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Unbalance Responses of Rotor/Stator Systems
with Nonlinear Bearings by the Time Finite
Element Method

D. Demailly, F. Thouverez, and L. Jézéquel
Département de Mécanique des Solides, LTDS, Ecole Centrale de Lyon,
Ecully Cedex, France

Since the early 1970s, major works in rotordynamics were
oriented toward the calculation of critical speeds and unbal-
ance responses. The current trend is to take into account
many kinds of non-linearities in order to obtain more real-
istic predictions. The use of algorithms based on nonlinear
methods is therefore needed. This article first describes the
time finite element method. The method is then applied to
nonlinear rotor/stator systems where bearings present a ra-
dial clearance.
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Many investigations have taken place concerning the calcu-
lation of critical speeds and unbalance responses in rotor dy-
namics and research now tends to get more realistic predictions
(Ehrich, 1992). This new realism is actually due to the trend for
high-performance rotating machinery, claiming reduced sizes
and higher efficiency.

Engineers now have to take into account non-linearities in
their models. In the aircraft engine domain, those non-linearities
come from components, such as bearings or squeeze film
dampers (Vance, 1988), and contact phenomena, such as fric-
tion in joints or rubbing between rotor and stator (Choi and Bae,
2001). Special algorithms are needed to deal with such non-
linearities. Although those based on temporal integration are
able to track all kinds of non-linearities, they are not well suited
for rotordynamics. Indeed, the steady-state solution caused by
unbalance is often of interest; the use of a temporal integration
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is therefore not appropriate since one has to wait until after the
transient phase has died which can be very time-consuming.

Thus, frequential methods like the incremental harmonic bal-
ance (Kim et al., 1991) or trigonometric collocation methods
(Nataraj, 1989) are of great use thanks to their time efficiency.
However, these methods become less attractive as the frequency
content of the solution includes a high number of harmonics.
On the other hand, methods in the time domain, such as the
shooting method (Sundararajan and Noah, 1997), can also be
used to find out periodic solutions however this one becomes
time-consuming when dealing with large systems.

In this article, the time finite element method is described.
This time-based method enables us to get steady-state solutions
and to assess their stability. To prove its reliability in rotordy-
namics problems, two examples are addressed. Both consist of
rotor/stator systems with radial clearance in the bearings.

THE TIME FINITE ELEMENT METHOD

Description of the Method
The aim of the time finite element method is to find out the

periodic solutions of forced systems. It is based on Hamilton’s
Law of Varying Action (Bayley, 1975; Baruch and Riff, 1982):∫ t f

t0

(δL + δW )dt = δxT · p
∣∣t f

t0
[1]

i.e., ∫ t f

t0

(δ ẋ T Mẋ − δxT · (Cẋ + K x − f (t, x, ẋ)))dt

= δxT · Mẋ
∣∣t f

t0
[2]

The principle of this method is to interpolate the displace-
ment of all spatial degrees of freedom between given instants ti
and ti+1 by polynomials (Wang, 1995, 1997). In this article, the
Lagrange polynomials of order k are used, however all kinds of
polynomials may be used (Park, 1996). The displacement of the
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j th spatial dof upon [ti , ti+1] is then expressed in function of its
values at k + 1 time nodes, namely x j (t l

i ), l = 0, k. For clarity
purposes, instants t0

i = ti and t k
i = ti+1 are called limit nodal

times, and instants t l
i for l = 1, k − 1 are called internal nodal

times. Thus:

x j (t) = {N1(ξ (t)) · · · Nk+1(ξ (t))} · {x j (ti ) · · · x j (ti+1)}T , [3]

ξ (t) = t − ti
ti+1 − ti

[4]

This expression for displacement [3] can also be used for the
virtual displacement by replacing x j by δx j . It can then be de-
rived to obtain ẋ j and δ ẋ j . Including all these approximations
in Equation (2) with t0 = ti and t f = ti+1 leads to∫ ti+1

ti

(
δX T

i · ((Ṅ T · Ṅ ) ⊗ M − (N T · Ṅ ) ⊗ C

− (N T · N ) ⊗ K ) · Xi + N T ⊗ f
)
dt = δX T

i · Bi [5]

where N = {N1 · · · Nk+1}, and ⊗ stands for the right Kronecker
product. Here, the vector Xi [6] is composed of the values of
the displacement of all spatial dof at each nodal time t l

i , and the
vector Bi [7] contains momenta evaluated at limit nodal times
only:

Xi = {
x
(
t0
i

)T · · · x
(
t l
i

)T · · · x
(
t k
i

)T }T
, [6]

Bi = {−p(ti )
T · · · 0 · · · + p(ti+1)T }T [7]

Since the relation [5] has to be verified for any virtual displace-
ment, the following equation can be obtained:

Ai · Xi + Fi (Xi ) = Bi [8]

The elementary matrices and vectors of the above expression
are:

Ai =
∫ ti+1

ti

Ṅ T · Ṅdt ⊗ M −
∫ ti+1

ti

N T · Ṅdt ⊗ C

−
∫ ti+1

ti

N T · Ndt ⊗ K , [9]

Fi =
∫ ti+1

ti

N T ⊗ f (t, Xi )dt [10]

The last task is then to assemble all elementary Equations (8),
as done with spatial finite elements (Zienkiewicz and Taylor,
1994), keeping in mind that for a periodic solution x(t1) =
x(tn+1) and p(t1) = p(tn+1). Thus, momentum terms in Bi can-
cel each other, and the final Equation (11) can be solved for the
nodal displacement vector (Equation (12)).

A · X + F(X ) = 0, [11]

X = {xT (t1)xT (t2) . . . xT (tn−1)xT (tn)}T [12]

Study of the Stability
The stability of the solution is analyzed by means of the Flo-

quet theory (Nayfeh and Balachandran, 1995). To construct the
monodromy matrix, Equation (8) is first written in its incremen-
tal form by perturbing x(t l

i ), p(ti ), and p(ti+1), and, then re-
ordered to put limit and internal terms together (Equation (12)).{

H L
i

H I
i

}
+

[
K L L

i K LI
i

K I L
i K II

i

]
.

{
δX L

i

δX I
i

}
=

{
δBL

i

0

}
[13]

with {
H L

i

H I
i

}
=

[
ALL

i ALI
i

AIL
i AII

i

]
.

{
X L

i

X I
i

}
+

{
F L

i

F I
i

}
, [14]

Ki = Ai + ∂ Fi

∂ Xi
[15]

and

δX L
i = {δxT (ti )δxT (ti+1)}T , [16]

δBL
i = {−δpT (ti )δpT (ti+1)}T [17]

Since the perturbed momenta are equal to zero for the internal
nodal times, i.e., δB I

i = 0, a condensation procedure similar to
the Guyan reduction (Cook et al., 1989) is used to obtain:

K r
i · δX L

i + Hr
i = δBL

i [18]

where

K r
i = K LL

i − K LI
i · (

K II
i

)−1 · K IL
i [19]

Hr
i = H L

i − K LI
i · (

K II
i

)−1 · H I
i [20]

Equation (18) of element 1 is then combined with Equa-
tion (18) of element 2 in order to eliminate the common terms
δx(t2) and δp(t2). This leads to a new equation involving δx and
δp at instants t1 and t3 only, which can also be combined with
Equation (18) of element 3, and so on. By going on this way until
the last element, one finds the final expression (Equation (21))
involving the perturbed state at times t1 = 0 and tn+1 = T .[

K̂ 11 K̂ 12

K̂ 21 K̂ 22

]
.

{
δx(t1)

δx(tn+1)

}
=

{
−δp(t1)

δp(tn+1)

}
[21]

Equation (21) is finally modified through a simple matrix ma-
nipulation to get the expression (22) in which the monodromy
matrix can be recognized. The eigenvalues of this matrix al-
low for assessment of the solution’s stability and the types of
bifurcation encountered (Nayfeh and Balachandran, 1995).{

δx(T )

δp(T )

}
=

[
−K̂ −1

12 · K̂ 11 −K̂ −1
12

K̂ 21 − K̂ 22 · K̂ −1
12 · K̂ 11 −K̂ 22 · K̂ −1

12

]
.

{
δx(0)

δp(0)

}

[22]
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FIGURE 1
Location of the kth ball by θk .

APPLICATIONS
To demonstrate the validity of the time finite element method

in nonlinear rotordynamics problems, two examples are ad-
dressed. Both include a ball bearing whose modelization is
briefly described below (El-Saeidy, 2000). For all the calcula-
tions, 8 time finite elements with Lagrange polynomials of order
4 are used. The algorithm includes an arc-length continuation
technique with step control (Blair et al., 1997).

Bearing Model
This model uses the Hertz theory to evaluate contact forces

between balls and races (see Figure 1). Each ball is located by
its angular position:

θk = ωc · t + (k − 1) · 2π

N
[23]

where

ωc = ωr

2
·
(

1 − Db

Di + Db

)
[24]

The relative radial distance dr between the inner and outer
races of the bearing in the θk direction can be expressed in terms

FIGURE 2
Simplified model.

TABLE 1
Parameters Value

Natural frequency Damping ratio

Rotor f0r = 22 Hz ξr = 2%
Stator f0s = 92 Hz ξs = 5%

Unbalance Gravity

Forces 50.10−3 m·kg 10 m/s2

of their horizontal and vertical displacements:

dr = (ui − uo) · cos(θk) + (vi − vo) · sin(θk) [25]

Thus, based on the Hertz theory, the radial contact force gener-
ated by the kth ball on the races is

fr = K H · (dr − 
)3/2 if dr ≥ 


(contact) and 0 otherwise (no contact) [26]

The bearing reaction is obtained by summing all contributions
of individual contact forces projected on global axes.

Fx = −
N∑

k=1

fr · cos(θk), [27]

Fy = −
N∑

k=1

fr · sin(θk) [28]

Example 1
This example consists of a 4 dof system (Demailly et al.,

2001). The rotor and stator are modeled by a mass and stiffness
(see Figure 2). Viscous damping is assumed for both of them.
The forces acting on the system are the gravity and an unbalance.
The parameters used for this model are given in Table 1. The
bearing, composed by eight balls, is modeled as described above.

The calculation of the response of this system to an unbalance
has been done for a rotational speed of 0–6000 rpm (100 Hz).
Figures 3a and b show the magnitudes of vibration obtained for a
Hertz contact stiffness of 107 and 108 N/m and a radial clearance
of 20 µm. The continuous line represents the rotor displacement
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FIGURE 3a
Amplitudes of vibration versus rotational frequency, clearance

value of 20 µm, K H = 107 N/m.

and the dashed ones represent the stator displacement. With the
contact stiffness of 107 N/m, the system exhibits a hardening
effect. This effect causes sudden jump phenomena at 2400 rpm
(40 Hz) when accelerating and 2160 rpm (36 Hz) when decel-
erating. If the contact stiffness value is increased to 108 N/m,
the critical speed which was nearly 2400 rpm (40 Hz) before
is raised to 3000 rpm (50 Hz) and the hardening spring effect
disappears.

The same calculations have been done for a radial clearance
of 60 µm. The peak of vibration at the critical speed is not af-
fected by this change. However, one can note a modification of
the behavior at sub-critical speeds. Figures 4a and b compare
the amplitudes of vibration obtained for radial clearances of 20

FIGURE 3b
Amplitudes of vibration versus rotational frequency, clearance

value of 20 µm, K H = 108 N/m.

FIGURE 4a
Amplitudes of vibration versus rotational frequency, contact

stiffness of 108 N/m, δ = 20 µm.

and 60 µm for a speed range of 600–1380 rpm (10–23 Hz). The
continuous lines represent the amplitudes of vibration in the
horizontal plane while the dashed ones are for amplitudes in
the vertical plane. As these are not superimposed, this indicates
the orbits are not circular. The small peak of vibration detected
around 1200 rpm (20 Hz) for a clearance value of 20 µm is
still present and even more pronounced when the clearance is
increased to 60 µm. Moreover, another peak of vibration be-
comes noticeable at 12 Hz. For this clearance value, the peak at

FIGURE 4b
Amplitudes of vibration versus rotational frequency, contact

stiffness of 108 N/m, δ = 60 µm.
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FIGURE 5
Stator orbit at 13 Hz.

1200 rpm (20 Hz) exhibits a hardening effect. Again, jump phe-
nomena occur, as predicted by the study of the stability. Curves
shown in Figure 4 are actually those obtained for a Hertz contact
stiffness K H of 108 N/m, but the same observations are also true
for K H = 107 N/m.

Figure 5 shows the stator orbit at 780 rpm (13 Hz), ob-
tained by the time finite element method (continuous line) and
the Runge-Kutta integration scheme (dashed line) for the case
K H = 107 N/m, δ = 60 µm. Both results are in close agreement.
It should be noted that the solution achieved by the temporal
integrator is still a transient one, even after an elapsed time of
120 periods. This is due to the small amount of damping com-
bined with the multiple losses of contact per period occurring at
this frequency.

Example 2
This second example deals with the finite element model

of a flexible rotor as represented in Figure 6. This rotor has
an overhung disc and is supported by two rolling bearings. Its
length is 1.70 m and its diameter is 40 mm. Bearing housings are
taken into account through a spring/mass system. Translations
in vertical and horizontal directions are considered. Rotational

FIGURE 6
Finite element model of the flexible rotor.

FIGURE 7
Amplitudes of vibration.

FIGURE 8
Leading Floquet multipliers.
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FIGURE 9a
Amplitudes of vibration of the bearing housings,

600–6000 rpm.

degrees of freedom at each node of the rotor are also included
to take into account the gyroscopic effects. This leads to a total
of 32 degrees of freedom.

In Figure 7, the amplitudes of vibration at the disc location,
due to an unbalance, are shown on the speed range of 600–
4200 rpm (10–70 Hz). The main peak of vibration, approxi-
mately 1800 rpm (30 Hz), corresponds to the first flexural mode
of the vibration of the rotor. It clearly exhibits a hardening spring
effect, causing jump phenomena while passing through this crit-
ical speed: When slowly accelerating, the vibration suddenly
reduces, whereas when decelerating, it abruptly increases.

FIGURE 9b
Amplitudes of vibration of the bearing housings, zoom,

2400–3900 rpm.

FIGURE 10
Housings orbits, 860–940 rpm.

Theses jumps, occurring at 1900 and 1780 rpm (31.8 and
29.6 Hz), respectively, are well predicted by the stability analy-
sis. As depicted in Figure 8, one of the Floquet multipliers leaves
the unit circle by +1 indicating that cyclic fold bifurcations hap-
pen. Secondary Hopf bifurcations have also been detected.

The vibrations at the housings location (see Figure 9) are
less important than those at the disc location. In Figure 9, the
solid and dashed lines represent the left and right bearing hous-
ing, respectively. One can observe a second peak of vibration
at 3120 rpm, nearly twice the critical speed, followed by two
other minor peaks. As can be seen in Figure 9b, jump phenom-
ena exist for this second peak and appear at 3090 and 3150 rpm

FIGURE 11
Housings orbits, 1530–1640 rpm.
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FIGURE 12
Housings orbits, 2630–2770 rpm.

(51.5 and 52.5 Hz). Concerning the right bearing housing, the
curve describes a loop meaning that the vibration suddenly re-
duces while slowly accelerating/decelerating through the rota-
tional speed 3150/3090 rpm. This demonstrates the reliability
of the finite element method coupled with an arc-length contin-
uation scheme to calculate without any problem sharp peaks of
response.

In Figure 9, the two continuous (dashed) lines, represent-
ing the vertical and horizontal displacements of the left (right)
bearing housing, are almost superimposed. Nevertheless, it turns
out that the orbits of the housings are not really circular as ob-
served in Figures 10 to 13 which present the evolution of their

FIGURE 13
Housings orbits, 4570–4790 rpm.

orbit between four frequency ranges. For a better visualization,
the scale has been adapted for the orbit of the second housing:
a magnification factor of five in Figures 10 and 11 and ten in
Figure 12. Eight time finite elements with Lagrange polynomials
of order 4 seem to be sufficient to trace out the complex orbits
described by the housings, except around 2640 rpm (44 Hz)
(cf. subplot 1-1 to 1-3 of Figure 12).

CONCLUSIONS
The present article has briefly presented the time finite el-

ement method and demonstrated its applicability in rotordy-
namics problems involving nonlinear ball bearings with a small
amount of clearance. It has been pointed out that this method is
perfectly able to track complex solutions as found at secondary
peaks of vibration and that the study of the stability of solutions
is clearly assessed by building the monodromy matrix with few
matrix manipulations. This method does not yield the exact solu-
tion, since this one is approached upon each time finite element
by polynomials. However, the approximated solution is good
enough from an engineering point of view. If an extreme preci-
sion is required, either the number of elements or the degree of
polynomials can be adjusted in consequence, at the price of an
increase of the computational time.

This method is not well suited when the solution contain har-
monics in the high frequency range, since an important number
of elements should be used to match the solution. However, fre-
quential methods suffer from the same drawback. It should be
mentioned that the time finite element method is not restricted to
the calculation of forced vibrations such as unbalance responses,
but that it can also be applied to oil whirl problems encountered
with rotors supported on hydrodynamic journal bearings.
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NOMENCLATURE
L Lagrangian of the system
W work done by nonconservative forces
M, C, K mass, damping, stiffness matrices
x vector of generalized displacement
p vector of generalized momenta
f vector of external and nonlinear forces
N1, . . . , Nk+1 Lagrange polynomials of order k
T period of vibration
ξ adimensional time variable
Bi vector of boundary momenta
Xi local temporal nodal vector
X temporal nodal displacement vector
n number of time finite elements
ωr rotor circular frequency
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ωc cage circular frequency
N number of balls
Db ball diameter
Di inner race diameter
ui , uo horizontal displacement of i. and o. races
vi , vo vertical displacement of i. and o. races

 radial clearance value
K H Hertz contact stiffness

REFERENCES
Baruch, M., and Riff, R. 1982. Hamilton’s principle, Hamilton’s law–6n

correct formulations. AIAA Journal 20(5):687–692.
Bayley, C. D. 1975. Application of Hamilton’s law of varying action.

AIAA Journal 13(9):1154–1157.
Blair, K. B., Krousgrill, C. M., and Farris, T. N. 1997. Harmonic balance

and continuation techniques in the dynamic analysis of Duffing’s
equation. Journal of Sound and Vibration 202(5):717–731.

Choi, Y. S., and Bae, C. Y. 2001. Nonlinear dynamic analysis of par-
tial rotor rub with experimental observations. ASME Proceedings of
DETC’01, September, Pittsburgh.

Cook, R. D., Malkus, D. S., and Plesha, M. E. 1989. Concepts and
Applications of Finite Element Analysis, 3rd Edition, John Wiley &
Sons, New York.
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