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Abstract

This paper deals with the problem of preventive maintenance (PM) scheduling of pipelines
subject to external corrosion defects. The preventive maintenance strategy involves an inspection
step at some epoch, together with a repair schedule. This paper proposes to determine the
repair schedule as well as an inspection time minimizing the maintenance cost. This problem is
formulated as a binary integer non-linear programming model and we approach it under a decision
support framework. We derive a polynomial-time algorithm that computes the optimum PM
schedule and suggests different PM strategies in order to assist practitioners in making decision.

1 Introduction

Gas pipelines are facilities intended for the transport of natural gas at high pressure. Pipelines carry
natural gas from the extraction area to export area and are buried under the ground in inhabited
zones. A major threat for their integrity is metal-loss corrosion. To maintain safe pipeline condition,
preventive maintenance (PM) is performed. Poor pipeline management can cause leaks and leads
to human and environmental damage, as well as monetary loss.

As states Zhou in [14] a pipeline management program consists firstly in detecting the corrosion
defects with appropriate equipment, secondly in evaluating the probability of failure based on the
primary inspection results, and lastly in repairing the defects if necessary. Defects which do not
call into question system integrity are not immediately repaired, and will be considered for PM,
which consists of identifying the next inspection time, together with a repair schedule. This paper
deals with the PM problem in gas pipeline from an economic point of view. We aim to investigate
the optimal PM schedule which minimizes the operational cost. Large scale maintenance activities
have significant cost. There are not only the costs related to inspection and repairs, but also the
cost due to production losses during maintenance. When maintenance activities are conducted, gas
flow in pipelines must be interrupted for security measures, generating a significant out-of-service
cost. Hence, the operational cost estimate includes the cost due to inspection, repairs, and the cost
due to out-of-service of gas pipelines.

Several models and methodologies establishing optimal PM schedules can be found in the lit-
erature. A number of papers have been published using a reliability approach. In the corroding
gas pipeline context, we refer the reader to [12] for a recent survey about this subject. In their
paper, they address the problem of predicting the reliability of pipelines with imperfect repairs in
order to assist pipeline operators in making the most appropriate PM decision. Hong [5] uses also
a reliability analysis to estimate the probability of failure, together with optimal inspection and
maintenance schedules, based on minimization of the total cost including inspection, repairs, and
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the cost of failure. In a more general context, Kallen [7] determines the optimal inspection and
replacement policy which minimize the expected average costs using an adaptive Bayesian decision
model.

To the best of our knowledge, there have been no previous economic and deterministic studies
on PM of gas pipelines. However, this issue arises in a wide variety of areas, one of which is
power plants. This is an important issue because a failure in a power station may cause an overall
breakdown, and significant customer dissatisfaction. Canto [10] considers the problem of selecting
the period for which the facilities should be taken offline for preventive maintenance. He models
this problem with a binary integer linear program, and solved it using optimization software. The
same author [1] solves the problem using Benders decomposition technique. Megow [9] derives a
model for the problem of turnaround scheduling. They propose an optimization algorithm within
a decision support framework that computes the schedule minimizing the resource cost.

Preventive maintenance problems also arise in the medical field. Vlah Jerić and Figueira [13]
consider the issue of scheduling medical treatments for patients. They formulate the problem as
a binary integer programming model, and solve it using a meta-heuristic algorithm. [11] propose
a decision support system for resource scheduling. Chern et al. [2] consider health examination
scheduling. They model this problem using a binary integer programming model, and propose
solutions based on a heuristic algorithm.

There are many other fields that deal with PM scheduling problems; in the military context,
we can mention [6], who have developed a dynamic approach for scheduling PM of engine modules.
Maintenance scheduling problems involving machines have been investigated by Hadidi et al. [4]
and Keha et al. [8] for instance, and in a paper factory by Garg et al.[3].

In this paper, we assume that we have collected information about defects which were not
handled during the primary maintenance management program described above by Zhou [14]. This
information consists of an acceptable limit date for repairs; we call this date the deadline. In the
rest of this paper, the repairs not handled during the primary inspection, with their associated
deadlines, will be called the primary repair schedule, and are the starting point of our study. This
paper models the economic preventive maintenance scheduling problem in gas pipelines as a binary
integer non-linear programming model, and presents an algorithmic solution based on dynamic
programming. This algorithm is performed in polynomial time and computes the global solution;
it proposes also a class of alternative solutions which may assist industrial personnel in making
decisions.

The remainder of this paper is organized as follows. The model is formulated in Section 2. Sec-
tion 3 models the PM problem by a binary nonlinear program. Section 4 focuses on the algorithmic
solution. Computational results are presented in Section 5, and we conclude in Section 6

2 Problem description

After a primary inspection defined at time t = 0, a long term horizon is fixed, which we denote
T ∗ ∈ N

∗; no repairs will be handled after T ∗, which may be thought of as the maximal time
before the next inspection. The next inspection may be happen at time t, t ∈ {1, 2, . . . , T ∗}.
Define the inspection interval by ∆t = (0, t]. During the primary inspection, a number of corrosion
defects are detected. Some of them, considered as unacceptable for the safety of the pipeline,
are repaired immediately. Those which do not call into question the pipeline integrity are not
immediately repaired; to each of these is associated a deadline corresponding to the limit date for
repair. So, the pipeline manager must plan repair activities no later than this deadline for each
specific defect. Beyond this date, the safety of the pipeline is seriously compromised. Assume that
we have knowledge of these deadlines and the number of defects to be repaired for each of these
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dates. We may thus define what we have called in Section 1 the primary repair schedule:

P = {(n1, T1), . . . , (nN , TN )} , (1)

where N > 0 is the number of different deadlines. For i = 1, . . . N , ni is the number of defects to be
repaired before their deadline Ti, with ni > 0, Ti < T ∗ and T1 < . . . < TN (with T0 = 0). From the
primary repair schedule P defined by (1), we seek the next optimal inspection time, denoted by
t∗, belonging to the set {1, . . . , T ∗}, and the optimal repair program within the inspection interval
∆t∗ that minimizes the operational cost.

2.1 Operational cost

Preventive maintenance activities include inspection and repairs. Moreover, gas pipelines must be
interrupted for safety during maintenance activities. These activities generate a significant out-of-
service cost corresponding to the financial loss due to the inactivity of the gas pipeline. The costs to
be considered are the inspection cost, denoted by Cinsp, the repair cost Crep, and the out-of-service
cost, Cout. Hence, the operational cost is

Ctot = Cinsp + Crep + Cout. (2)

Remark 2.1. The out-of-service cost Cout represents the financial loss due to repair activities. The
inspection cost also takes into account an out-of-service cost.

Let P = {(ni, Ti), i = 1, . . . , N} be the primary repair schedule and let t, t ∈ {1, . . . , T ∗} be
any fixed inspection time. The total cost (2) depends on both t and the repair plan within the
inspection interval ∆t. Denote by Nt the number of deadlines Ti, i ∈ {1, . . . , N} within ∆t, i.e.,

Nt = card {i ∈ {1, . . . , N} : Ti ≤ t} . (3)

When the next inspection is planned at time t, the operational cost related to P, C(t,P) is given
by

C(t,P) = Cinsp(t) +

Nt∑

i=1

niCrep(Ti) +

Nt∑

i=1

Cout(Ti). (4)

Let us first make some assumptions about the costs defined above. We will consider two economic
parameters: the discount rate and the inflation rate. For a given initial cost, for example, with initial
inspection cost denoted C0

inp, the inspection cost at time t > 0 will be given by

Cinsp(t) = C0
inp ×

(
1 + ri
1 + rd

)t

,

where ri and rd are respectively the inflation rate and discount rate. Moreover, we assume that
ri < rd. Thus, the function t 7→ Cinsp(t) is decreasing. This will also be true for Crep(.) and Cout(.).

The PM scheduling problem is twofold; the first part consists of selecting the next inspection
time within the set {1, 2, . . . , T ∗}, and the second, to plan the repair schedule within ∆t in order
to minimize the total cost. In the following, the optimal solution will be denoted by (t∗,P∗

t ). This
problem is highly combinatorial. It consists of finding the next inspection time within {1, . . . , T ∗},
and the least expensive repair program among all possible programs achieved from P, under the
constraint that a defect cannot be repaired after its deadline. Thus, finding the exact solution in a
short time cannot be expected. However as we will seen in the forthcoming section, by exploiting
properties of the model (Section 3.1), we will be able to reduce the space of feasible solutions. This
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combinatorial optimization problem will be modeled using a binary nonlinear programming model
in Section 3.2, and an effective algorithmic solution will be proposed in Section ??.

3 Mathematical model

3.1 Some properties of the model

Before formulating the mathematical model as a binary integer nonlinear program, it is worth noting
a number of simple properties. We will use the fact that we can only do repairs early, and not late;
the repair and the out-of-service costs decrease with time; anticipating repairs where other repairs
are planned does not add an out-of-service cost. These properties will allow us to reduce the space
of repair schedules to explore to (1−2N+1)/(1−2)−1. Let us introduce some notation that we will
use in the following. Denotes by Dk the set of deadlines (including 0) up to Tk, for k = 1, . . . , N −1,

Dk = {T1, . . . , Tk} ∪ {0}.

We denote by D (the subscript N will be omitted) the set of all deadlines (including 0), i.e.,

D = {T1, . . . , TN} ∪ {0}.

Property 1. All defects with same deadline will be repaired at the same time.

For example, 3 defects have to repaired before year 15. Thus, we will repair the 3 defects at the
same time, either at year 0 (during the primary inspection), at year 1, 2, and so on, up to year
15. This means that we will not split up repairs, since this action increases the total cost, adding a
repair cost and/or an out-of-service cost. This fact is expressed in the following proposition.

Proposition 3.1. Let t be an inspection time, t ∈ {1, . . . T ∗}, and let P = {(ni, Ti), i = 1, . . . , N}
be the primary repair program with total cost C(t,P). Let Nt be the number of deadlines within ∆t
defined by (3). For any set of defects n1, n2, . . . , nN , the new repair program defined after splitting
a set is more expensive than P.

Proof. We will prove this proposition by considering only one set nk, with k ∈ {1, . . . N}. The
result will be applied when considering several sets. We consider the kth set of defects nk, such
that nk ≥ 2, which must be repaired before Tk. Suppose that we have split the set nk into two
other sets, n

′

k and n
′′

k , such that nk = n
′

k + n
′′

k, where n
′

k ≥ 1 is the number of repairs that will be
performed early at time τ with τ < Tk. Without loss of generality, assume that the n

′′

k ≥ 1 defects
will be repaired at time Tk. We assume initially that k ≤ Nt, i.e., the nk defects are within ∆t.

• If τ /∈ Dk−1, define the new repair schedule as

P1 =
{

(n1, T1), . . . , (n
′

k, τ), . . . , (n
′′

k , Tk), (nk+1, Tk+1), . . . , (nN , TN )
}

. (5)

Noting that planning repairs before deadlines add an out-of-service cost, the total cost of P1 is
given by

C(t,P1) = Cinsp(t) +

Nt∑

i=1

niCrep(Ti)− n
′

kCrep(Tk) + n
′

kCrep(τ) +

Nt∑

i=1

Cout(Ti) + Cout(τ).

Using the fact that Crep(Tk) < Crep(τ), we get

C(t,P)− C(t,P1) = n
′

k[Crep(Tk)− Crep(τ)]− Cout(τ) < 0.
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• If τ ∈ Dk−1, then there exists i such that τ = Ti < Tk. The new repair plan is given by

P2 =
{

(n1, T1), . . . , (ni + n
′

k, Ti), . . . , (n
′′

k , Tk), (nk+1, Tk+1), . . . , (nN , TN )
}

. (6)

Remark next that repairs made earlier than absolutely necessary at a time where other repairs are
planned does not add an out-of-service cost. Thus, the total cost of P2 is given by

C(t,P2) = Cinsp(t) +

Nt∑

i=1

niCrep(Ti)− n
′

kCrep(Tk) + n
′

kCrep(Ti) +

Nt∑

i=1

Cout(Ti).

Thus,
C(t,P)− C(t,P2) = n

′

k[Crep(Tk)−Crep(Ti)] < 0.

Assume now that k > Nt, i.e., the set nk is not within ∆t, but we have the opportunity to perform
early the set n

′

k within ∆t. In this case, all repair schedules that we can define will be more expensive
than P because we add to P an out-of service cost depending on whether τ ∈ DNt

or not, and on
the monotonicity of Crep(.). Therefore, in all cases the cost of P is less expensive than all repair
plans defined by splitting.

Remark 3.1. We have supposed that the n
′′

k repairs take place at Tk. We could have decided to
repairs early, but the associated repair schedule would be more expensive than (5) and (6).

Remark 3.2. We have added an out-of-service cost at time τ to (3.1) because no repair was planned
at time τ . Thus, moving forward repairs from deadlines generates a cost due to the unavailability
of gas from the pipeline.

Remark 3.3. For a given inspection time t, when the set of nk defects is not in ∆t (i.e., k > Nt),
moving some repairs into the inspection interval is more expensive than repairing the set nk at time
Tk, because we add an out-of-service cost, and Crep(.) is decreasing.

Remark 3.4. We also observe that the first part of the proof suggests that repairs from after
deadlines done early generate more expensive repair plan schedules than P. This property will be
proved below.

Conclusion 1. Proposition 3.1 allows for all split scenarios to be rejected, thus reducing the space
of feasible solutions. Moreover, we can restrict our attention to deadlines within ∆t in order to
build the optimal repair senario.

Property 2. There is no monetary advantage to repair defects outside the times D .

For example, we fix the horizon time T ∗ = 20, and the next inspection at t = 18. Denote by
P = {(1, 3), (2, 10), (3, 15)} the primary repair schedule with total cost C(t,P) given by

C(18,P) = Cinsp(18) + Crep(3) + 2Crep(10) + 3Crep(15) + Cout(3) + Cout(10) +Cout(15).

Let P1 be a new repair schedule where we have repaired early the third set of defects with deadline
15 at year τ such that τ /∈ D2 = {3, 10} ∪ {0} and τ < 15. The total cost of P1 is

C(18,P1) = Cinsp(18) + Crep(3) + 2Crep(10) + 3Crep(τ) + Cout(3) + Cout(10) +Cout(τ).

Hence,
C(18,P) − C(18,P1) = 3 (Crep(15) − Crep(τ))

︸ ︷︷ ︸

<0

+(Cout(15) − Cout(τ))
︸ ︷︷ ︸

<0

.

This leads to the following Proposition.
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Proposition 3.2. Let t be a fixed inspection time, with t ∈ {1, . . . , T ∗}, and let P be the primary
repair program with total cost C(t,P). Then, the total cost related to any repair schedules such that
some defects are repaired before their deadline, is more expensive than P.

Proof. We prove the result for only one set of defects repaired early. According to Proposition 3.1,
repairs with same deadline are handled at the same time. Let P1 be a repair schedule such that nk

repairs are done early at time τ such that τ < Tk. Assume furthermore that τ /∈ Dk−1. The total
cost of P1 is

C(t,P1) = Cinsp(t) +

Nt∑

i=1,i 6=k

niCrep(Ti) + nkCrep(τ) +

Nt∑

i=1,i 6=k

Cout(Ti) + Cout(τ).

Thus,
C(t,P)− C(t,P1) = nk[Crep(Tk)− Crep(τ)]− Cout(τ) < 0.

This result can then be applied when considering several blocks, in order to conclude the proof.

Conclusion 2. Proposition 3.2 allows for all repair schedules that include repairs done before their
deadline to be rejected.

Remark 3.5. At this stage, we have moved from a very large space of schedules to a space of (Nt+1)!
possible schedules for a given inspection time t. Indeed, using Conclusion 1 and Conclusion 2, we
can repair the set n1 either at time T1 or earlier at time T0 (two choices); the set n2 can be repaired
either at time T2, or either at time T1 or either at time T0. For the last set nNt

, we have Nt + 1
possibilities. Thus, we obtain (Nt + 1)! plans to choose between if the next inspection is planned at
time t.

The next proposition states that the space of repair schedules may be reduced to 2Nt for a given
inspection time t. Denote by P

j
t the repair program such that the Nt repairs (the last set of defects

within ∆t) has been done early at time Tj, j = 0, . . . , Nt − 1,

P
j
t = {(n0, T0), (n1, T1), . . . , (nj + nNt

, Tj), (nj+1, Tj+1), . . . , (nNt−1, TNt−1)} , n0 = 0. (7)

For j = 0, . . . , Nt − 1, the associated total cost is given by

Cj
t = Cinsp(t) + n1Crep(T1) + . . .+ (nj + nNt

)Crep(Tj) + . . . + nNt−1Crep(TNt−1) +

Nt−1∑

i=1

Cout(Ti).

Proposition 3.3. The number of feasible solutions is 2Nt for a given inspection time t ∈ {1, . . . , T ∗}.

Proof. We shall prove this proposition by induction on Nt. For Nt = 1, i.e., the inspection is
planned so that there is only one set n1 (with deadline T1) within ∆t. In this case, the proposition
is proved. We shall prove the result for Nt = 2 and suppose that the n1 repairs are planned. We
shall prove that there are two repair scenarios for the set of n2 defects. We consider two cases. In
the first, the n1 repairs take place at time T1; in the second, they are moved to time T0 = 0.

First case. We have Pt = {(n1, T1), (n2, T2)} with total cost C(t,Pt) given by

C(t,Pt) = Cinsp(t) +
2∑

i=1

niCrep(Ti) +
2∑

i=1

Cout(Ti).
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The total cost associated with P1
t = {(n1 + n2, T1)} is

C1
t = Cinsp(t) + (n1 + n2)Crep(T1) + Cout(T1),

and the cost related to P0
t = {(n2, T0), (n1, T1)} is

C0
t = Cinsp(t) + n2Crep(T0) + n1Crep(T1) + Cout(T1).

When comparing C1
t with C0

t , we obtain

C1
t − C0

t = n2 [Crep(T1)− Crep(T0)] < 0,

and thus can rule out the repair plan P0
t . When comparing C(t,Pt) with C1

t , we have

C(t,Pt)− C1
t = n2 [Crep(T2)− Crep(T1)]

︸ ︷︷ ︸

<0

+Cout(T2).

In this case, we cannot conclude which is the best program in terms of minimal cost. Consequently,
for a given inspection time t, we may repair the set n2 either at its deadline T2 (Pt) or early at
time T1 (P1

t ).

Second case. Set P̃t = {(n1, T0), (n2, T2)} with total cost C(t, P̃t) given by

C(t, P̃t) = Cinsp(t) + n1Crep(T0) + n2Crep(T2) + Cout(T2).

The cost related to P̃1
t = {(n1, T0), (n2, T1)} is

C1
t = Cinsp(t) + n1Crep(T0) + n2Crep(T1) + Cout(T1),

and the total cost associated with P̃0
t = {(n1 + n2, T0)} is

C0
t = Cinsp(t) + (n1 + n2)Crep(T0).

Since C(t, P̃t) − C1
t = n2 [Crep(T2)− Crep(T1)] + Cout(T2) − Cout(T1) < 0, we can rule out the

schedule P̃1
t . Furthermore, when comparing C(t, P̃t) with C0

t , we have

C(t, P̃t)− C0
t = n2 [Crep(T2)− Crep(T0)] + Cout(T2),

which does not allow us to conclude anything, so the proposition is proved for Nt = 2.
Now, let t be an inspection time such that Nt = k + 1. Assuming that the set n1, . . . , nk are

planned, we will consider only one configuration. We suppose that the sets of n1, . . . , nk defects take
place respectively at times T1, . . . , Tk. We shall prove that for a given inspection time t, there are two
choices for positioning the (k+1)th repairs. Using the fact that Crep(Tk) < Crep(Tk−1) < . . . < C0

rep,
and the fact that repairing early when other repairs are planned does not add an out of service cost,
yields

Ck
t < Ck−1

t < . . . < C0
t .

Thus, we can rule all repair plans such that the nk+1 repairs are done at an earlier date than
Tk. There remain only two repair schedules to compare, Pt and Pk

t , with respective total costs
C(t,Pt) and Ck

t .

C(t,Pt)− Ck
t = nk [Crep(Tk+1)− Crep(Tk)]

︸ ︷︷ ︸

<0

+Cout(Tk+1).

We cannot conclude which is the best. Consequently, we may either plan the nk+1 repairs at year
Tk (schedule Pk

t ) or at year Tk+1 (schedule Pt).
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Conclusion 3. Proposition 3.3 states that for a given inspection time t, the number of schedules
to consider is 2Nt . For a given set of defects nk, k ∈ {1, . . . , Nt}, there are two repair strategies.
Either the set nk is handled at its deadline Tk, or earlier at the previous deadline, where repairs are
already planned.

The next proposition plays a crucial role in designing the algorithm which will solve the op-
timization problem (8) in the forthcoming section. Let P̃ be any repair schedule achieved from
P.

Proposition 3.4. For any repair schedule P̃, the function s ∈ (0, T ∗) 7→ Ctot(s, P̃) is not convex
and has local minima at points s = {Tj − 1, j = 1, . . . , N} ∪ {T ∗}. The optimal inspection t∗ is
found at one of these.

Proof. The total cost function Ctot(., P̃) is the sum of a decreasing function Cinsp(.) and a step
function (Crep +Cout)(.) with jump discontinuities at Tj − 1 for j = 1, . . . , N . Then, the total cost
function Ctot(.,P) is increasing within [Tj−1, Tj ] and decreasing within [Tj , Tj+1−1] and [TNt

, T ∗].
Thus s 7→ Ctot(s,P) cannot be convex and has local minima at Tj − 1, j = 1, . . . , N . Therefore,
the global minimum is found at one of these dates.

Remark 3.6. Note that if T1 = 1, T1 − 1 should not be considered as a candidate for the next
inspection because it would coincide with the primary inspection.

Conclusion 4. Proposition 3.4 suggests that the optimal solution for the PM schedule problem
should be chosen for an inspection time among {Tj − 1, j = 1, . . . , N}∪{T ∗} instead of {1, . . . , T ∗}.

This implies that the space of feasible solutions may be reduced to
∑N

k=1
2k repair plans to consider.

This proposition pushes us to solve the PM scheduling problem in a support decision framework,
by building an algorithm that proposes a set of repair schedules related to inspection times within
t ∈ {Tj − 1, j = 1, . . . , N} ∪ {T ∗}, which includes the optimal PM schedule (t∗,P∗

t ), in order to
support decisions of pipeline managers.

3.2 Formulating PM as an integer programming problem

The problem described above can be formulated as a binary integer nonlinear programming model,
taking into account all the previous propositions, and certain constraints that we shall now describe.

We are looking for an optimal inspection time t∗ such that t∗ ∈ {T1 − 1, . . . , TN − 1, T ∗}, and a
repair schedule within ∆t∗ that minimizes the total cost. In the following, we introduce two decision
variables ai and bj, for i = 1, . . . , N + 1, and j = 0, . . . , N , defined by:

ai =

{
1 if an inspection is planned in year Ti − 1
0 otherwise,

aN+1 =

{
1 if an inspection is planned in year T ∗

0 otherwise,

and

bj =

{
1 if repairs are planned in year Tj

0 otherwise,

where T0 = 0. Denote by a and b the variables

a = (a1, . . . , aN+1) and b = (b0, . . . , bN ).
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Both vectors must satisfy certain constraints, which we now describe. The first ensures that on the
time interval (0, T ∗], there is only one inspection after the primary inspection. Note that if T1 = 1,
we cannot plan the next inspection at time 0, that is during the primary inspection; thus, define
the variable α such that

α =

{
1 if T1 6= 1
0 otherwise.

Therefore, the constraint stating that there is only one inspection on (0, T ∗] is reflected as:

αa1 +

N+1∑

j=2

aj = 1.

For example, if T ∗ = 10, N = 4 and T1 6= 1, the variable a = (0, 0, 0, 0, 1) of length 5 means that an
inspection is planned at time T ∗. However, if T1 = 1, the vector a has length 4, and a = (0, 1, 0, 0)
means that the inspection is planned at year T3 − 1.

A second constraint encodes the fact that we cannot plan repairs simultaneously at times T0 and
T1. Thus,

b0 + b1 = 1.

Indeed, Proposition 3.3 states that there are two options when planning repairs. Suppose that we
decide to repair the n1 defects at time T1 (at their deadline). Then, the n2 defects may be repaired
either at time T2 (their deadline) or time T1, but not at time T0 = 0. Suppose now that the n1

repairs were moved at time T0, then the 2 repairs may be planned at time T2 or at time T0, but not
at time T1. Since defects with the same deadline have to be repaired at the same time, we have at
most N sets of repairs:

1 ≤
N∑

j=0

bj ≤ N.

The PM scheduling problem is then the following:

Minimize Ctot(a1, . . . , aN+1, b0, . . . , bN )

subject to







ai ∈ {0, 1} for all i = 1, . . . , N + 1

bj ∈ {0, 1} for all j = 0, . . . , N

αa1 +
∑N+1

i=2
ai = 1, α ∈ {0, 1}

b0 + b1 = 1

1 ≤
∑N

j=0
bj ≤ N,

(8)

where the objective function is given by

C(a1, . . . , aN+1, b0, . . . , bN ) = αa1Cinsp(T1 − 1) +
N∑

i=2

aiCinsp(Ti − 1) + aN+1Cinsp(T
∗)

+

N−1∑

j=0

bj(Π
j
i=1

(1− ai))(nj + (1− bj+1)(nj+1 + (1− bj+2)(nj+2 + . . .+ (nN (1− bN )) . . .))Crep(Tj)

+ bN × (ΠN
i=1(1− ai))× nNCrep(TN ) +

N∑

j=1

bj(Π
j
i=1

(1− ai))Cout(Tj),

(9)
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with the conventions n0 = 0 and ΠT0

i=1
(1 − ai) = 1. We illustrate this objective function with the

following example.

Example 3.1. We fix the time horizon T ∗ as T ∗ = 10 and the number of deadlines N as N = 3.
Set T1 = 2, T2 = 4 and T3 = 8, and for all i ∈ {1, 2, 3}, we set ni = 1. Thus, the primary PM (1)
is given by

P = {(1, T1), (1, T2), (1, T3)}.

Suppose that we want an inspection to take place at year t = T3 − 1 = 7. Since T1 6= 1 then α = 1,
and thus

a = (0, 0, 1, 0).

Suppose furthermore that we want to do repairs with deadline T2 = 4 early, at year T1 = 2; then,
the new PM schedule P1

t (7), with Nt = 2, is P1
t = {(1 + 1, T1)}; thus the vector b is defined by

b = (0, 1, 0, 0).

To perform the total cost of this program, a and b are substituted into (9), with

a = (0, 0, 1, 0) and b = (0, 1, 0, 1).

The calculation of the inspection cost for P1
t gives

Cinsp(a) = a1Cinsp(T1 − 1) + a2Cinsp(T2 − 1) + a3Cinsp(T3 − 1) + a4Cinsp(T
∗)

= a3Cinsp(T3 − 1) = 1× Cinsp(7).

The calculation of the reparation cost is somewhat complicated because it has to take into account
whether or not the deadlines are within the inspection interval ∆t = (0, T3−1], and the total number
of repairs for each deadline. Noting that T0, T1 and T2 are within ∆t, we multiply the variables b0,
b1 and b2 respectively by Π0

i=1
(1 − ai) = 1, (1 − a1) = 1 and (1 − a1)(1 − a2) = 1. Since T3 /∈ ∆t,

the variable b3 will be multiplied by (1−a1)(1−a2)(1−a3) = 0, and does not contribute to the total
cost, even if b3 = 1. The total number of repairs for each deadline is expressed by a non-linear term
that involves nj and (1− bj). Thus, the calculation of the repair cost yields

Crep(a, b) = b1 ((1− a1)) (n1 + (1− b2)(n2 + (n3(1− b3)))Crep(T1)

= 1× ((1− 0)) (n1 + (1− 0)(n2 + n3(1− 1)))Crep(T1)

= (n1 + n2)Crep(T1).

The out-of-service cost is given by

Cout(a, b) = b1 × (1− a1)Cout(T1) = 1× Cout(T1).

We obtain
C(a, b) = Cinsp(6) + 2Crep(T1) + Cout(T1),

which is the total cost of P1
t .

Remark 3.7. Proposition 3.4 states that the optimal solution of (8) is achieved for an inspection
time belonging to {T1 − 1, . . . , TN − 1, T ∗}. Then, the size of the space of feasible solutions may be
reduced to

∑N
k=0

2k − 1. Indeed, if t = T1 − 1, then Nt = 0 and there is no repair plan to explore. If
t = T2 − 1, then Nt = 1 and there are 21 repair plans to consider. If t = T3 − 1, 22 repair schedules
have to be considered, which yields the result.
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4 Solution-finding strategy

The PM scheduling problem consists of finding an optimal inspection time t∗ such that t∗ ∈ {T1 −
1, . . . , TN−1, T ∗}, and a repair schedule within ∆t∗ that minimizes the total cost. The search for the
optimal solution requires considering (1−2N+1)/(1−2)−1 possible repair plans. We will see in this
section how to reduce this number to (N+1)(N+2)/2−1. We outline an algorithm in the context of
the support decision framework, which computes the optimal PM schedule, together with alternative
solutions, in order to propose to the pipeline manager a set of ”good” solutions. A naive way to
solve the problem is to look through, for a fixed inspection time t ∈ {Tj −1, j = 1, . . . , N, T ∗}, all of
the 2Nt feasible solutions, and save any of those with the best objective function. For large values
of N , such a method is not efficient. To quantify the efficiency of our algorithm, we have developed
two other algorithms related to the problem (8)). The first investigates all repair schedules when
t ∈ {Tj − 1, j = 1, . . . , N, T ∗}, and the second, which will serve as a benchmark, looks through all
repair plans when t ∈ {1, 2, . . . , T ∗}. This will be developed in Section 5.

4.1 Construction of the algorithm

The aim of this section is to develop a strategy which builds a search tree and returns the optimal
schedule for a given inspection time. In order to design our algorithm, we shall use the following
example. Over a time horizon T ∗ = 20, we consider N = 3 sets of defects with cardinality n1, n2, n3,
respectively, with associated deadlines T1, T2 and T3, and we will fix the inspection time as t = T ∗.
Note that this search tree will not necessarily find the global optimum. In order to find that, we
have to build all N + 1 search trees, each related to inspection times, and compare the associated
total costs.

4.1.1 First and second generations

The inspection time is t = T ∗, thus the number of set of defects that will be considered is Nt = 3.
We need to look through 23 = 8 repair schedules. We shall represent the various repair plans by a
tree, where each branch represents one strategy. For example, the branch br(2) corresponds to the
repair plan {(n1, T1), (n2 + n3, T2)} (see Figure 1).

The strategy is to look through all 8 repair plans in order to discard the most expensive branches.
After removing some branches, a final tree will remain, corresponding to potential solutions; the least
expensive will be the optimal for fixed inspection times (but not necessarily the global optimum).
Note that since Nt = 3, the final tree will have three generations. This methodology will allow us
to draw rules for an iterative construction of the final search tree. Figure 8 depicts such a final tree.

We are first interested in building and comparing the branches br(1), br(2), br(5), br(6). The
nodes (n1, T0) and (n1, T1) are labeled with the total costs, denoted by CT (1, 0) and CT (1, 1)
respectively, corresponding to the cost related to the partial plans {(n1, T0)} and {(n1, T1)}(see
Figure 1). The costs CT (1, 0) and CT (1, 1) are given by

CT (1, 0) = C(t, {(n1, T0)}) = Cinsp(t) + n1Crep(T0), (10)

and
CT (1, 1) = C(t, {(n1, T1)}) = Cinsp(t) + n1Crep(T1) + Cout(T1). (11)

The total costs of the branches br(1), br(2), br(5), br(6) are

C(t, br(1)) = CT (1, 1) + n2Crep(T2) + Cout(T2) + n3Crep(T3) + Cout(T3),
C(t, br(5)) = CT (1, 0) + n2Crep(T2) + Cout(T2) + n3Crep(T3) + Cout(T3),
C(t, br(2)) = CT (1, 1) + n2Crep(T2) + Cout(T2) + n3Crep(T3),
C(t, br(6)) = CT (1, 0) + n2Crep(T2) + Cout(T2) + n3Crep(T2).

11



n1, T1

CT (1, 1)

n2, T2

n3, T3

br(1)

n3, T2

br(2)

n2, T1

n3, T3

br(3)

n3, T1

br(4)

n1, T0

CT (1, 0)

n2, T2

n3, T3

br(5)

n3, T2

br(6)

n2, T0

n3, T3

br(7)

n3, T0

br(8)

Figure 1: The search tree representing the 2Nt PM schedules when t = T ∗.

When comparing the repair schedules br(1) with br(5), and br(2) with br(6), we get

C(t, br(1)) − C(t, br(5)) = CT (1, 1) −CT (1, 0) = n1(Crep(T1)− Crep(T0)
︸ ︷︷ ︸

<0

) + Cout(T1)
︸ ︷︷ ︸

>0

,

and

C(t, br(2)) − C(t, br(6)) = CT (1, 1) −CT (1, 0) = n1(Crep(T1)− Crep(T0)) + Cout(T1).

At this stage, we cannot conclude as to which is the most expensive program, so we must add a
condition on

CT (1, 1)− CT (1, 0).

• If CT (1, 1) < CT (1, 0), then the node (or the partial repair program) {(n1, T1)} has the
smallest cost function, and we get

C(t, br(1)) < C(t, br(5)) and C(t, br(2)) < C(t, br(6)).

The repair programs br(5) and br(6) are respectively more expensive than br(1) and br(2); the
branches br(5) and br(6) are rejected, i.e., the child node (n2, T2) of (n1, T0) is discarded.

• If CT (1, 0) < CT (1, 1), then the node (n1, T0) has the smallest cost function

C(t, br(1)) > C(t, br(5)) and C(t, br(2)) > C(t, br(6)).

The branches br(1) and br(2) are respectively more expensive than br(5) and br(6); hence br(1) and
br(2) are rejected, i.e., the descendant of (n1, T1) is discarded, i.e., (n2, T2).

We have so far compared the branches br(1), br(2), br(5), br(6). It remains to compare br(3)
with br(7) and br(4) and br(8). As before, we calculate the total cost of the repair programs br(3),
br(7), br(4) and br(8):

C(t, br(3)) = CT (1, 1) + n2Crep(T1) + n3Crep(T3) + Cout(T3),

C(t, br(7)) = CT (1, 0) + n2Crep(T0) + n3Crep(T3) + Cout(T3),

C(t, br(4)) = CT (1, 1) + n2Crep(T1) + n3Crep(T1),

C(t, br(8)) = CT (1, 0) + n2Crep(T0) + n3Crep(T0).
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When comparing br(3) with br(7), and br(4) with br(8), we obtain

C(t, br(3))− C(t, br(7)) = CT (1, 1)− CT (1, 0) + n2(Crep(T1)− Crep(T0)
︸ ︷︷ ︸

<0

).

C(t, br(4)) − C(t, br(8)) = CT (1, 1) − CT (1, 0) + (n2 + n3)(Crep(T1)− Crep(T0)).

• If CT (1, 1) < CT (1, 0), then

C(t, br(3)) < C(t, br(7)) and C(t, br(4)) < C(t, br(8)).

We may discard br(7) and br(8), that is, the descendant of (n1, T1), i.e., (n2, T0).

• If CT (1, 1) > CT (1, 0), then

C(t, br(3))− C(t, br(7)) = (CT (1, 1) − CT (1, 0)
︸ ︷︷ ︸

>0

) + n2(Crep(T1)− Crep(T0)
︸ ︷︷ ︸

<0

),

C(t, br(4))− C(t, br(8)) = (CT (1, 1) − CT (1, 0)) + (n2 + n3)(Crep(T1)−Crep(T0)).

Once again, we cannot conclude as to the most costly program, hence we keep the branches br(3),
br(4), br(7) and br(8), and thus the nodes (n2, T1) and (n2, T0).

By combining these observations, we can define a rule in order to build the second generation.
We begin with the search tree depicted in Figure 1, representing the 2Nt = 8 PM plans. The first
generation is composed of the nodes (n1, T1) and (n1, T0), and labeled respectively with the cost
functions CT (1, 1) and CT (1, 0), defined by (11) and (10).

• When {(n1, T1)} has a smaller cost function than {(n1, T0)}, i.e., when CT (1, 1) < CT (1, 0),
we discard the most expensive branches br(5), br(6), br(7) and br(8), and thus the node (n1, T0).
Only four branches remain, among which the optimal program (for the fixed inspection time), as
shown in Figure 2.

n1, T1

CT (1, 1)

n2, T2

n3, T3

br(1)

n3, T2

br(2)

n2, T1

n3, T3

br(3)

n3, T1

br(4)

Figure 2: Search tree when CT (1, 1) < CT (1, 0).

• Under the condition CT (1, 1) > CT (1, 0) (i.e., the node (n1, T0) has a smaller cost function
than (n1, T1)), the most expensive branches are br(1) and br(2). In this case, only six branches
remain (br(3), . . . br(8)) instead of eight, among which is found the optimal program (see Figure 3).

Now, we are able to define the strategy for designing the second generation. Suppose that we
have built only the first generation, {(n1, T1), (n1, T0)}, as depicted in Figure 4. Nodes are labeled
with cost function CT (1, 1) and CT (1, 0) respectively.
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n1, T1

CT (1, 1)

n2, T1

n3, T3

br(3)

n3, T1

br(4)

n1, T0

CT (1, 0)

n2, T2

n3, T3

br(5)

n3, T2

br(6)

n2, T0

n3, T3

br(7)

n3, T0

br(8)

Figure 3: Search tree when CT (1, 1) > CT (1, 0).

CT (1, 1) n1, T1 n1, T0 CT (1, 0)

Figure 4: Construction of the first generation.

• If CT (1, 1) = min{CT (1, 0), CT (1, 1)}, we select (n1, T1) and create its two children: (n2, T2)
and (n2, T1). Since Crep(T1) < Crep(T0), we do not create the child of (n1, T0), i.e., (n2, T0) (see
Figure 5).

n1, T1

n2, T2 n2, T1

Figure 5: Second generation when CT (1, 1) = min{CT (1, 0), CT (1, 1)}.

Denote by S(2) the set of all indices of deadlines at the second generation. Figure 5 gives S(2) =
{1, 2}. Note that this set contains distinct deadlines. In the following, we will denote by S(i) the
set of indices of deadlines at the ith generation.

• If CT (1, 0) = min{CT (1, 0), CT (1, 1)}, we select the node (n1, T0) to create its two children,
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(n2, T2) and (n2, T0). Since Crep(T1) < Crep(T0), we generate the descendant of (n1, T1), (n2, T1)
(see Figure 6). In this case S(2) = {0, 1, 2}.

n1, T1

n2, T1

n1, T0

n2, T2 n2, T0

Figure 6: Second generation when CT (1, 0) = min{CT (1, 0), CT (1, 1)}.

4.1.2 Third generation

In order to construct the third generation, we start from Figure 3. As before, we will compare
the total cost of the remaining repair programs, i.e., the branches {br(i), i = 3, ..., 8}, in order to
remove the most expensive ones. Let CT (2, 0), CT (2, 1) and CT (2, 2) be respectively the total cost
of the partial programs {(n1 +n2, T0)}; {(n1 +n2, T1)} and {(n1, T0), (n2, T2)}. The nodes (n2, T0),
(n2, T1) and (n2, T2) are respectively labeled with CT (2, 0), CT (2, 1) and CT (2, 2) (see Figure 7).
These costs are given by

CT (2, 0) = C(t, {(n1, T0), (n2, T0)}) = CT (1, 0) + n2Crep(T0),

CT (2, 1) = C(t, {(n1, T1), (n2, T1)}) = CT (1, 1) + n2Crep(T1),

CT (2, 2) = C(t, {(n1, T0), (n2, T2)}) = CT (1, 0) + n2Crep(T2) + Cout(T2).

The total costs of {br(i), i = 3, ..., 8} are respectively

C(t, br(3)) = CT (2, 1) + n3Crep(T3) + Cout(T3),

C(t, br(5)) = CT (2, 2) + n3Crep(T3) + Cout(T3),

C(t, br(7)) = CT (2, 0) + n3Crep(T3) + Cout(T3),

C(t, br(4)) = CT (2, 1) + n3Crep(T1),

C(t, br(6)) = CT (2, 2) + n3Crep(T2),

C(t, br(8)) = CT (2, 0) + n3Crep(T0).

We will compare the branches br(3), br(5) and br(7), as well as the branches br(4), br(6) and br(8).
Once again we put conditions on CT (2, 0), CT (2, 1) and CT (2, 2), in order to be able to conclude
on the costly programs. Below, we deal with only one case:

CT (2, 1) = min(CT (2, 0), CT (2, 1), CT (2, 2)).

When comparing the total costs of br(3), br(5) and br(7), we obtain

C(t, br(3)) < C(t, br(5)) and C(t, br(3)) < C(t, br(7)).

15



n1, T1

CT (1, 1)

CT (2, 1) n2, T1

n3, T3

br(3)

n3, T1

br(4)

n1, T0

CT (1, 0)

CT (2, 2) n2, T2

n3, T3

br(5)

n3, T2

br(6)

n2, T0 CT (2, 0)

n3, T3

br(7)

n3, T0

br(8)

Figure 7: Search tree when CT (1, 1) > CT (1, 0) with labels CT (2, 0), CT (2, 1), CT (2, 2).

Thus, br(5) and br(7) are deleted, which is the same as removing the nodes (n3, T3), which are
the offspring of (n2, T2) and (n2, T0). Only one node (n3, T3) is left at the third generation. Since
Crep(T2) < Crep(T1) < Crep(T0), we have

C(t, br(4)) < C(t, br(8)).

Thus, we delete br(8) and hence the node (n2, T0), since we have previously removed the node
(n3, T3) (the descendant of (n2, T0)). Since Crep(T1) > Crep(T2), we cannot make a conclusion
about br(6). Indeed,

C(t, br(4)) − C(t, br(6)) = CT (2, 1)− CT (2, 2)
︸ ︷︷ ︸

<0

+n3 (Crep(T1)− Crep(T2))
︸ ︷︷ ︸

>0

,

so we keep br(6). Under the condition CT (2, 1) = min(CT (2, 0), CT (2, 1), CT (2, 2)), the most
expensive branches br(5), br(7) and br(8), have been deleted. Thus, there remain only three PM
schedules instead of eight, as depicted in Figure 8.

The last stage consists in determining the optimal solution for the fixed inspection time t = T ∗.
In order to do this, it suffices to evaluate the nodes of the last generation by adding to CT (2, 1),
firstly n3Crep(T3) +Cout(T3) (yielding the total cost of br(3)), and secondly n3Crep(T1) (giving the
total cost of br(4)). To get the total cost of br(6), we add n3Crep(T2) to CT (2, 2). The minimum
value returns the optimum PM plan for the fixed inspection time t = T ∗.

Remark 4.1. Figure 8 gives S(3) = {1, 2, 3}.

Remark 4.2. The third generation has been built with

1. The two offspring of the node (n2, T1) (the node that gives the minimum of CT (2, i), i =
0, 1, 2): (n3, T3) and (n3, T1).

2. The offspring of the node (n2, T2) (which satisfies Crep(T2) < Crep(T1)): (n3, T2).
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n1, T1

CT (2, 1) n2, T1

n3, T3

br(3)

n3, T1

br(4)

n1, T0

CT (2, 2) n2, T2

n3, T2

br(6)

Figure 8: Final tree when CT (1, 1) > CT (1, 0) and CT (2, 1) = min{CT (2, 0), CT (2, 1), CT (2, 2)}.

Remark 4.3. At each generation i, we build at most (i + 1) nodes (ni, Tj) for j = 0, . . . , i. For
example, Figure 6 shows that the second generation is composed of nodes (n2, T0), (n2, T1) and
(n2, T2), and Figure 8 shows that the third generation has been built with nodes (n3, T1), (n3, T2)
and (n3, T3).

Let us summarize the building strategy related to the example introduced in Section 4.1. We
have initially fixed the inspection time as t = T ∗, and we wish to build a tree with three generations,
since Nt = 3. The first generation {(n1, T1), (n1, T0)} is constructed and evaluated with CT (1, 1)
and CT (1, 0). The node with the lowest cost generates its two children. The other node generates
its descendant, provided that its repair cost calculated at its deadline is less than the repair cost
calculated at the deadline of the least expensive node. The result of this first step is the second
generation. At the end of the second stage, the third generation is built in the same manner as
before, and gives the final tree containing three generation. The aim of the third and final stage is
to determine the optimal repair plan for the given inspection time; for this, it suffices to evaluate
the nodes at the last generation. The branch that returns the least expensive cost is the best
repair schedule. Recall that this PM plan is not necessarily the global optimum, it could be a local
minimum. In order to obtain the global optimum, we have to build trees related to inspection times
T2 − 1 and T3 − 1 (the case t = T1 − 1 is trivial because Nt = 0, i.e., there are no repairs, hence
no tree). Each of such tree returns the best repair program. To get the (global) PM schedule, we
have to compare the total costs of these best repair plans. As a result, with our algorithm, pipeline
managers have the opportunity to choose one of these PM schedules. If they choose to inspect
at year T ∗, the algorithm will output the least expensive repair plan for this choice. The general
algorithm is presented in the next section.

4.2 Algorithm

The following algorithm generalizes the previous example. It provides a search tree with j − 1
generations for a fixed inspection time t = Tj − 1. The construction of the remaining trees follows
the same algorithm. At the end, we obtain N + 1 PM schedules, i.e., an inspection time together
with the best related repair plan; the global minimum is obtained by comparing the total costs of
these N + 1 repair plans.
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Result: Optimal PM schedule for an inspection at year t = Tj − 1.
Initialization: Construction of the first generation {(n1, T1), (n1, T0)};

Evaluation of partial repair programs CT (1, 1) and CT (1, 0);
Step 1: second generation;
if CT (1, 1) < CT (1, 0) then

Both children of node (n1, T1), i.e., {(n2, T2), (n2, T1)} are constructed;
if Crep(T0) > Crep(T1) then

it is not necessary to build the offspring of (n1, T0)
end
The second generation is built;

else
Both descendants of (n1, T0), i.e., {(n2, T2), (n2, T0)} are built;
if Crep(T0) > Crep(T1) then

the descendant of (n1, T1), i.e., (n2, T1), is built;
end
The second generation is built;

end
Step i: (i + 1)th generation, 1 < i < j − 1;

The ith generation was built at the previous step: {(ni, Tl), l ∈ S(i)};

if CT (i, l̃) = min{CT (l), l ∈ S(i)} then
Both children of node (n1, Tl̃

) are constructed, i.e., {(ni+1, Ti+1), (ni+1, Tl̃
)};

while Crep(Tk) < Crep(Tl̃
), k ∈ S(i)− {l̃} do

Construction of the descendant of (nk, Tk), i.e.,(ni+1, Tk)
end
The (i+ 1)th generation is built;

end
Step j − 1: Evaluation of full repair plans;

The best PM schedule for an inspection at t = Tj − 1 is given.

Algorithm 1: Construction of the tree with j − 1 generations.

This algorithm builds and estimates the costs of at most (N +1)(N +2)/2− 1 repair schedules.
Indeed, if t = T1 − 1, the optimal program is that where there is no repair. In this case, the total
cost coincides with the inspection cost evaluated at time t. If t = T2 − 1, the algorithm builds
and estimates the costs of at most two branches, and returns the best repair schedule, b∗(T2 − 1).
If t = T ∗, the algorithm builds and estimates the costs at most N + 1 branches, and returns the
best repair schedule, b∗(T ∗). Thus, the optimal maintenance program b∗(t∗) is the best among
{b∗(T2 − 1), . . . , b∗(T ∗).}

5 Computational results

In this section, we present a large number of examples to confirm the efficiency of the proposed
algorithm. The characteristics of the 11 examples are shown in Table 1. The column labeled with N
corresponds to the number of distinct deadlines, the third column designates the deadlines, and the
last column the numbers of defects associated with each deadline. In other words this table gives 11
primary repair schedules defined in Section 2 (Definition 1). For example, the the fifth experience
is composed of 7 different deadlines. The first four are T1 = 2, T2 = 5, T3 = 8 and T4 = 15. At year
T1 = 2 there is 1 repairs; at year T2 = 5 there is 1 repair; at year T3 = 8, 1 and at year T4 = 15, 1.
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Hence the primary is given by

P = {(n1 = 2, T1 = 2), (n2 = 1, T2 = 5), (n3 = 1, T3 = 8), (n4 = 1, T4 = 15)

(n5 = 6, T5 = 24), (n6 = 5, T6 = 26), (n7 = 4, T7 = 28)} .

For the above primary repair schedule, the PM problem aims at finding the next (after the primary
inspection) optimal inspection t∗ within

{Tj − 1, j = 1, . . . , N, T ∗} = {1, 4, 7, 15, 24, 25, 27, 30} ,

and the associated repair schedule minimizing the operational cost within ∆t∗; here 30 designates
the horizon time T ∗. For this experience, our algorithm built at most 35 = (7 + 1)(7 + 2)/2 − 1
repairs schedule and return 7 maintenance programme; one for each epoch: 4, 7, 15, 24, 25, 27, and
30.

We want to look at the computational effort required to solve the problem (8) when the number
of deadlines N increases. To do this, we will compare our algorithm, which we call tree algorithm,
with two other algorithms. The first, called the simplified algorithm, solves (8) and looks through
complete repair plans when candidates for the next inspection are in {T1 − 1, . . . , TN − 1, T ∗}.
According to Section 4.2, this method investigates (1 − 2N+1)/(1 − 2) − 1 schedules. The second
one, called the comprehensive algorithm, solves the same problem but investigates 2Nt schedules
for each t ∈ {1, 2, . . . , T ∗}. This method provides an inefficient but complete set of PM schedules
(inspection times and repair plans) which will serve as a benchmark for our algorithm and the
simplified one. Both algorithms (simplified and comprehensive) output the best repair schedule for
each inspection time t ∈ {T1 − 1, . . . , TN − 1, T ∗} (and especially, the optimal PM plan (t∗,P∗

t )).

The experimental design consists of entering manually for the three algorithms, the number of
different deadlines N , the values of deadlines, and the number of defects observed for each deadline.
The parameters T ∗, discount rate, and inflation rate, are also entered manually and respectively set
as T ∗ = 30, rd = 8%, ri = 1%. The full costs are expressed in ke and are also manually entered.
The initial inspection cost is C0

insp = 500, the initial repair cost is C0
rep = 60, and the initial out-of-

service cost is C0
out = 300. We compare the performance of our algorithm with the comprehensive

and simplified algorithms. The computational tests were built with scilab 5.4.1 on a SONY computer
with biprocessor, 2.30 GHz and 1 GB of RAM. The three algorithms were developed in a decision
support framework. The tools provide a set of suitable solutions. Each solution is defined by a
repair schedule, an inspection time belonging to {Tj − 1, j = 1, . . . , N} ∪ {T ∗}, and a total cost.
Table 2 illustrates the results. It compares the running times (indicated by the CPU) and the
optimal cost of the all 11 experiments for each algorithm.

When we compare the outputs of our algorithm with both the comprehensive and simplified
algorithms, we see that all the algorithms return the same optimal cost for each experience, whereas
the running time is much less than for the others. Our algorithm was developed under a support
decision framework. We have seen that its results can help a pipeline manager, in the sense that the
algorithm provides a set of solutions that includes the optimal PM schedule. Table 3 below shows for
N = 7, all PM schedules, i.e., all repair schedules associated with t ∈ {Tj − 1, j = 1, . . . , 7} ∪ {T ∗}.
The first column corresponds to the distinct inspection times, the second to the associated repair
plans, and the last represents the total cost of these repair schedules within the inspection interval.
We see that the optimal PM schedule suggests an inspection at year 23, for a total cost of 347.05704
ke. The tool gives then to the pipeline manager the following repair program within the inspection
interval ]0, 23]

{(4, T0), (0, T1), (0, T2), (0, T3), (0, T4)}.
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This repair schedule suggests to the practitioner to repair 4 defect during the primary inspection
(at T0 = 0)) and no repair at years T1 = 2, T2 = 5, T3 = 8 and T4 = 15. If the operator is not
satisfied with this PM schedule, he has the opportunity to select another schedule. For example,
he may choose to inspect later at year 27. In this case, the tool proposes a repair schedule with a
total cost equal to 514.11211 ke, and the repair plan is given by

{(4, T0), (0, T1), (0, T2), (0, T3), (0, T4), (11, T5), (0, T6)},

which means that 4 defect must be repair during the primary inspection and 11 repairs should be
made at year T5 = 24.

Example No N Deadlines Tj, j = 1, . . . N Number of defects

1 3 1,8,16 1,2,1

2 4 4,6,12,22 2,3,1,1

3 5 2,3,8,12,24 1,1,3,2,2

4 6 5,6,8,15,19,25 1,1,3,3,2,1

5 7 2,5,8,15,24,26,28 1,1,1,1,6,5,4

6 8 4,7,8,11,13,21,25,27 1,1,2,1,1,3,3,1

7 9 5,6,8,11,14,20,21,25,26 1,2,3,2,1,1,3,2,1

8 10 3,5,6,7,13,18,20,22,25,26 1,2,1,2,3,3,1,1,1,1

9 11 2,4,5,6,10,12,16,17,20,22,25 1,2,3,1,4,1,1,1,2,2,3

10 12 2,4,5,6,7,9,10,11,18,20,24,26 1,1,2,3,2,2,1,1,1,3,2,1

11 13 2,5,6,7,10,12,13,17,18,20,21,24,26 1,1,3,2,2,1,1,3,4,1,4,5,2

Table 1: Data for simulated examples.

N Comprehensive algorithm Simplified Algorithm Tree Algorithm
CPU Optimal cost CPU Optimal cost CPU Optimal Cost (e)

3 0.60 306972.81 0.078 306972.81 0.0156 306972.81
4 1.61 408943.08 0.22 408943.08 0.0156 408943.08
5 3.26 432790.34 0.44 432790.34 0.0312 432790.34
6 9.39 382437.51 1.37 382437.51 0.0312 382437.51
7 24.60 347057.04 3.88 347057.04 0.0468 347057.04
8 54.40 394468.88 9.42 394468.88 0.0624 394468.88
9 123.27 382437.51 24.08 382437.51 0.0624 382437.51
10 272.24 437285.67 57.24 437285.67 0.0780 437285.67
11 545.78 467592.59 124.16 467592.59 0.0780 467592.59
12 1138.46 467592.59 278.82 467592.59 0.1092 467592.59
13 2656.50 442437.51 725.95 442437.51 0.1248 442437.51

Table 2: Computational results.

Inspection time Repair within ∆t plans Total cost

30 {(4, T0), (0, T1), (0, T2), (0, T3), (0, T4), (15, T5), (0, T6), (0, T7)} 547256.39

27 {(4, T0), (0, T1), (0, T2), (0, T3), (0, T4), (11, T5), (0, T6)} 514112.11

25 {(4, T0), (0, T1), (0, T2), (0, T3), (0, T4), (6, T5)} 465784.98

23 {(4, T0), (0, T1), (0, T2), (0, T3), (0, T4)} 347057.04

14 {(53, T0), (0, T1), (0, T2), (0, T3)} 375675.59

7 {(2, T0), (0, T1), (0, T2)} 432790.34

4 {(1, T0), (0, T1)} 442437.51

1 {(0, T0)} 467.59259
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Table 3: Data for simulated examples when N = 7.

6 Conclusion

This paper focused on the PM problem in gas pipelines from the economics point of view. We have
modeled this problem using binary integer nonlinear programming, which drastically shrinks the
possible set of good repair schedules, by exploiting the problem’s properties. In order to solve the
problem, we have proposed an algorithm, based on dynamic programming, which finds the exact
solution extremely quickly, along with a set of alternative solutions. As a result, managers of gas
pipeline systems can consider various possible schedules, and choose alternative PM programs, and
our algorithm assists them in making the most suitable decision in a short period of time.
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