
HAL Id: hal-01375393
https://hal.science/hal-01375393

Submitted on 3 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation of language model of Information Retrieval
for empty answers Problem in databases

Abdelhamid Chellal, Karima Amrouche

To cite this version:
Abdelhamid Chellal, Karima Amrouche. Adaptation of language model of Information Retrieval for
empty answers Problem in databases. 12th International Symposium on Programming and Systems
(ISPS 2015), Apr 2015, Alger, Algeria. pp. 142-148. �hal-01375393�

https://hal.science/hal-01375393
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15303

The contribution was presented at ISPS 2015 :
www.isps.usthb.dz/index.html

Official URL: http://dx.doi.org/10.1109/ISPS.2015.7244977

To cite this version : Chellal, Abdelhamid and Amrouche, Karima Adaptation of
language model of Information Retrieval for empty answers Problem in databases.
(2015) In: 12th International Symposium on Programming and Systems (ISPS 2015),
28 April 2015 - 30 April 2015 (Alger, Algeria).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Adaptation of language model of Information

Retrieval for empty answers Problem in databases

Abdelhamid Chellal

IRIT

University of Toulouse III

Toulouse, France

Email: abdelhamid.chellal@irit.fr

Karima Amrouche

ESI

Alger, Algeria

Email:k amrouche@esi.dz

Abstract—Information over the web is increasingly retrieved
from relational databases in which the query language is based
on exact matching, data fulfil completely the query or not. The
results returned to the user contain only tuples that satisfy the
conditions of the query. Thereby, the user can be confronted to
the problem of empty answers in the case of too selective query. To
overcome this problem, several approaches have been proposed
in the literature in particular those based on query conditions
relaxation. Others works suggest the use of fuzzy sets theory to
introduce flexible queries. Another line of research proposes the
adaptation of information retrieval (IR) approaches to get an
approximate matching in databases.In this paper, we discuss an
adaptation of language model of IR to deal with empty answers.
The main idea behind our approach is that instead of returning
an empty response to the user, a ranked list of tuples that have the
most similar values to those specified in user’s query is returned.

Keywords—Information retrieval, empty answers, databases,
language model, similarity.

I. INTRODUCTION

An information over the Web is increasingly retrieved from
relational databases. Users will become benefit if they are
allowed to search the underlying databases directly. In fact,
a large number of databases such as digital libraries, scientific
databases and travel reservation systems are available. Seeking
for information on these databases is increasingly sought by
ordinary users wishing to fulfil their informations needs.That
new search applications are bringing the principles of infor-
mation retrieval (IR) to database systems.

The notion of relevance isn’t often present in relational
database management systems (DBMS). Traditional interro-
gation approaches support only a boolean model query [1],
[2]. The correspondence between tuple and query is exact,
data fulfil completely a query or not. Thus, a select SQL
query (Structured Query Language) returns only tuples that
exactly meet the specified conditions. Therefore the user may
be faced with empty answer problem or the over-abundant
answer problem which aren’t gracefully handled. The former
occurs when none data satisfy the conditions whereas the later
takes place where many data satisfy the conditions.

To handle the aforementioned problems, several solutions
have been proposed in the literature many of them are based
on automatic relaxation [3], [4], [5], [6]. These approaches
tries to obtain automatically a less restrictive variant of the

initial query by weakening the predicates in query’s conditions.
The challenge in this case is to find a form of relaxation that
preserves, as much as possible, the semantics of the original
query submitted by the user.

Other works propose the use of flexible queries [7], [8], [9],
[10], that is queries with vague conditions whose semantics is
based on fuzzy logic [11]. The result of a flexible query is a
set of all answers satisfying, in some degree between 0 and 1,
the query’s conditions. The advantage of this approach is that
the chance of obtaining an empty answer set is reduced. But,
in the situation where no available data can satisfy a flexible
query is not handling.

As mentioned, an empty answers or too little answers
returned occurs when the user query is too selective. To avoid
a frustrated situation for the user in the case of an empty
answer, we think that it might be interesting to return a ranked
list of data that approximately meet the user’s need. The
ranking function should capture user’s preference by assessing
a similarity between tuples in the databases and the query.

The Approximate matching, ranking and returning the
most relevant results of a query are a popular paradigm in
Information Retrieval (IR). A variety of IR models have been
proposed, there are a lot of them in [12]. Some of IR models
have been adapted to databases. In [1] an adaptation of the
vector model was proposed to enable approximative matching
in databases as solution for the empty answer problem. An
other work [13] suggests the use of the basic probabilistic
model to rank answers for handling over-abundant answer
problem.

In this paper, a ranking function based on adaptation of
language model of Hiemstra [14] is proposed to handle the
empty answers problem. The purpose is that instead of return-
ing an empty answer to the user, a ranked list of tuples with
attributes values that are the most similar to those specified in
the query is proposed. We use a uni-gramme language model
to asses the similarity between value specified by the user in
the query and those in the tuple.

In this article, we discuss only the case of queries on a
single table with conjunctive conditions. The condition can
have an atomic form (ai = qi) or a more general form with
BEETWEN clause in the case of numeric attribute or IN clause
for the categorical attribute.

The rest of this paper is organized as follows. We introduce

related work in section 2. Our approach for handling empty
answer in databases is detailed in section 3 and section 4
presents a discussion. Section 5 details our experimental evalu-
ation setup of proposed approach. We end with the conclusion
in Section 6.

II. RELATED WORK

Several researches have been proposed to deal with empty
answers problem. The first solutions that have focused on
approximate matching in databases, are based on extending
the relational model to fuzzy sets [11]. They propose methods
express and evaluate flexible queries[3], [9], [10], [8], [15]
through modelling of vagueness by using the theory of fuzzy
sets. In these works a relational algebra and operators have
been studied in detail to take into account degrees of preference
and manipulate fuzzy relations [16]. A flexible query language,
SQLf (Structured Query Language Fuzzy) [7], an extension of
SQL the query language databases was specified.

An other category of researches suggests a relaxation of
the query that fails to avoid empty answers. The principle of
these approaches is to expand the scope of query conditions
so that it can return responses that meet the original query,
instead of presenting an empty result [3]. The original query
is then rewritten as an approximate query by relaxing the query
criteria range.

The data distribution in the database and knowledge dis-
covery are used to choice the constraints, the relaxation order
of specified attributes and the degree of relaxation for each
attribute. [17], [4], [5], [18], [19], [20]. In [2] authors propose
AQRR (Approximate query ranking & results), an automatic
approach to relax query and rank results in which an evaluation
of the distances between values for both kind of attributes
(categorical and numeric) is proposed. AQRR assigns a weight
for each attribute in the relaxation process. To rank tuples
they generate user’s contextual preferences from database and
workload and use them to create a priori orders of tuples.

The closest work to our approach is [1] in which an
adapting of the classic vector space model of IR is discussed to
handle the problem of empty answers. The proposed relevance
score function is an adaptation of the scalar product function
of vector space model.

Score(T,Q) =
m
∑

k=1

S(tk, qk)

With tk is a value of attribute ak in tuple T and qk is the
specified value of the same attribute in the query.

S(tk, qk) is the degree of similarity between the values of
attributes specified in the query and those existing in the tuple.
It is estimated by:

S(tk, qk) =

{

QF (qk)× IDF (qk) if tk = qk
0 Otherwise

QF (qk)×IDF (qk) is an adaptation of the term frequency
and inverse document frequency (tf-idf) common weighting
technique used in IR. Where IDF (qk) represents the im-
portance of value of the attribute ak specified in query in
the database. It is inversely proportional to its occurrence
frequency in the database and it is evaluated according to

the nature of the attribute (categorical or numeric).QF (qk)
represents the importance of the value qk in the workload.it is
proportional with their frequency in the workload.

III. A LANGUAGE MODEL FOR THE EMPTY ANSWERS

PROBLEM

To be able to use IR model, we consider each tuple as doc-
ument, attributes values as terms and the table as the collection
of documents. The main idea, behind our proposition, is to be
able to have an approximate matching we assess the similarity
between values. Therefore, we measure the probability of
likelihood between query’s values and those in the tuple by
using a probalistic model (language model). This likelihood
is measured according to the similarity between the attribute
values. The tuples are then ranked according to their score and
only the Top-k tuples are returned to the user.

A. Principle of the Proposed Approach

Language model approaches in information retrieval are
based on the assumption: when a user submits a query to an
information retrieval system, he has already had in his mind
one or many ideals documents that he is looking forward its
[21]. The query is then inferred by the user from these docu-
ments [22], [21]. The relevance of a document is considered
as the probability that the document’s language model would
generate the terms of the query: P (Q|Md).

By analogy to IR, we consider that when a user makes
a search in a database, he has already had in his mind the
ideals tuples to his information need. He translates these
ideals tuples to a query in which he specifies the values of
attributes he wants. In general the query does not contain all
the attributes of the tuple since the user is not supposed to
know the schema of the database. Also only the most important
attributes, according to the user are specified.

The idea behind our approach is as follows. We assume that
each tuple in a table is generated by a language model MT .
The relevance score of each tuple to the query Q is estimated
by computing the probability that the query is generated by
the model of the tuple.

To estimate this probability, we suggest to use a unigram
language model with smoothing. Using a language model with
smoothing gives us an approximate matching. Furthermore,
with a smoothing, tuples in which no values specified in the
query occurs will not get a null score and enable to have
an approximate matching. We chose smoothing of Jelineck
Mercer, the same one used in the IR model of [14].

To provide an overview of our approach, we will follow
the illustrative example below: Example: Consider the used car
relation CarTable (Make, Model, Version, Year, Transmission,
Color, Engine, Mileage). The attributes Make, Model, Color,
Transmission and Engine are categorical attributes where the
attributes Year and Mileage are numerical. Assume that we
have the following empty answer query Q: Select * form
CarTable where Model= Polo and Engine= Diesel and Year
= 2005 and Mileage = 50000.

B. Relevance Score of Tuples

Let Q be a conjunctive query with atomic conditions of
the form (a1 = q1, a2 = q2, ..., an = qn) on a table D which
has the attributes (a1, a2, ..., am) with (m > n) and Ai is the
domain of the attribute ai. The relevance score of a tuple T =
(t1, t2, ..., tm) from the table D for the query Q is evaluated
as follows:

Score(Q, T) = P (q1, q2, ..., qn|MT)

In the databases there is a dependency between tuples, but
takes it into account leads to the fact that all the conditions
specified in the query have to be satisfied simultaneously. So,
we’ll not be able to have an approximate matching and the
problem of empty answers will come back again. Since we are
looking for handling this problem through the implementation
of approximate matching between attribute values of tuples
and those specified in the query, we assume that the values of
attributes in the query are independent. Therefore we obtained:

Score(Q, T) =
∏

qi∈Q

P (qi|T)

In order to estimate P (qi|T) we use a mixed model based
on interpolation of Jelineck Mercer [21] that combines between
the tuple language model and the table D language model as
follow:

P (qi|T) = αPML(qi|T) + (1− α)PML(qi|D)

PML(qi|D) is the probability of producing the value qi in
the table D. It represents the importance of this value in the
database through its frequency of occurrence in Table D. It is
evaluated using the maximum likelihood estimation (ML) as
follows:

PML(qi|D) =
f(qi)

∑

vi∈Ai

f(vi)
(1)

Where f(qi) is the number of tuples in table D having the
value qi in attribute ai and vi ∈ Ai are the different values of
the attribute ai that exist in D. We note here that if the attribute
ai is not null,

∑

vi∈Ai

f(vi) will be equal to the number of row

in the table.

Considering PML(qi|T) = tf(qi)
|T | is not interesting since

the frequency tf(qi) of value qi in any tuple is equal to either 0
or 1. In addition, in the case of empty answers, it’s more likely
that this frequency is equal to 0. Therefore, instead of using
maximum likelihood estimation, to evaluate this probability
we define Psim(qi|T). It is the probability that the value qi
of the attribute ai specified in the query Q is similar to the
corresponded one in the tuple T. We attempt to measure the
similarity between the value that the user is looking forward
and the existing one in the tuple. More the two values are
distinct more the probability is smaller. So Psim(qi|T) is the
probability that both values are similar and consequently the
probability that the existing value in the tuple is relevant to
the user.

Attribute values in a database are not similar. Its can be
numerical or categorical. Therefore, the probability Psim(qi|T)

will be estimated in two various ways depending on the nature
of each attribute. We take in consideration the features of each
kind. To achieve this, we adopt the formulas that estimate
similarity between values proposed by [2], [20]. Notice here
that the main purpose of this two works is to assess the degree
of relaxation of predicates according to the similarity with
values specified by the user in his query.

1) Similarity between two numerics attribute values: A
simple way to deal with numeric attributes is to discretize the
domain of numerical attribute in several intervals and consider
all values of attribute belonging to each rang as categorical.
Thus, we can apply the same approach in assessing the degree
of similarity between two attribute values regardless of their
nature. This approach raises several constraints including the
choice of intervals and their number. The major disadvantage
of this technique is that tow values that belong to different
intervals are treated as completely different independently of
the real distance between them.

The aim is to assess the degree of similarity between
two numeric values in an automatic way without the need of
expertise and independently of the domain. For that, we adopt
a function proposed by [2] that considers the continuous nature
of numerical attributes. It evaluates the similarity between two
values according to the distance between them with taking into
account the distribution of different values in the database. The
similarity between two attribute values v1, v2 is estimated by:

Sim(v1, v2) =
1

1 + (v1−v2
h

)2
withh = 1.06σ × n− 1

5 (2)

Where σ is standard deviation of the attribute values in
D and n is a number of tuple in D. Thus, the probability
Psim(qi|T) is computed as follows:

Psim(qi|T) =
Sim(qi, ti)

∑

tk∈Ai

Sim(qi, tk)
(3)

In this formula, we can see that when the query and the
tuple contain the same value (qi = ti), Sim(qi, ti) = 1 and
Psim(qi|T) will get the greatest value. In contrast, if ti is very
different from qi, Sim(qi, ti) tends to 0 and Psim(qiT) tends
to the minimum.

2) Similarity between two categorical attribute values : To
assess the similarity between two categorical attributes values,
we use an adaptation of the method proposed in [2], [20]. It
is measured as the percentage of common AV-pairs (Attribute
Value Pairs) that are associated to them. An AV-pair of a value
v of attribute ai represents all attribute values of the ai and
their frequency of occurrence in the database that belong to
tuple having ai = v. Precisely, it is the result of the following
SQL query:

Select distinct aj , count(*)
From D where ai = v group by aj .

The answer set that contains each AV-pair as a structure
is called the supertuple. The supertuple contains a set of

TABLE I. SUPERTUPLE FOR MODEL = POLO.

Attribute Value

Make Volkswagen:112

Mileage 10000-20000: 12, 20000-40000: 25,2

Color Black: 46, Silver: 15,

year 2008: 17, 2007: 37,

keywords for each attribute in the relation not bound by the
AV-pair. The table 1 shows the supertuple for value ”Polo” of
attribute ”Model” in a used car database.

Given a categorical value, all the AV-pairs associated to
the value can be seen as the features describing the value.
The similarity between two values can be estimated by the
commonality in the features (AV-pairs) describing them. The
similarity between two AV-pairs can be measured as the
similarity shown by their supertuples. The supertuples contains
sets of keywords for each attribute in the relation and therefore
Jaccard Coefficient which assesses the similarity between two
sets is used to determine the similarity between two supertu-
ples.

In this paper, the similarity coefficient between two cat-
egorical values is calculated as a sum of the set similarity
on each attribute[11]. If we consider that Cqi is a supertuple
of value qi specified in the query and Cti is supertuple for
attribute value ti in the tuple T, the similarity between these
two values is estimated by:

V Sim(Cqi , Cti) =
m−2
∑

j=1

J(Cqi .Aj , Cti .Aj)

withJ(A,B) =
|A ∩B|

|A ∪B|
(4)

Now, to estimate the probability Psim(qi|Tj) in the case of
categorical attribute we use this assessment but with normal-
ization in order to have values between 0 and 1.

Psim(qi|T) =
V Sim(Cqi , Cti)

∑

tk∈Ai

V Sim(Cqi , Ctk)
(5)

In our example, tuples that have Model = Polo will get
V Sim(Cqi , Cti) = 4 and those with for instance Model =
Clio get V Sim(Cqi , Cti) = 1, 8407. This leads us to have
an approximate matching between values of tuples and those
specified in query. The first ten most relevant tuples returned
for query Q in our example are presented in the table below:

C. Generalization for query with BETWEEN and IN Condi-
tions

In Section III.1 and III.2, we assumed that a query is
a conjunction of atomic conditions such as ak = qk. A
useful generalization is the ability to specify a range/set of
values for numerical/categorical attributes. Lets consider that
the query Q has a condition (C1, and...and, Cm), where
each Ck is generalized form as ai IN Qi = (qi1, qi2, , qim)
for categorical attributes or ai BETWEEN [vsup, vmin] the
range for numeric attributes. We generalize the estimation of

the probability Psim(qi|T) described in equation (2,3) and
(4,5) and PML(qi|D) in equation (1) as follows:

• For numeric attributes values:

Psim(qi|T) =



















1
∑

tk∈Aj

Sim(qi,tk)
if ti ∈ [Vsup, Vmin]

max[Sim(Vsup,ti),Sim(Vmin,ti)]
∑

tk∈Aj

Sim(qi,tk)

(6)

And

PML(qi|D) =
max[f(Vsup), f(Vmin)]

∑

tk∈Aj

F (tk)
(7)

• For categorical attributes values:

Psim(qi|T) =























m−2
∑

tk∈Ai

V Sim(Cqi
,Ctk

)
if ti ∈ [qi1, qim]

max
qik∈Qi

V Sim(Cqi
,Cti

)

∑

tk∈Ai

V Sim(Cqi
,Ctk

Otherwise
(8)

Where m is the number of attribute and m − 2 is the
maximum value of the similarity between two categorical
attribute values equation (4).

IV. DISCUSSION

With this proposed approach, answers returned are ranked
according to their relevance score for the query. This score
represents the degree of similarity between attribute values of
the query and those of the tuple. Therefore, the set of returned
tuples will be composed of three categories of tuple. The first
subset is composed by all tuples in which all attribute values
are equal to those specified in the query, if they exist, since
we are in the case of empty answers. The second subset will
gather tuples that have at least one attribute value specified in
the query. The last group contains tuples that doesn’t have any
value specified in the query.

Notice here that in general the number of tuple that belong
to the last category is very important. In order to avoid to
overload the user with irrelevant tuple, we select only the first
top-k tuples.

The closest work to ours is [1] where an adaptation of
the vector space model is proposed to handle the problem
of empty answers. The relevance score is assessed through
two functions, IDF (t) which represents the importance of
the value in the database and QF (t) which estimates the
significance of the value t through its frequency of occurrence
in database workload. The main differences between our
approach and theirs beside the fact that ours is based on a
probabilistic model (Language Model) are:

• The relevance score of a tuple depends both on the
degree of similarity between attribute values specified
in the query and those in tuple and the importance
of values in the database which is determined by

their frequency of occurrence in the table. While the
approach of [1] is based exclusively on the importance
of values in the database and workload;

• In our approach, we do not need a database workload
which is not always available;

• The results returned by [1] are grouped into several
equivalence classes. Where all tuples in each class
have the same score. To break ties among the tuples
in each class, they compute the importance of not
specified attribute values in the workload. While in
our approach tuples have gotten a different score even
if they belong to the same category.

V. EXPERIMENTAL EVALUATION

Evaluating and comparing the quality of different rank-
ing database alternatives is challenging. Unlike Information
Retrieval which relies on extensive user studies and available
benchmarks, such infrastructure is not available for evaluating
database ranking. Therefore we adopt the same test protocol
that was followed by [1], [2] the two closest works to our.

To evaluate the capacity of our approach to return rel-
evance tuple in approximate matching with query and the
ranking quality, we implemented the described approach and
conducted experiments to assess their effectiveness. For our
evaluation, we set up a used car database CarTable(Make,
Model, Version, Transmission, Year, Color, Engine, Mileage).
It contains 16,842 tuples extracted from database of the web-
site:www.ouedkniss.com. The attributes Make, Model, Ver-
sion, Transmission, Color whereas Engine are categorical
attributes and the attributes Year and Mileage are numerical
attributes.

The proposed approach was implemented in two com-
ponents: a Pre-processing component and Query processing
component. The main task of the pre-processing component
is to compute the similarity score between categorical values
which are then stored in an auxiliary databases. It computes the
parameters used by the similarity function for each attribute
according to its nature. The Query processing component uses
the data estimated in the Pre-processing component to compute
a relevance score for each tuple in table.

In this experimental evaluation, we compare the perfor-
mance of our adaptation of language model in databases with
a baseline. We chose as baseline the list returned by the DBMS
after submitting the same queries that we had already removed
randomly one condition.

A. Test protocol

We requested 5 users to submit 3 too selective SQL queries
to the databases CarTable according to their preference. Each
query had on average of 2.8 of specified attributes. The
majority of these queries returned an empty response (except
for two queries where there ware only one tuple returned).
Table 2 presents these queries.

Table 3 shows the results returned by our approach as
response for the query number 4. In this example, we can see
that since there are no tuples that meet the specified conditions
in query number 4, our approach returns primarily the same

TABLE II. QUERIES OF TEST PROTOCOL.

N Query Specified attributes Response

1 Hyundai Accent gaz 2007 4 0

2 Polo gasoline 2007 3 0

3 Leon gasoline 2007 3 0

4 Polo diesel 2004 50000km 4 0

5 Logan gaz 2011 3 0

6 Accent diesel 2008 3 0

7 Nissan sunny gaz 2009 70000km 5 0

8 Renault Scenic gasoline 2004 4 0

9 Symbol gaz 2009 80000km 4 0

10 206 diesel 2006 3 0

11 Kia Picanto 2005 50000km 4 0

12 Yaris 2006 60000km 3 0

13 Yaris sedan 2008 60000km 4 0

14 Ibiza gasoline 2011 3 1

15, Alto 2009 50000km 3 1

TABLE III. TUPLES ON APPROXIMATE MATCHING RETURNED FOR

QUERY NUMBER 4.

Make Model Version Engine Year Mileage

Volkswagen Polo 1.9 sdi Diesel 2005 43500

Volkswagen Polo 1.9 sdi Diesel 2005 57000

Volkswagen Polo 1.9 sdi Diesel 2005 90000

Volkswagen Polo 1.9 sdi Diesel 2005 99500

Volkswagen Polo 1.9 sdi Diesel 2005 102000

Volkswagen Polo 1.9 sdi Diesel 2005 117000

Volkswagen Polo 1.9 sdi Diesel 2005 130000

Volkswagen Polo 1.9 sdi Diesel 2005 130000

Renault Clio 1.5 dci Diesel 2004 42400

Peugeot 307 1.4 hdi Diesel 2004 55000

cars that the user is sought after (vw polo diesel) with the
closest year and mileage values to what were specified in the
query (2005 and 50000 km). After that, our approach presents
other kind of cars that belong to the same class and were made
in the same year specified in the query (2004).

Since, it is not practical to ask users to mark all tuples of
the database according to their relevance (preferred or not) for
each query and rank the whole query results by order of their
preference. We used the strategy followed by [1], [2] which
can be describe as follows: For each query Qi, we generated
a list of 60 tuples likely to contain a good mix of relevant
and irrelevant tuples to the query. We did this by mixing
the Top-30 results of our approach after removing ties with
a few randomly selected tuples and adding tuples returned
by traditional SQL queries which was constructed from the
original user query by eliminating one of these conditions
randomly chosen.

Finally, we presented the queries along with their corre-
sponding list to each user in our study (our approach and a
baseline). Each user’s responsibility was to mark each tuple
in the list relevant or irrelevant to the query Qi and mark
the Top 10 tuples that they preferred most. We then applied
our ranking functions against the test queries. We compare
the result obtained by the proposed approach against those
obtained by the baseline.

Fig. 1. R metric for the 15 queries obtained by the proposed approach and
the baseline.

B. Experimental results

To evaluate the effectiveness of our approach, we adopt
two types of measures: the standard collaborative filtering
metric R-metric and recall. The R-metric is used to assess
the ranking quality. The recall allows us to assess the ability
of our approach to return relevant tuples to the query. In fact,
unlike conventional IR the notion of relevance is different to
the known RI, here it’s more related to the user preference.

1) Quality sorting of returned tuples : To compare the
ranking quality of results returned by the proposed function
with the human responses, we used the standard collaborative
filtering metric R. It is defined by the following equation: [1],
[2]

R =
∑

i

ri

2(
i−1

9
)

(9)

In the equation, ri is the user’s preference for the ith tuple
in the ranked list returned by our approach (1 if it is marked
relevant, and 0 otherwise). The intuition behind the R metric
is that if relevant tuples are ranked low, they contribute less to
the value of R with exponential decay.

Figure 1 shows the R metric values obtained for each query
in the test protocol (R values are normalized by dividing by the
maximum possible value for R). We observe that the ranking
quality of our outlier approach outperforms the baseline.

The average of R-metric for the fifteen queries obtained
by the proposed approach is 0,86 whereas it is 0,44 for the
baseline. This result reveals that the relevant tuples are ranked
high in a returned list which shows that the proposed approach
is a good ranking function.

2) The quality of approximate answers : To assess the abil-
ity of our approach to return relevant tuples with approximate
matching, we use the recall metric. Recall is the ratio of the
number of relevant tuples retrieved to the total number of
relevant tuples.

Figure 2 shows the number of relevant tuples returned by
the proposed approach for each query of the test protocol
whereas figure 3 presents a recall of the proposed approach
compared with the recall of the baseline.

Fig. 2. Number or relevant tuples returned by proposed approach VS total
number of relevant tuples by query.

Fig. 3. Recall for each query obtained by the proposed approach and the
baseline.

Where RTR is the number of relevant tuples for the query
retrieved by our approach and RT is the total number of
relevant tuples for the query.

Thus, we can see that our approach outperforms the base-
line in all queries. the recall of the outlier approach is (0,90%)
almost triples of the recall of the baseline (0.31%).

VI. CONCLUSION

We presented in this paper a new approach to address the
problem of empty answers in the database. Through adapting
the language model of IR, we propose a new approach to
implement an approximate matching between attributes values
in databases. Our approach is based in assessing the relevance
of tuples according to the degree of similarity between attribute
values of tuples and query.

We evaluated the proposed approach according to the test
protocol followed by the two closest works. [1], [2]. The
results obtained are motivating. Our outlier approach clearly
outperforms the baseline, improving both ranking quality and
recall which indicating that adapting the language model in
database is beneficial for handling the empty answer problem.
Our approach has shown promise, and is worthy of further
investigation, especially more conclusive user studies and
adaptation for the ranking results in databases to handle an
over-abundant problem.

In perspective, it would be interesting to investigate gener-
alization of the functions of relevance scores proposed in this
article for queries on multiple tables. For join queries, the first
solution that has come to our mind is to compute the cartesian
product in an auxiliary table and applies the proposed approach
on this table.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis, “Automated ranking
of database query results proceedings,” in In Proceedings of First

Biennial Conference on Innovative Data Systems Research (CIDR),
2003.

[2] X. Meng, Z. Ma, and L. Yan, “Answering approximate queries over
autonomous web databases,,” in Track: XML and Web Data / Session:

XML Querying, 2009.

[3] S. Amer-Yahia and D. Srivastava, “Tree pattern relaxation,” in In

Proceedings of EDBT02, Prague, Czech republic, 2002, pp. 496–513.

[4] I. Muslea and T. J. Lee, “query relaxation via bayesian causal structures
discovery,” in Proceedings of the national conference of artificial

intelligence (AAAI-05), 2005, pp. 831–236.

[5] U. Nambiar and S. Kambhampati, “Answering imprecise database
queries: A novel approach,” in ACM Workshop on Web Information

and Data Management (WIDM), Nov. 2003.

[6] S. Moises and S. P. and, “Dealing with empty and overabundant
answers to flexible queries,” vol. 2, pp. 12–18, Feb. 2014. [Online].
Available: http://dx.doi.org/10.4236/jdaip.2014.21003

[7] P. Bosc and O. Pivert, “Sqlf : A relational database language for fuzzy
querying,” in In Proceedings of IEEE Transaction on Fuzzy Systems,

3(1),, 1995, pp. 1–17.

[8] P. Bosc, D. Dubois, O. Pivert, and H. Prade, “Flexible queries in
relational databases, the example of the division operator,” pp. 281–
302, 1997.

[9] V. Tahani, “A conceptual framework for fuzzy query processing : A step
toward very intelligent database systems,” no. 13, pp. 289–303, 1977.

[10] O. Pivert, “Contribution linterrogation flexible des bases de donnes :
expression et valuation de requłtes flous,” Ph.D. dissertation, Universit
de Rennes, Rennes, France, 1991.

[11] L. Zadeh, “Fuzzy sets,” vol. 3, no. 3, pp. 338–353, 1965.

[12] A. Baeza-Yates and A. R.-N. Berthier, Modern Information Retrieval:

the concepts and Technology behind search (2nd edition) ACM Press.
Addison-Wesley, 2011.

[13] H. V. W. G. Chaudhuri S, Das G, “Probabilistic ranking of database
query results,” in Proceedings of the 30th VLDB Conference, Toronto,
Canada, 2004.

[14] D. Hiemstra, “A linguistically motivated probabilistic model of infor-
mation retrievalg,” in Proc European Conference of Digital Library

(ECDL98), Sep. 1998.

[15] P. Bosc, A. Hadjali, and O. Pivert, “Fuzzy sets and systems journal,”
no. 12, 2008.

[16] P. Bosc, L. Litard, O. Pivert, and D. Rocacher, Base de donnes,

Gradualit et Imprcision dans les bases de donnes : Ensembles flous,

requłtes flexibles et interrogation de donnes mal connues. Paris, France:
AEditions ellipses, 2004.

[17] I. Muslea, “Machine learning for online query relaxation,” in Proceed-

ings of the national conference of knowledge and discovery and data

mining, KDD2004, 2004, pp. 246–255.

[18] U. Nambiar and S. Kambhampati, “Mining approximate funcitonal
dependencies and concept similarities to answer imprecise queries,” in
WebDB, Jun. 2004.

[19] ——, “Answering imprecise queries over web databases,” in VLDB

Demonstration, 2005.

[20] ——, “Answering imprecise queries over autonomous web databases,”
in Proc. ICDE 2006, 22 nd International Conference on Data Engi-

neering, 2006.

[21] M. Boughanem, W. Kraaij, and J. Nie, Modles de langue pour la

recherche dinformations, dans Les systmes de recherche dinformations

- Modles conceptuels. Paris, France: Hermes, 2004.

[22] J. Ponte, W. Bruce, and A. Crift, “Language modeling approach to in-
formation retrieval,” in Proc. Research and Development in Information

Retrieval, ACM-SIGIR, 1998, pp. 275–281.

