hold for musical audio files as well.

The TM-chart [START_REF] Hiramatsu | The physcial expression of soundscape: An investigation by means of time component matrix chart[END_REF] is a tool recently developed to provide compact soundscape representations starting from a set of sound events. This representation constitutes a bridge between physical measures and categorization, including acoustic and semantic information. Nevertheless, the creation of a TM-chart relies on manual annotation, which is a tedious and time-consuming task. Hence, the use of TM-charts in the context of big data sets or for online browsing applications seems unthinkable.

Besides sound visualization, automatic annotation of audio recordings recently made significant progress. The general public has recently witnessed the generalization of speech recognition system. Significant results and efficient tools have also been developed in the fields of Music Information Retrieval (MIR) and Acoustic Event Detection (AED) in environmental sounds [START_REF] Mesaros | Acoustic event detection in real life recordings[END_REF], which leads us to reckon with sustainable AED in the coming years.

In this paper, we propose a new paradigm for soundscape representation and browsing based on the automatic identification of predefined sounds events. We present a new approach to create compact representations of sounds and soundscapes that we call SamoCharts. Inspired by TM-Charts and recent AED techniques, these representations can be efficiently applied for browsing sound databases. In the next section we present a state of the art of online sound representations. The TM-chart tool is then described in Section 3, and Section 4 proposes a quick review of Audio Event Detection algorithms. Then we present in Section 5 the process of SamoCharts creation, and some applications with field recordings in Section 6.

SOUND REPRESENTATION

Temporal Representations

From the acoustic point of view, the simplest and predominant representation of a sound is the temporal waveform, which describes the evolution of sound energy over time. Another widely used tool in sound analysis and representation is the spectrogram, which shows more precisely the evolution of the amplitude of frequencies over time. However, spectrograms remain little used by the general public.

While music notation for instrumental music has focused on the traditional score representation, the contemporary and electro-acoustic music communities have introduced alternative symbolic representation tools for sounds such as the Acousmograph [START_REF] Geslin | Sound and musical representation: the acousmographe software[END_REF], and the use of multimodal information has allowed developing novel user interfaces [START_REF] Damm | Multimodal presentation and browsing of music[END_REF].

All these temporal representations are more or less informative depending on the evolution of the sound upon the considered duration. In particular, in the case of field recordings, they are often barely informative.

Browsing Sound Databases

On a majority of specialized websites, browsing sounds is based on textual metadata. For instance, freeSFX2 classifies the sounds by categories and subcategories, such as public places and town/city ambience. In a given subcategory, each sound is only described with a few words text. Therefore, listening is still required to select a particular recording.

Other websites, such as the Freesound project, 3 add a waveform display to the sound description. In the case of short sound events, this waveform can be very informative. On this website it is colored according to the spectral centroid of the sound, which adds some spectral information to the image. However, this mapping is not precisely described, and remains more aesthetic than useful.

The possibility of browsing sounds with audio thumbnailing has been discussed in [START_REF] Bartsch | Audio thumbnailing of popular music using chroma-based representations[END_REF]. In this study, the authors present a method for searching structural redundancy like the chorus in popular music. However, to our knowledge, this kind of representation has not been used in online systems so far.

More specific user needs have been recently observed through the DIADEMS project 4 in the context of audio archives indexing. Through the online platform Telemeta 5 , this project allows ethnomusicologists to visualize specific acoustic information besides waveform and recording metadata, such as audio descriptors and semantic labels. This information aims at supporting the exploration of a corpus as well as the analysis of the recording. This website illustrates how automatic annotation can help to index and organize audio files. Improving its visualization could help to assess the similarity of a set of songs, or to underline the structural form of the singing turns by displaying homogeneous segments.

Nevertheless, texts and waveforms remain the most used and widespread tools on websites. In the next sections, we present novel alternative tools, that have been specially designed for field recording representation.

TM-CHART

Overview

The Time-component Matrix Chart (abbreviated TM-chart) was introduced by Kozo Hiramatsu and al. [START_REF] Hiramatsu | The physcial expression of soundscape: An investigation by means of time component matrix chart[END_REF]. Based on a <Sound Source × Sound level> representation, this chart provides a simple visual illustration of a sonic environment recording, highlighting the temporal and energetic presence of sound sources. Starting from a predetermined set of sound events (e.g. vehicles, etc.), and after preliminary annotation of the recording, the TM-chart displays percentages of time of audibility and percentages of time of level ranges for the different sound sources. They constitute effective tools to compare sonic environment (for instance daytime versus nighttime recordings).

Method

Despite a growing bibliography [START_REF] Matsui | Timecomponent matrix chart as a tool for designing sonic environment having a diversity of sound sources[END_REF][START_REF] Bild | Habitats assen pilot: Testing methods for exploring the correlation between sound, morphology and behavior[END_REF], the processing steps involved in the creation of TM-charts as not been precisely explained. We describe in this part our understanding of these steps and our approach to create a TM-chart.

Estimation of the Predominant Sound

TM-charts rely on a preliminary manual annotation, which estimates the predominant sound source at each time. To perform this task, the signal can be divided in short segments, for example segments of one second. For each segment, the annotator indicates the predominant sound source. This indication is a judgment that relies on both the loudness and the number of occurrences of the sources. An example of annotation can be seen on Figure 1.

Afterwards, each segment label is associated to a category of sound event, which can be for instance one of car, voice, birds, or miscellaneous. 

Computation of the Energy Level

An automatic process is applied to compute the energy of the signal and the mean energy of each segment (respectively in blue and red curves on Figure 1). We assume that the sound pressure level can be calculated from the recording conditions with a calibrated dB meter.

In this process, we can notice that the sound level of a segment is not exactly the sound level of its predominant source. Indeed the sound level of an excerpt depends upon the level of each sound sources, and not only the predominant one. However, we assume that these two measures are fairly correlated.

Creation of the TM-chart

We can now calculate the total duration in the recording (in terms of predominance) and the main sound levels for each category of sound. From this information, a TM-chart can be created.

Figure 2 shows a TM-chart based on the example from Figure 1. It represents, for each category of sound, the percentage of time and energy in the soundscape. The abscissa axis shows the percentage of predominance for each source in the recording. For one source, the ordinate axis shows the duration of its different sound levels. For example, the car-horn is audibly dominant for over 5 % of time. Over this duration, the sound level of this event exceeds 60 dB for over 80 % of time. 

Interpretation of the TM-chart

Charts like the one on Figure 2 permit quick interpretations of the nature of the sound events that compose a soundscape. We could infer for instance that the soundscape has been recorded close to a little traffic road, with distant conversations (low energy levels). From such interpretation, one can clearly distinguish and compare sonic environments recorded in different places [START_REF] Hiramatsu | The physcial expression of soundscape: An investigation by means of time component matrix chart[END_REF].

The main issue in the TM-chart approach is the need for manual annotation, a time-consuming operation which cannot be applied to big data sets. Therefore, the use of TM-charts seems currently restricted to specific scientific research on soundscapes. In the next sections we will show how recent researches and works on sound analysis can be leveraged to overcome this drawback.

AUDIO EVENT DETECTION

Various methods have been proposed for the Audio Event Detection (AED) from continuous audio sequences recorded in real life. These methods can be divided in two categories.

The first category of methods aims at detecting a large set of possible sound events in various contexts. For instance, the detection of 61 types of sound, such as bus door, footsteps or applause, has been reported in [START_REF] Mesaros | Acoustic event detection in real life recordings[END_REF]. In this work the author modeled each sound class by a Hidden Markov Model (HMM) with 3 states, and Mel-Frequency Cepstral Coefficients (MFCC) features. Evaluation campaigns, such as CLEAR [START_REF] Stiefelhagen | The CLEAR 2006 evaluation[END_REF] or AASP [START_REF] Giannoulis | Detection and classification of acoustic scenes and events[END_REF], propose the evaluation of various detection methods on a large set of audio recordings from real life.

The second category of methods aims at detecting fewer specific types of sound events. This approach privileges accuracy over the number of sounds that can be detected. It generally relies on a specific modeling of the "target sounds" to detect, based on acoustic observations. For example, some studies propose to detect gunshots [START_REF] Clavel | Events detection for an audio-based surveillance system[END_REF] or water sounds [START_REF] Guyot | Water sound recognition based on physical models[END_REF], or the presence of speech [START_REF] Pinquier | Robust speech/music classification in audio documents[END_REF].

These different methods output a segmentation of the signal informed by predetermined sound events. They can also provide further information that may be useful for the representation, particularly in the cases where they are not reliable enough. Indeed, the detection algorithms are generally based on a confidence score, that allows to tune the decisions. For instance, Hidden Markov Model, Gaussian mixture models (GMM) or Support Vector Machine (SVM), all rely on confidence or "likelihood" values. Since temporal confidence values can be computed by each method of detection, it is possible to output at each time the probability that a given sound event is present in the audio signal.

Based on these observations, we propose a new tool for soundscape visualization, the SamoChart, which can rely either on automatic sound event segmentation, or on confidence scores by sound events.

SAMOCHART

The SamoChart provides a visualization sound recordings close to that of a TM-chart. At the difference of a TMchart, it can be computed automatically from a segmentation or from temporal confidence values.

In comparison with TM-charts, the use of the automatic method overcomes a costly human annotation and avoids subjective decision-making.

Samochart based on Event Segmentation

Audio Event Segmentation

SamoCharts can be created from Audio Event Detection annotations. This automatic annotation is an independent process that can be performed following different approaches, as mentioned in Section 4. We will suppose in the next part that an automatic annotation has been computed from a set of potential sound events ("targets"). For each target sound event, this annotation provides time markers related to the presence or absence of this sound in the overall recording. In addition to the initial set of target sounds, we add a sound unknown that corresponds to the segments that have not been labeled by the algorithms.

Energy Computation

As in the TM-chart creation process, we compute the energy of the signal. However, if the recording conditions of the audio signal are unknown, we cannot retrieve the sound pressure level. In this case, we use the RMS energy of each segment, following the equation:

RM S(w) = 20 × log 10 N i=0 w 2 (i) (1) 
where w is an audio segment of N samples, and w(i) the value of the i th sample.

SamoChart Creation

From the information of duration and energy, we are able to create a SamoChart. Figure 3 shows an example of a SamoChart based on event segmentation considering two possible sound events. Unlike TM-charts, we can notice from this method that the total percentage of sound sources can be higher than 100% if the sources overlap.

Samochart based on Confidence Values

Most Audio Event Detection algorithms actually provide more information than the output segmentation. In the following approach, we propose to compute SamoCharts from the confidence scores of these algorithms. We use for each target sound the temporal confidence values outputted by the method, which can be considered as probabilities of presence (between 0 and 1). The curve on Figure 4 shows the evolution of the confidence for the presence of a given sound event during the analyzed recording. We use a threshold on this curve, to decide if the sound event is considered detected or not. This threshold is fixed depending on the detection method and on the target sound. To obtain different confidence measures, we divide the upper threshold portion in different parts. With this approach, we infer the probability of presence for each sound event according to a confidence score. Figure 5 shows the SamoChart associated to a unique sound event. In this new chart, the sound level is replaced by the confidence score. 

Implementation

We made a JavaScript implementation to create and display SamoCharts, which performs a fast and "on the fly" computation of the SamoChart. The code is downloadable from the SAMoVA web site 6 . It uses an object-oriented paradigm to facilitate future development.

In order to facilitate browsing applications, we also chose to modify the size of the chart according to the duration of the corresponding sound excerpt. We use the equation 2 to calculate the height h of the Samochart from a duration d in seconds.

h =        1 if d < 1 2 if 1 ≤ d < 10 2 × log 10 (d) if d ≥ 10 (2) 
We also implemented a magnifying glass function that provides a global view on the corpus with the possibility of zooming in into a set of SamoCharts. Furthermore, the user can hear each audio file by clinking on the plotted charts.

APPLICATIONS 6.1 Comparison of soundscapes (CIESS project)

Through the CIESS project, we have recorded several urban soundscapes at different places and times. The sound events of these recordings are globally the same, for instance vehicle and footstep. However, their numbers of occurrences are very different according to the time and place of recording. As an application case, we computed several representations of two soundscapes. Figure 6 shows the colored waveforms of these extracts as they could have been displayed on the Freesound website. As we can see, these waveforms do not show great differences between the two recordings. We used AED algorithms to detect motor vehicle, footstep and car-horn sounds on these two example recordings [START_REF] Guyot | Soundscape visualization: a new approach based on automatic annotation and samocharts[END_REF]. Then, we computed SamoCharts based on the confidence score of these algorithms (see Figure 7).

The SamoCharts of Figure 7 are obviously different. They provide a semantic interpretation of the soundscapes, which reveals important dissimilarities. For instance, the vehicles are much more present in the first recording than in the second one. Indeed, the first recording was recorded on an important street, while the second one was recorded on a pedestrian street. 

Browsing a corpus from the UrbanSound project

If the differences between two soundscapes can easily be seen by comparing two charts, the main interest of the SamoChart is their computation on bigger sound databases.

UrbanSound dataset7 has been created specifically for soundscapes research. It provides a corpus of sounds that are labeled with the start and end times of sound events of ten classes: air conditioner, car horn, children playing, dog bark, drilling, enginge idling, gun shot, jackhammer, siren and street music. The SamoCharts created from these annotations allow to figure out the sources of each file, as well as their duration and their sound level. They give an overview of this corpus. Figure 8 shows the SamoCharts of nine files which all contain the source car horn. The duration of these files range form 0.75 to 144 seconds. 

SoundMaps

Other applications can be found from the iconic chart of a soundscape. Soundmaps, for example, are digital geographical maps that put emphasis on the soundscape of every specific location. Various projects of sound maps have been proposed in the last decade (see [START_REF] Waldock | Soundmapping. critiques and reflections on this new publicly engaging medium[END_REF] for a review). Their goals are various, from giving people a new way to look at the world around, to preserving the soundscape of specific places. However, as in general with sound databases, the way sounds are displayed on the map is usually not informative. The use of SamoCharts on soundmaps can facilitate browsing and make the map more instructive.

Music Representations

If the process we described to make charts from sounds was originally set up to display soundscapes, it could certainly be extended to other contexts. Indeed, Samocharts give an instantaneous feedback on the material that compose the sonic environment. Handled with the appropriate sound categories, they could provide a new approach to overview and analyze a set of musical pieces composed with the same material.

For example, Samocharts could be used on a set of concrete music pieces. The charts could reveal the global utilization of defined categories of sounds (such as bell or birds songs). In the context of instrumental music analysis, they could reflect the utilization of the different families of instrument (e.g. brass, etc.), representing the duration and musical nuances. Applied on a set of musical pieces or extracts, they could emphasize orchestration characteristics.

Figure 9 shows an analysis of the first melody (Theme A) of Ravel's Boléro, which is repeated nine times with different orchestrations. The SamoCharts on the figure display orchestration differences, as well as the rising of a crescendo. The main chart (Theme A-whole) shows how each family of instrument is used during the whole extract. 

CONCLUSION AND FUTURE WORKS

In this paper, we presented a new approach to create charts for sound visualization. This representation, that we name SamoChart, is based on the TM-chart representation. Unlike TM-charts, the computation of SamoCharts does not rely on human annotation. SamoCharts can be created from Audio Event Detection algorithms and computed on big sound databases. A first kind of SamoChart simply uses the automatic segmentation of the signal from a set of predefined sound sources. To prevent eventual inaccuracies in the segmentation, we proposed a second approach based on the confidence scores of the previous methods. We tested the SamoCharts with two different sound databases. In comparison with other representations, Samo-Charts provide great facility of browsing. On the one hand, they constitute a precise comparison tool for soundscapes. On the other hand, they allow to figure out what kinds of soundscapes compose a corpus. We also assume that the wide availability of SamoCharts would make them even more efficient for accustomed users. In this regard, we could define a fixed set of color which would correspond to each target sound.

The concepts behind TM-charts and Samocharts can finally be generalized to other kind of sonic environments, for example with music analysis and browsing.
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 1 Figure 1. Preliminary annotation of a sound recording for the creation for the creation of a TM-chart.
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 3 Figure 3. SamoChart based on event segmentation.
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 4 Figure 4. Confidence measures for a sound event.
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 5 Figure 5. SamoChart based on confidence value.
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 6 Figure 6. Colored waveforms of two soundscapes.
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 7 Figure 7. SamoCharts of the two recordings of Figure 6, based on confidence values.
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 8 Figure 8. Browsing recordings of the UrbanSound corpus.
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 9 Figure 9. Analysis of the first melody of Ravel's Bolérol (repetitions number 1, 4 and 9, and global analysis). The horizontal axis corresponds to the percentage of time where a family of instrument is present. This percentage is divided by the number of instruments: the total reaches 100% only if all instruments play all the time. The vertical axis displays the percentage of time an instrument is played in the different nuances.
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