
HAL Id: hal-01374910
https://hal.science/hal-01374910

Submitted on 4 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian Sensor Fusion with Fast and Low Power
Stochastic Circuits

Alexandre Coninx, Pierre Bessière, Emmanuel Mazer, Jacques Droulez,
Raphaël Laurent, Awais Aslam, Jorge Lobo

To cite this version:
Alexandre Coninx, Pierre Bessière, Emmanuel Mazer, Jacques Droulez, Raphaël Laurent, et al..
Bayesian Sensor Fusion with Fast and Low Power Stochastic Circuits. IEEE International Conference
on rebooting Computing, Oct 2016, San Diego, United States. �hal-01374910�

https://hal.science/hal-01374910
https://hal.archives-ouvertes.fr

Bayesian Sensor Fusion with Fast and Low Power
Stochastic Circuits

Alexandre CONINX
Pierre BESSIÈRE

Emmanuel MAZER
and Jacques DROULEZ

CNRS: ISIR/UPMC and LIG/UGA
4, place Jussieu

75005 Paris, France
Email: alexandre.coninx@isir.upmc.fr

Raphaël LAURENT
ProbaYes S.A.S

82, Allée Galillée
38330 Montbonnot, France

Email: raphael.laurent@probayes.com

M. Awais ASLAM
Jorge LOBO

Institute of Systems and Robotics
Dept. of Electrical & Computer Eng.

University of Coimbra
3030-290 Coimbra, Portugal

Email: {mawais, jlobo}@isr.uc.pt

Abstract—As the physical limits of Moore’s law are being
reached, a research effort is launched to achieve further perfor-
mance improvements by exploring computation paradigms de-
parting from standard approaches. The BAMBI project (Bottom-
up Approaches to Machines dedicated to Bayesian Inference)
aims at developing hardware dedicated to probabilistic com-
putation, which extends logic computation realised by boolean
gates in current computer chips. Such probabilistic computing
devices would allow to solve faster and at a lower energy cost a
wide range of Artificial Intelligence applications, especially when
decisions need to be taken from incomplete data in an uncertain
environment. This paper describes an architecture where very
simple operators compute on a time coding of probability values
as stochastic signals. Simulation tests and a reconfigurable logic
hardware implementation demonstrated the feasibility and per-
formances of the proposed inference machine. Hardware results
show this architecture can quickly solve Bayesian sensor fusion
problems and is very efficient in terms of energy consumption.

I. INTRODUCTION

The aim of the BAMBI [1] project (Bottom-up Approaches
to Machines dedicated to Bayesian Inference) is to explore new
computing methods inspired from cell signaling mechanisms.
Within this project we search for models to explain how a
unicellular alga (Chlamydomonas [2]) successfully evolves
and reproduces in its microscopic but nevertheless challenging
environment. One strong assumption made is that elementary
cognitive capabilities are prerequisites for this alga to survive
in situations where complex decisions have to be made and
where bad ones often lead to destruction of the cell. Our line
of thought is that the mechanisms leading to these efficient
behaviors are implemented at the molecular level and are the
result of stochastic processes which could be modeled by
well established formalisms [3], [4]. Considering the limited
sensing capabilities of Chlamydomonas, the decisions are
made with a very incomplete picture of the state of the world.

We follow Laplace [5] and Jaynes [6] to state that proba-
bilistic inference is a rational way to reason with incomplete
knowledge and believe that Evolution has equipped some
living organisms with mechanisms able to perform such in-
ferences. Further, we assume time codes may be used by
biological systems to represent probability distributions. To

sustain all these hypotheses, we aim at synthesizing sim-
ple computing artifacts which could perform probabilistic
inference using nano-scale devices while avoiding the von
Neumann architecture and being energy efficient.

In [7] we proposed an architecture based on bitwise Gibbs
sampling. A simulation of this machine on a standard com-
puter was used to control a mobile robot. The same architec-
ture was implemented on reconfigurable logic device (FPGA)
and used to solve with approximate inference an intractable
problem with a good precision. In [8] we presented a machine
performing exact inference with approximate calculus based
on arithmetics on stochastic bitstreams. In the present work
we describe a different machine using similar basic principles
to allow efficient computing of solutions for problems in the
class of naive Bayesian inferences. Even if the machine is
limited in scope, it could be used in a variety of sensor
fusion applications and the results presented in this paper show
truly remarkable performances in term of execution speed and
power consumption.

In this paper, we first review related works on bio-inspired
and probabilistic computing architectures. We then describe
our stochastic machine and show how it can be used to
compute naive Bayesian inference. This architecture is then
tested on a simple sensor fusion problem, first with a simu-
lated system and second with an FPGA implementation. The
computation speed and power consumption demonstrated by
those systems are presented, and we discuss the implications
of those performances, as well as the potential applications
and future developments of such systems.

II. RELATED WORKS

Neural networks are one of the major source of inspiration
for bio-inspired designs with two blue riband projects: SpiN-
Naker [9] and TrueNorth [10]. In these projects, highly parallel
machines are designed and organized to emulate or to work
like assemblies of neurons. The core computation inside each
processing unit is still based on the von Neumann architecture
and makes use of fixed or floating point processing units. The
design we propose is also massively parallel but differs in

that the parallelism takes place at the bit level: an approach
which was suggested thirty years ago by the designer of the
Connection Machine [11].

When designing bio-inspired machines, the question of how
they can be programmed is in our opinion a major issue.
Many bio-inspired designs rely on learning as only program-
ming mechanism and several chips have been developped
(for instance by Google, Nvidia, Movidius) to speed up the
recognition and classification phase. The main drawbacks of
this approach are the huge amount of data required to train the
networks, and the expertize needed to adjust meta-parameters
used during learning.

As an alternative, the approach we follow consists in using
the Bayesian probability theory to rethink the ways computers
are programmed [12]. To create such a new probabilistic
computing framework, new programming languages have been
and are being developed, such as ProBT [13], [14], Church
[15] or Anglican [16] to quote only a few. Accordingly, new
programming methods are also suggested [14] to develop ap-
plications. As in standard languages, these methods encompass
variables definition and scope, control and loops, except that
they now become probabilistic.

The idea of developing hardware dedicated to execute
these programs has been pursued by several teams [17] [18]
[19] with goals similar to the BAMBI project’s: exploring
different computation paradigms to perform probabilistic in-
ference. Vigoda designed architectures [17] based on proba-
bilities represented by analog signals, and used the message
passing algorithm to compute exact inference. Mansinghka
uses sampling methods for approximate inference [18]. In
a similar way, Jonas designed Markov Chain Monte Carlo
based algorithms to provide a representation of probabil-
ity distributions as sets of samplers [19]. The Nanoscale
Computing Fabrics Laboratory (University of Massachusetts
Amherst) is conducting a research project closely related to
inference based on DAG models [20]. This research group
has designed an unconventional hardware architecture based
on electro-magnetic computations to perform inference on
Bayesian Network models. The approach taken by Thakur
and all [21] is similar to ours: they use stochastic bitstreams
and target special inference problems. They have proposed
two frameworks, BEAST (Bayesian Estimation And Stochastic
Tracker) and BIND (Bayesian INference in DAG), to perform
inference using stochastic electronics on two types of Bayesian
models, Hidden Markov Models and Direct Acyclic Graphs
(DAG) respectively.

In the framework of the BAMBI project, another stochastic
architecture has been proposed to perform naive Bayesian
fusion using Muller C-Elements [22], which achieves exact
inference with normalization for binary random variables, but
create harmful correlations in the stochastic signals and can’t
be easily extended to non-binary discrete distributions.

III. THE BAYESIAN MACHINE 1

A. Problem statement

Our computational architecture is focused on the goal
of performing naive Bayesian fusion [14]: computing the
posterior probability distribution on a searched variable S,
knowing a prior distribution P (S) and the conditional distri-
butions P (Ki|S) on some variables K1, . . .KN with known
values k1, . . . kN . In naive Bayesian fusion the Ki vari-
ables are conditionally independant with one another given S
(P (Ki|Kj , S) = P (Ki|S) ∀i, j ∈ {1, . . . , N}). The inference
is computed by:

P (S|k1, . . . , kn) =
1

Z
P (S)

N∏
i=1

P (ki|S) (1)

where Z is a normalization constant.
We will focus on the case where S is a discrete random vari-

able with cardinality M , taking possible values s1, . . . , sM .
The posterior probability distribution can therefore be ex-
pressed by the probability values P ([S = sj]|k1, . . . , kn) with
j ∈ {1, . . . ,M}, and computed as a probability product:

P ([S = sj]|k1, . . . , kn) =
1

Z
P ([S = sj])

N∏
i=1

P (ki|[S = sj])

(2)
where P ([S = sj]) is the prior probability of value sj , and
P (ki|[S = sj]) is the likelihood of the observed value ki of
variable Ki when the searched variable has value sj .

B. Proposed architecture

Following some previous work on stochastic circuits[23],
[24], we propose to represent those probability values with
clocked stochastic digital signals (“stochastic bitstreams”) us-
ing temporal coding: a probability value p is represented by a
digital signal B such as at each timestep, P ([B = 1]) = p
and P ([B = 0]) = 1 − p (Figure 1a). It is immediate
that if two such independant signals B1 and B2 encoding
probability vaues p1 and p2 are fed to an AND gate, the output
signal encodes probability p1 p2: the stochastic bitstream data
representation allows to compute probability product with a
single boolean logic operation.

The probability product described in equation 2 can there-
fore be performed by a sequence of N AND gates operating
on stochastic bitstreams. The sequence starts with a stochastic
bitstream encoding the prior probability value P ([S = sj])
and at each step, it integrates the i-th data likelihood term
by performing an AND operation between the signal output
from the previous step and a bitstream encoding the probability
values P (ki|[S = sj]), generated from the probability value
stored in local memory (Figure 1b). A set of M such sequences
of elementary circuits can be used to concurrently compute
the M posterior probability values P ([S = sj]|k1, . . . , kn) in
parallel (Figure 1c). We name the resulting architecture the
Bayesian Machine 1 (BM1).

0 0 0 0 01 1 1

(a) Stochastic bitstream

Memory

b
j,i-1 b

j,i

p
i,j

SB Gen.

(b) BM1 element

K
i

OP(j-1,i-1)

OP(j,i-1)

OP(j+1,i-1)

OP(j,i)

OP(j-1,i)

OP(j+1,i) OP(j+1,i+1)

OP(j,i+1)

OP(j-1,i+1)

K
i+1

K
i-1

S
j-1

S
j

S
j+1

b
j-1,i-2

b
j,i-2

b
j+1,i-2

b
j-1,i-1

b
j,i-1

b
j+1,i-1

b
j-1,i

b
j,i

b
j+1,i

b
j-1,i+

b
j,i+1

b
j+1,i

(c) BM1 architecture

Fig. 1. Architecture of our BM1 stochastic machine. Probability values are represented as stochastic digital signals using temporal coding (“stochastic
bitstreams”) as shown in figure 1a (the depicted signal encodes a probability value p = 3

8
). The product between the probability value encoded by a bitstream

bj,i−1 and a likelihood value ki,j can be performed by the circuit shown in figure 1b, by storing the probability value for ki,j in a memory, using a stochastic
bitstream generator to create a stochastic signal encoding the corresponding value, and using an AND gate to compute the product. A matrix of such circuits
(figure 1c) can be used to compute naive Bayesian fusion on discrete variables, each line j of the architecture computing the posterior probability for S = sj ,
and each column i integrating the likelihoods for the data term Ki.

The BM1 yields a set of stochastic bitstreams (a “stochastic
bus”) representing the full posterior probability distribution.
In order to recover the resulting probability values as numeric
representation, we can use M simple counter circuits, which
integrate the stochastic signals by counting the number of “1”
bits n1 in a given number of clock cycles n. The final state of
the counter constitutes a numeric fixed-point representation of
the value n1

n , which is an estimation of the probability value
encoded by the bitstream, with the accuracy of that estimation
increasing with the counter size and the integration time n.

C. Distribution normalization

The proposed BM1 architecture performs probability prod-
ucts between discrete probability distributions, but it does
not perform any normalization operation: the signals on the
output bus encode probability values equal to the product of
the values encoded by the prior and the likelihood terms.
Although working with such unnormalized distibutions is
possible, issues specific to our data representation may arise
from the very low probability values incurred by multiple
probability products. For example, in the trivial case where
the prior distribution and all data likelihood distributions are
uniform, the probability values of all generated stochastic
signals are 1

N and the probability values of all output signals
are pout = 1

NM+1 . A stochastic bitstream encoding such a
probability value would therefore have only one every NM+1

bit set to “1”, which means the machine has to be run for an

implausibly high number of cycles before any output data can
be collected. We call this issue the time dilution problem.

We propose to address this issue by modifying the way
the prior and data likelihood distributions are encoded as
stochastic signals in order to maximize the output probability
values. Instead of representing a probability distribution P (X)
on a discrete variable X by bitstreams encoding the values
P ([X = xi]), we use bitstreams encoding probability values
P ([X=xi])

Pmax
, where Pmax = max

i∈{1,...,N}
P ([X = xi]). The

value xi corresponding to the maximum probability value is
therefore represented by a probability 1, which is encoded
as a constantly up signal, and other probabilities are scaled
according to that maximum value.

With this method, the issue in the previous trivial example is
resolved as all signals encode a probability value of 1. Similar
problems arising with weakly peaked distributions are resolved
satisfyingly in a similar manner. Since the probabilities for the
different lines of the BM1 are all multiplied by the same factor

1
Pmax

, only the normalization constant Z from equation 2 is
modified and the distribution profile is preserved.

IV. EXPERIMENTAL RESULTS

A simple scenario was considered as a case study to measure
the performance of the proposed architecture: a data fusion
problem where the location of a boat is estimated from the
readings of six noisy sensors. The probem is to infer the
(X,Y) coordinates of the boat on a 64×64 grid (see figure 2)

given six sensor readings: the distances (D0, D1 and D2) and
bearings (B1, B2 and B3) to three landmarks.

Fig. 2. The boat localization problem

A. Problem specifications

The values of the problem parameters used to test our
architecture are the following. The (X,Y) coordinates of the
landmarks are (0, 0), (0, 32) and (32, 0), and the boat actual
position is (32, 32). For each landmark i, the distance sensor
model P (Di | X Y) is a Gaussian probability distribution
specified by a mean µdi equal to the Euclidian distance
between the landmark i and the possible location (X,Y),
and by a standard deviation σdi given by the function σdi =
5+µdi/10. Likewise, the angle sensor model P (Bi | X Y) of
each landmark is a Gaussian probability distribution specified
by a mean µai equal to the angle of view of the landmark from
the boat, and by a standard deviation σbi = 14.0625 degrees.

Figure 3 illustrates those models by showing the shape of
the likelihood functions defined by the sensor models for the
landmark at position (0, 32) when the values of the sensor
readings are 32 for the distance d1 and 0 for the angle b1.

The complete inference will fuse the information provided
by the sensor models to provide an estimate of the boat
location, according to the Bayesian model:

P (X Y |D1 B1 D2 B2 D3 B3)

∝ P (X Y)
3∏

i=1

P (Di | X Y) · P (Bi | X Y) (3)

We can perform that inference with the BM1 architecture
described in section III, with parameters N = 642 (the
cardinality of the location variable) and M = 6 (the number
of known variables).

B. Algorithmic level performance assessment

Some of the properties of the proposed architecture can be
assessed at the algorithmic level. Software simulations of the
stochastic architecture were run to collect key performance
indicators, and for comparison purposes the reference distribu-
tion was computed by the exact inference engine of the ProBT
library [13], [14]. Figure 4 highlights a major feature of the
proposed architecture: very few clock cycles are necessary to
obtain a qualitatively good estimation of the boat location.

(a) (b)

Fig. 3. Likelihood of the boat location for the first landmark, (a) for the
distance sensor model when the distance is 32, and (b) for the angle sensor
model when the angle is 0.

(a) Exact inference (b) 7 clock cycles

(c) 100 clock cycles (d) 1M clock cycles

Fig. 4. Qualitative evaluation of the stochastic architecture on the boat
problem using a 64 × 64 grid. Probability distributions on the boat position
are infered (a) in exact inference, or with the stochastic architecture after a
few clock cycles (b), (c) and (d). The plots are restrained to a sub-region of
the X × Y grid since posterior probabilities are nearly null outside.

To quantify the precision of the stochastic inference, the
variations of the Kullback-Leibler divergence (KL divergence)
between the stochastic machine output distribution and the
reference distribution computed by exact inference are shown
(figure 5) as the number of clock cycles increases. This
measure of distance between the two probability distributions
provides a global assessment of the precision of the inference
computed by the stochastic machine. The performances of
the stochastic architecture are compared with what would be
obtained by an hypothetical implementation which would be
able to draw one sample at each clock cycle from the target
probability distribution.

These results highlight two features of the stochastic archi-
tecture. First, as it is common for sampling-based approaches,
by increasing the number of clock cycles the error can be made
arbitrarily small (but there is a direct impact on computation
time and energy consumption). Second, the stochastic archi-

Fig. 5. Quantitative evaluation of the precision of the stochastic computation.
The Kullback-Leibler Divergence between the probability distribution com-
puted by the BM1 and the reference distribution computed by exact inference
provides a global error measure.

tecture is dramatically faster (×153 in average) than a solution
that would draw one sample from the target distribution at each
clock cycle.

C. Hardware implementation

To implement the Bayesian machine in hardware we used
reconfigurable logic devices (Field Programmable Gate Ar-
rays, or FPGAs). The topology and memory contents of the
BM1 stochastic circuits are not fixed, but depend on the model
and the inference problem. The flexibility and reconfigurability
of FPGAs allow us to spool different machines onto hardware
as needed.

FPGAs are devices built from elements with programmable
logic functions and interconnects, allowing them to be re-
configured in circuit. Compared to custom built Application
Specific Integrated Circuits (ASICs), they are less efficient
since there is an overhead in terms of silicon resources
and a lower working frequency. They are widely used for
prototyping digital circuits, and they can also have an edge
over CPUs and GPUs since the fine-grain parallelism provided
by reconfigurable logic hardware provides a better fit to the
geometry of the computation data flow and the required
precision, but can be readily deployed without needing to
fabricate a custom chip as happens with the ASICs.

We started by creating the required components in VHDL
(a hardware description language used for hardware synthesis)
specifically for the boat example inference model. Above the
boat example is given for a 64 × 64 grid and 6 sensors, this
leads to a matrix of (6 + 1)× 4096 BM1 elements (including
priors). We scaled down to 4×4 to have a manageable size for
initial tests. After that, we made each component generic so
that parameters could be modified to fit the needs of other
models, or different spatial resolution for the same model.
With generic components we can use an automatic tool-
chain to compile a VHDL circuit from the Bayesian program
written with the ProBT probabilistic programming language.
The development was made in Altera’s Quartus II IDE to
synthesise the circuits to the FPGA on the reconfigurable logic
boards used in the experiments.

fusion_boat_2:fusion_boat_2_inst1

clk

memory_enable

reset

observed_values.D3[2..0]

observed_values.D2[2..0]

observed_values.D1[2..0]

observed_values.B3[3..0]

observed_values.B2[3..0]

observed_values.B1[3..0]

rnd_in[6][31..0]

rnd_in[5][31..0]

rnd_in[4][31..0]

rnd_in[3][31..0]

rnd_in[2][31..0]

rnd_in[1][31..0]

rnd_in[0][31..0]

data_out[15..0]

bm1_module:inst_module_0_1

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_0_2

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_0_3

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val
bm1_module:inst_module_0_4

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_0_5

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_0_6

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_1_1

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_1_2

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_1_3

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val
bm1_module:inst_module_1_4

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_1_5

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_1_6

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_2_1

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_2_2

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_2_3

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val
bm1_module:inst_module_2_4

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_2_5

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_2_6

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_3_1

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_3_2

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_3_3

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val
bm1_module:inst_module_3_4

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_3_5

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_module:inst_module_3_6

clk

input_val

memory_enable

reset

observation[2..0]

RandomValue_in[31..0]

output_val

bm1_prior:inst_prior_0

clk

memory_enable

reset

RandomValue_in[31..0]

output_val

bm1_prior:inst_prior_1

clk

memory_enable

reset

RandomValue_in[31..0]

output_val

bm1_prior:inst_prior_2

clk

memory_enable

reset

RandomValue_in[31..0]

output_val

bm1_prior:inst_prior_3

clk

memory_enable

reset

RandomValue_in[31..0]

output_val

Fig. 6. RTL view of BM1 for the boat example with a 2 × 2 spatial grid,
showing a regular matrix structure of (1 + 6)× 4 modules.

As an illustrative example, the RTL (Register Transfer
Level) circuit view of a BM1 for the boat localization problem
with a 2 × 2 grid can be seen in figure 6. In this case
the circuit is a matrix of 4 × 6 BM1 elements or modules,
and 4 prior modules. For a grid size 32 × 32 this becomes
(1 + 6)× 1024. The likelihoods are stored in memory inside
the BM1 modules, but each module only has the slice required
to have the correct values for a given input. In this way we
can have new observations at any given time and have the
likelihood values readily available.

Stochastic bitstreams are generated by comparing the stored
value with a random number at each clock cycle [24]. For the
random number generators (RNGs) we tested three pseudo-
random generators implementable on the FPGA. The Fi-
bonacci Linear Feedback Shift Register (LFSR) [24] is very
compact but did not give good results as it introduced a bias.
The Mersenne Twister (MT32) [25], based on the Mersenne
prime 2199937 − 1, gave much better results, but required a
big memory and more logic elements. The XSADD generator,
a variant of XORshift RNG [26], has a repeat sequence of
2128− 1, requires more logic elements than the others, but no
memory, and also has good statistical properties. Since mem-
ory is used elsewhere in the design, the XSADD is a better
compromise and was used in the hardware implementation.

The BM1 module consists of a memory, a bitstream gen-
erator, and a simple AND logic gate that is the stochastic
multiplier. Each bitstream generator requires a random number
generator, however if we look at the topology of the machine,
the lines in the matrix are independent, and instead of having
a random number generator in each BM1 module, the random
number can be shared down the same column. This leads
to a more efficient implementation of the BM1 module than
the direct implementation of the operator in figure 1. This
is a major improvement on resource usage that improves
scalability: increasing the size of the search space (i.e. the
resolution on the inferred location) increases the number
of BM1 modules, but not the number of RNGs, nor the
computation time. Figure 7 shows the RTL view of the BM1
Module.

The bitstream generator compares the value looked-up
in memory with the shared random number to generate a
stochastic bitstream representing the probability value from
the memory. The memory component lpm_memory_inst stores
the likelihood associated with the corresponding searched
variable. For the priors it is similar but with a single value

bm1_module:inst_module_4_1

clk

input_val

memory_enable

reset

observation[3..0]

RandomValue_in[31..0]

output_val

bitstream_generator:bitstream_generator_inst

clk

rst

proba[31..0]

random_in[31..0]

bitstream

lpm_rom:memory_inst

inclock

memenab1'h1

address[3..0]

q[31..0]

output_val

Fig. 7. RTL view of the BM1 module operator, with a local memory, a
bitstream generator (that is only a comparator since the random number is an
input), and a stochastic multiplier.

memory and without the multiplier AND gate.
Since a custom circuit is synthesised the priors and like-

lihood memories are partitioned and distributed onto the
instances of the above components exactly as needed.

For the hardware tests we used development boards with
Altera FPGAs Cyclone IV, Stratix IV and Stratix V. VHDL
was used for development of the design using Altera Quartus
II IDE and to synthesise the circuits to the FPGA. ModelSim
was used for offline simulations and Signal Tap II for in-circuit
logic analysis on the FPGA. Power analysis was done using
Altera PowerPlay Power analyser. A nominal clock frequency
of 50 MHz was used for all boards in the tests, but higher
frequencies are possible depending on the specific device and
design optimisations.

D. Hardware performance assessment

Figure 8 shows the boat position inferred by a hardware
implementation of the Bayesian machine using a 32× 32 grid
space. This was done using XSADD RNGs, on the larger
FPGA, but occupied only a fifth of the device resources using
the revised BM1 modules to save on the use of RNGs. After
103 clock cycles we already have a good output, and with more
it quickly approaches the reference. With the conservative
speed of 50 MHz, this means the machine has takes 0.02 ms
to perform a very good approximation of the exact inference.

To better visualise the accuracy of the stochastic compu-
tation, as for the simulated implementation, we compute the
KL divergence between the probability distribution computed
by the BM1 and the reference distribution computed by exact
inference. This global error measure is plotted in figure 9 for
different grid sizes.

In Table I, we can see how the BM1 gets mapped to
different FPGAs. The resource utilisation provides a measure
of the circuit area or fraction of resources in the chip. The
implementation is using the XSADD RNGs, and the random
values are shared down the columns to limit the number of
RNGs used in the design. We can see that for increasing grid
sizes the circuit becomes quite large. For a spatial grid of
32× 32 the full BM1 takes up 20% of a large FPGA.

Tests were performed on the BM1 in various configurations
using Modelsim and the Power Analyzer Tool from Altera
Quartus II FPGA development IDE to estimate the power
consumption. The power consumption of the boat example for
a 4×4 grid size, using the XSADD RNGs, and sharing RNGs

Exact inference
0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 clock cycle

0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

10 clock cycles
0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

100 clock cycles

0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

103 clock cycles
0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

104 clock cycles

Fig. 8. Hardware results for 32 × 32 grid, showing a colour map of the
posterior distribution P (X,Y | k) resulting from the sensor fusion for exact
inference reference and for BM1 with bitstream lengths of 1, 10, 100, 103
and 104.

Fig. 9. KL divergence results of the boat example for different grid sizes and
increasing bitstream lengths.

across the independent bus lines was estimated to be 213,29
mW. A single RNG has a power consumption of 4.76 mW. The
analysis is done with the Cyclone IV and for the full test circuit
that includes the output counters that convert the stochastic
bus to numeric values and some wrap I/O control logic of the
machine. The estimated value includes the fraction of the core

TABLE I
RESOURCE UTILISATION OF BM1 FOR BOAT EXAMPLE

Cyclone IV

Grid Size Logic Utilization Tot. Reg. Mem. Bits
4× 4 3,006(3%) 1,828(1%) 545(<1%)
8× 8 6,879(6%) 3,414(3%) 2081(<1%)

Stratix V

4× 4 1,370(<1%) 1,892 545(<1%)
8× 8 3,469(1%) 3,472 2081(<1%)

16× 16 10,920(4%) 9,834 8225(<1%)
32× 32 52,298(20%) 35350 32801(1%)

static power dissipation of the FPGA device corresponding
to the resource usage. From this thorough simulation, and
knowing the topology of BM1, we can estimate the power
for bigger grid sizes, even if for 32 × 32 this would map to
more than one Cyclone IV chip.

From this we can compute energy consumption, and fig-
ure 10 shows the increased accuracy obtained when more
energy is used, i.e., when longer bitstream lengths are used. It
follows the trend shown in figure 9, but since larger circuits
draw more power it takes more energy for larger grid sizes to
reduce the KL divergence. For comparison purposes, figure
10 also shows an estimation on the energy consumption
required by running software performing the exact inference
on a typical laptop computer processor (Intel(R) Core(TM) i7-
2640M CPU @ 2.80GHz). This was done thanks to a software
library [27] allowing to monitor the energy consumed at the
process level [28].

Fig. 10. KL divergence results of boat example for different grid sizes
and increasing energy consumption of the BM1. Vertical lines indicate the
energy used by a typical laptop computer to perform the corresponding exact
inference.

Running the 32×32 grid size BM1 at 50 MHz, the machine
takes 0.02 ms to run 1000 cycles and have a reasonable
output as shown in figure 8. It does this using only 0.23
mJ, the software version on a typical laptop takes 919 mJ,
this is a huge difference. If we run for 104 cycles, we have
a KL divergence of 0.029 (Figure 9), and only use 2.3 mJ
(Figure 10). The accuracy requirements of target applications
are a key factor, since using short bitstream lengths decreases

accuracy, but provides a usable result with much less energy.
The results show that the hardware implementation is fea-

sible and efficient. To improve scalability to larger problems
the memory structure can be improved. In the current imple-
mentation memory is used redundantly to be readily available
in all modules, but a write loop can be used to have single
registers and refresh when the known inputs change.

E. Discussion

One feature of the BM1 is the decoupling between the size
of the sampling space (the number of lines of the BM1) and the
sampling time which remains constant. Of course, increasing
the resolution or the number of evidences (the number of
columns) increases the number of BM1 elements and, as a
consequence, the surface and the power consumption of the
circuit.

The distributed memory used for the priors and likelihoods
is a key feature of the design. The flexibility of the FPGA
is used to store from the start the specific sets of values at
each node, readily available at each clock cycle to generate
the correct bitstreams. Since the lines in the stochastic bus are
independent, the RNGs can be shared down the columns of
the matrix of operators. But the circuit is still a large matrix
of small memories, comparators and AND gates. This can
be reduced by only having a local register and an external
memory, but the register refresh updates for changing inputs
would be a significant overhead.

The performance of our proposed architecture is highly
dependant on the ability to easily generate high quality and
independent stochastic bitstreams encoding chosen probability
values. While such bitstreams can be generated by CMOS
logic components using pseudo-random number generators,
such generators have significant energy and memory re-
quirements and are not suitable to large scale integration
in stochastic circuits. Recent advances in new nanodevices
based on spintronics, such as the superparamagnetic tunnel
junction (SMTJ) [29], bear the promise that such generators
could be available in the short or medium term. Experimental
SMTJ devices have been shown to be able to generate high-
quality stochastic bitstreams at a frequency of 500MHz with
a very low power consumption of 5µW . Those components
can be built with CMOS technology using an area equivalent
to 12 bytes of SRAM [30], making them suitable to large
scale integration with the other components needed to build
the stochastic machines described above. Since the proposed
architecture could work without a central clock, SMTJ devices
could directly be used as stochastic inputs generating asyn-
chronous signals, further reducing the power consumption.

Another interesting property of this architecture is its robust-
ness to noise. Early tests have shown the machine will continue
to work well even when errors occur with a high probability
while it is performing its simple logical operations. The error
sources can be either external, such as Single Event Effects
due to radiations in space environment, or internal such as
using low voltages to reduce the power consumption as in the
PCMOS project [31].

V. CONCLUSION

We presented a general hardware architecture dedicated
to solving sensor fusion problems using Bayesian inference.
The solution proposed allows to swiftly produce good results
thanks to a fine grain parallel sampling at the bit level. This
architecture is now being used to compute disparity maps for
stereo vision in mobile robotics applications.

Because of the time dilution problem the BM1 could not
accommodate a large number of evidences and for the same
reason it could not be used in a Bayesian filter. We are
currently investigating BM1-like designs which address the
time dilution problem by regenerating the stochastic bus after
new evidences are fetched in the process (keeping a reasonable
number of 1 in the stochastic bus). As it is, the BM1 is a
good candidate to solve tractable inference problems and could
successfully be used in real applications. Another fold of the
Bambi project is to use Gibbs sampling at the bit level to
tackle problems intractable in exact inference (for example
problem with many latent variables). We follow two tracks,
one is to design dedicated hardware to solve a given problem,
allowing only the value of evidences to change, and the other
is to build a general purpose sampling machine which could
be implemented on an ASIC and which could accept any kind
of Bayesian programs in the same way a standard processor
is suited for any kind of programs after it has been properly
compiled. Such an ASIC will lead to even better performances
in terms of speed and energy consumption.

ACKNOWLEDGMENT

This work was performed within the EU Future and Emerg-
ing Technologies BAMBI project (FP7-ICT-2013-C, project
number 618024).

REFERENCES

[1] https://www.bambi-fet.eu/.
[2] E. H. Harris, D. B. Stern, and G. Witman, The chlamydomonas source-

book. Cambridge Univ Press, 2009, vol. 1.
[3] A. Houillon, P. Bessière, and J. Droulez, “The probabilistic cell: imple-

mentation of a probabilistic inference by the biochemical mechanisms
of phototransduction,” Acta biotheoretica, vol. 58, no. 2-3, pp. 103–120,
2010.

[4] J. Droulez, D. Colliaux, A. Houillon, and P. Bessière, “Toward bio-
chemical probabilistic computation,” arXiv preprint arXiv:1511.02623,
2015.

[5] P. S. Laplace, “Mémoire sur la probabilité des causes par les évène-
ments,” Mémoires de l’Academie des Sciences de Paris, vol. 6, 1774.

[6] E. T. Jaynes, Probability Theory: the Logic of Science. Cambridge
University Press, 2003.

[7] R. Canillas, R. Laurent, M. Faix, D. Vaufreydaz, and E. Mazer, “Au-
tonomous robot controller using bitwise gibbs sampling,” in The 15th
IEEE International Conference on Cognitive Informatics and Cognitive
Computing. IEEE, 2016.

[8] M. Faix, R. Laurent, J.Lobo, and E. Mazer, “Cognitive computation: a
bayesian machine case study,” in The 14th IEEE International Confer-
ence on Cognitive Informatics and Cognitive Computing. IEEE, 2015.

[9] http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/.
[10] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,

F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[11] W. D. Harris, The Connection Machine. MIT Press, 1989.
[12] J. D. Alves, J. F. Ferreira, J. Lobo, and J. Dias, “Brief Survey on

Computational Solutions for Bayesian Inference,” in Workshop on
Unconventional Computing for Bayesian Inference, 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS2015),
Hamburg, 2015.

[13] K. Mekhnacha, J.-M. Ahuactzin, P. Bessière, E. Mazer, and L. Smail,
“Exact and approximate inference in ProBT,” Revue d’intelligence
artificielle, vol. 21, no. 3, pp. 295–331, 2007.

[14] P. Bessière, E. Mazer, J. M. Ahuactzin, and K. Mekhnacha, Bayesian
programming. CRC Press, 2013.

[15] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum,
“Church: A language for generative models,” in Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence (UAI), 2008, pp.
220–229.

[16] F. Wood, J. W. van de Meent, and V. Mansinghka, “A new approach to
probabilistic programming inference,” arXiv preprint arXiv:1507.00996,
2015.

[17] B. Vigoda, “Analog logic: Continuous-time analog circuits for statis-
tical signal processing,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2003.

[18] V. K. Mansinghka, “Natively probabilistic computation,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2009.

[19] E. M. Jonas, “Stochastic architectures for probabilistic computation,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2014.

[20] S. Khasanvis, M. Li, M. Rahman, M. Salehi-Fashami, A. K. Biswas,
J. Atulasimha, S. Bandyopadhyay, and C. A. Moritz, “Self-similar
magneto-electric nanocircuit technology for probabilistic inference en-
gines,” Nanotechnology, IEEE Transactions on, vol. 14, no. 6, pp. 980–
991, 2015.

[21] C. S. Thakur, S. Afshar, R. M. Wang, T. J. Hamilton, J. Tapson, and
A. van Schaik, “Bayesian estimation and inference using stochastic
electronics,” Frontiers in neuroscience, vol. 10, 2016.

[22] J. S. Friedman, L. E. Calvet, P. Bessiere, J. Droulez, and D. Querlioz,
“Bayesian Inference With Muller C-Elements,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. PP, no. 99, pp. 1–10, 2016.

[23] B. Gaines, “Stochastic computing systems,” Advances in information
systems science, pp. 37–172, 1969.

[24] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM
Transactions on Embedded Computing Systems, vol. 12, no. 2s, pp. 1–
19, 2013.

[25] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan.
1998.

[26] G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software, vol. 8,
no. 1, pp. 1–6, 2003.

[27] https://github.com/Spirals-Team/powerapi.
[28] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “PowerAPI:

A Software Library to Monitor the Energy Consumed at the Process-
Level,” ERCIM News, vol. 92, pp. 43–44, Jan. 2013.

[29] N. Locatelli, A. F. Vincent, A. Mizrahi, J. S. Friedman, D. Vodeni-
carevic, J.-V. Kim, J.-O. Klein, W. Zhao, J. Grollier, and D. Querlioz,
“Spintronic Devices as Key Elements for Energy-Efficient Neuroinspired
Architectures,” Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, vol. 1, pp. 994–999, 2015.

[30] D. Querlioz, “Review of IEF’s work - Modelling of superparamagnetic
MTJs,” in BAMBI-FET second year annual meeting, Paris, 2016.

[31] L. N. Chakrapani, B. E. Akgul, S. Cheemalavagu, P. Korkmaz, K. V.
Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC architec-
tures based on probabilistic CMOS (PCMOS) technology,” in Pro-
ceedings of the conference on Design, automation and test in Europe.
European Design and Automation Association, 2006, pp. 1110–1115.

