
HAL Id: hal-01374907
https://hal.science/hal-01374907v1

Submitted on 2 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfiguration process for neuronal classification
models: Application to a quality monitoring problem

Melanie Noyel, Philippe Thomas, André Thomas, Patrick Charpentier

To cite this version:
Melanie Noyel, Philippe Thomas, André Thomas, Patrick Charpentier. Reconfiguration process for
neuronal classification models: Application to a quality monitoring problem. Computers in Industry,
2016, 83, pp.78-91. �10.1016/j.compind.2016.09.004�. �hal-01374907�

https://hal.science/hal-01374907v1
https://hal.archives-ouvertes.fr

Computers In Industry 83 (2016) pp 78-91

Reconfiguration process for neuronal
classification models: Application to a quality
monitoring problem

Mélanie NOYELa,b, Philippe THOMASa*, André THOMASa, Patrick CHARPENTIERa

aUniversité de Lorraine, CRAN, UMR 7039 CNRS, Campus Sciences, BP 70239, 54506
Vandœuvre-lès-Nancy cedex, France
bACTA Mobilier Parc d’activité Macherin Auxerre Nord, 89470 Monéteau, France
*corresponding author

Phone: +33 (0)3 83 68 44 30

Fax: +33 (0)3 83 68 44 59

Email: mnoyel@acta-mobilier.fr; philippe.thomas@univ-lorraine.fr; patrick.charpentier@univ-lorraine.fr;
andre.thomas@univ-lorraine.fr

Abstract

In the context of smart industries, learning machines currently have various uses such as self-reconfiguration or
self-quality improvement, which can be classification forecasting problems. In this case, learning machines are
tools that facilitate the modeling of the physical system. Thus, it is obvious that the model must evolve with
changes in the physical system, thereby leading to adaptability/reconfigurability problems. Among the various
tools reported previously, real-time systems seem to be the best solution because they can evolve autonomously
according to the behavior of the physical system. In the present study, we propose a method for using learning
machines efficiently in an evolving context. This method is divided into two components: (1) model conception
by defining the objective function and influential factors, setting up data collection, and learning using multilayer
perceptrons; and (2) monitoring system conception with the aim of tracking the misclassification rate,
determining whether the physical system is drifting, and reacting by model adaptation based on the control
charts. This paper focuses on the model monitoring procedure because the model conception procedure is quite
classical. The proposed method was applied to a benchmark derived from previous research and then to an
industrial case of defect prevention on a robotic coating line for which other methods have proved unsuccessful.

Keywords

classification, control chart, learning, multilayer perceptron, neural network, quality, relearning

1 Introduction
In the smart industry domain, the elements of the physical system share information with each other and with a
real time decision-making system. These decision systems must evolve and adapt according to the physical state
of the environment. For example, in the quality control domain, we may consider the impact of environmental
factors (such as temperature and humidity) on a die-casting process (Thomas et al. 2004) or a lacquering process
(Noyel et al. 2013a), as well as the impact of tool wear on the finished surface in a machining process (Sick
2002). Other examples of real-world change detection problems include modeling in bio-medicine monitoring
and industrial processes, as described by Basseville and Nikiforov (1993).

Computers In Industry 83 (2016) pp 78-91

These different contexts lead to classification or supervised classification problems, which can be resolved using
machine learning algorithms, where various techniques can be applied, including logic-based algorithms (such as
decision trees and rule-based classifiers), neural networks (NNs such as multilayer perceptrons (MLPs) and
radial basis function networks), statistical learning (such as naive Bayes classifiers and Bayesian networks), and
support vector machines (SVMs). The present study focuses on classification problems where continuous data
are mainly considered. In this case, Kotsiantis (2007) has highlighted that the most suitable approaches are logic-
based algorithms, NNs, and SVMs.

To extract a classifier from data using machine learning, the complete learning dataset is provided to the learning
machine, which obtains descriptions for the underlying concepts in the dataset (Lazarescu et al. 2003). This type
of learning is called batch learning. However, the target concept may be non-stationary and it can change over
time, thereby leading to concept modification (Michalski et al. 1986). Gama (2010) separated this conceptual
evolution into concept drift when the evolution is gentle and concept shift when the evolution is sudden. For
example, a concept drift may result from tool wear or filter clogging, whereas a concept shift may occur after the
replacement of parts or a system modification. When a concept shift or concept drift occurs, the model obtained
using batch learning may no longer be accurate. Therefore, incremental algorithms, online algorithms, and
anytime algorithms have been proposed to respond to this problem. Incremental algorithms consider new data in
order to adapt the model without restarting the complete learning process (Salperwick et al. 2009). Online
algorithms are used when the stream of data is continuous and the data are used individually and sequentially
(Salperwick et al. 2009). In these two approaches, the learning must be faster and the data are generally
presented only once to the algorithm. Anytime learning is defined as learning the best model (considering a
given criterion) until a break occurs (such as new data arrival) (Dean and Boddy 1988). In these three
approaches, the learning and exploitation of the model must be performed simultaneously, so the computational
time required may be prohibitive in real-time applications, even if anytime approaches include resource
constraints. These learning approaches may exhibit slower convergence than batch approaches, thereby leading
to an inaccurate model. Moreover, because the data are used individually, outliers may have a deleterious impact
on the model obtained. Finally, incremental learning must address the plasticity-stability dilemma (Bouchachia
2011), which demands a compromise between the stability and reconfigurability of the model.

Due to the limitations of the online approaches, batch learning is useful because it can be performed in real time
whereas learning is performed offline. Batch learning can approximate every nonlinear function with the desired
accuracy, as well as using a variety of algorithms to avoid bad local minima or the overfitting problem, and
cross-validation can be performed based on the validation dataset. None of these processes can be performed
with incremental learning, and Sarle (2002) showed that it is generally more difficult and unreliable than batch
learning. Considering the drift or shift concepts allows changes to be detected during batch learning, and change
detection can be performed with different approaches (Salperwick et al. 2009), as follows:

- Relearning the classifier from scratch,
- Adapting the classifier,
- Adapting the data summary used in the classifier (e.g., the kNN model),
- Using the sequence of classifiers that is learned over time in a classifier ensemble as example (Bifet

and Gavalda 2007).

Using of classifier ensemble allows to improve the accuracy of the classification. However, many individual
classifiers must be evaluated simultaneously and this fact may be time consuming during the exploitation phase
of the model. Adapting the classifier by parameters relearning allows to limit the computational cost by
considering that even if a drift occurs, the original model is not so far of the desired one. However, in case of
major context change, the model structure itself must be corrected. In this case, the classifier must be relearned
from scratch.

We propose an adaption of the classifier in order to limit the computational cost. We focus on the use of a MLP
classification model due to its adaptability to change. In fact, the adaptation of a MLP classifier may be
performed by a learning process based on the new dataset using the initial model parameters as the parameter set

Computers In Industry 83 (2016) pp 78-91

for initialization. It is assumed that even if a concept shift or concept drift occurs, the initial classifier is no more
accurate but its parameter set will remain close to the optimal set.

The following different approaches may also be used for change detection (Gama et al. 2014):

- Using sequential analysis (e.g., sequential probability ratio test (Wald 1947), Page-Hinkley test
(PHT) (Page 1954, Hinkley 1971), and cumulative sum (Page 1954));

- Using statistical process control (SPC) (Klinkenberg and Rentz 1998, Gama et al. 2004,
Bouchachia 2011);

- Monitoring the distribution based on two different time windows (Dries and Ruckert 2009, Adae
and Berthold 2013);

- Contextual approaches (Harries et al. 1998, Bouchachia 2011).

Sequential analysis approaches are very sensitive to the choice of the detection threshold (Ragot et al. 1990). The
main limitation of time window-based approaches is the possibility of high memory consumption (Gama et al.
2014). Contextual approaches are used mainly in conjunction with incremental learning. Thus, in the present
study, a SPC approach is used to determine when relearning is required. However, even if a change is detected
and the need for relearning is evident, a question remains: What dataset should we use for relearning? PHT can
estimate the time when a drift or shift concept starts (Ragot et al. 1990); thus, PHT may be used in conjunction
with SPC to build the relearning dataset. Finally, industrial datasets are often affected by outliers so a robust
learning algorithm is required in order to limit the impact of outliers on the classifier.

The main contribution of this paper is the proposition of a model monitoring procedure which associates SPC
and PHT algorithms in order to adapt the model to change (by using relearning procedure). MLP is used as
model and its adaptation is performed by using backpropagation algorithm. SPC is used to estimate the need of
model’s adaptation. PHT is used to determine the dataset which must be used during the relearning procedure.

In the following, after explaining the batch learning approach for designing the monitoring system, we discuss
the impact of changing the context. The need for adaptation is highlighted and the proposed method is developed
in two steps: determining when the system is finally drifting using control charts and evaluating how much data
must be relearned. Finally, the proposed approach is tested on both a benchmark case and an industrial case, i.e.,
a quality monitoring problem for a lacquering company.

2 Description of the batch learning process
To predict the behavior of a real system, a classical approach involves the design of a forecasting model (Figure
1). The behavior of this forecasting system, which is parallel to the physical one, is as similar as possible to that
of the real system. It can measure different parameters in the physical system and compare its forecasts with
reality. For classification problems, the considered forecasting system can predict the class of the output data;
therefore, it can be used to evaluate the decision taken upstream.

Figure 1 - Relationship between the forecasting model and physical system.

The classical approach to the design of the forecasting model employs a learning machine in order to extract the
forecasting model directly from the data using batch learning. This task is performed according to a classical
knowledge discovery and data mining (KDD) process, which comprises two main steps: collecting the dataset
(including identification and data collection and pre-processing) and the data mining task (which needs to define

Physical
system

+ -

Forecasting
model

Computers In Industry 83 (2016) pp 78-91

the training and validation datasets) (Patel and Panchal 2012). This KDD process is summarized by figure 2 and
the two main task will be more detailed in the two following subparts.

Figure 2: The process of supervised machine learning (Kotsiantis 2007).

2.1 Dataset collection
To design the dataset collection, the first step is to define the objective function, which is the output of the
forecasting model and it corresponds to the characteristics of the physical system that we aim to monitor.

Next, the factors that are most likely to affect the objective function must be identified. Different efficient
strategies may be used in order to identify these influential factors, such as the Ishikawa method.

After the objective function and influential factors have been identified, the values of these different parameters
must be collected. This step should aim to improve the instrumentation by adding some captors in order to
collect influential factors that have not yet been collected. However, in some cases, automatic data collection is
not possible and manual data collection must be performed. Unfortunately, manual data collection is often
viewed as a waste of time by the operators, and the low priority given to this task often leads to corruption of the
dataset by outliers. To reduce this risk, it is necessary to ensure that the operators consider the importance of this
task and to make the interfaces as intuitive and quick as possible (Noyel et al. 2013b).

The data preparation process required before learning includes selecting, preprocessing, and transforming the
data. For example, the data must be preprocessed in order to synchronize the different databases, delete evident
outliers, and digitalize qualitative data (e.g., as colors) (Patel and Panchal 2012).

After these steps, a dataset can be used to extract knowledge with learning tools.

2.2 Data mining or learning
Management and quality improvement using data mining methods were discussed by Kusiak (2001). Data
mining is the main part of the KDD process, which involves data analysis to summarize the data in the form of
useful information. The KDD process may be performed to identify valid, novel, useful, and understandable
patterns by exploiting the full volume of data collected.

Problem

Identification and collect
of required data

Data pre-processing and
transformation

Evaluation with test set

Definition of training set

Algorithm selection (d)

Training (d)
Parameter tuning

Results
OK?

Classifier
YesNo

Data mining

Computers In Industry 83 (2016) pp 78-91

As shown by Agard and Kusiak (2005), the volume of data that needs to be analyzed is often large. Classically,
the collected dataset is divided into two parts, where one is used for learning the model and the other for
validation. This procedure allows us to check that our model exhibits the same behavior as the physical system.

Different tools may be used to perform the data mining task, such as Naïve Bayes, decision trees, SVMs, and
NNs. Decision trees are faster at classifying the data but they do not work well with noisy data (Patel and
Panchal 2012); therefore, this approach is not efficient with industrial data. Naïve Bayes is appropriate for the
treatment of discrete data, so we need to discretize the data to apply this approach to continuous data. Both
SVMs and NNs employ very similar concepts, and thus they yield very similar results, where SVMs sometimes
give better results (Meyer et al. 2003) whereas NNs may give the best at other times (Paliwal and Kumar 2009).
These four tools (SVM, MLP, decision trees, and kNN) have been tested and compared based on the real
example used in this study, and MLP obtained the best results (Noyel 2015). The proposed approach presented
section 3 may be adapted to each type of model. However, in the present study, we focus on the use of a MLP
with only one hidden layer, a sigmoidal activation function, and an output neuron. Its structure is given by the
following formula (1):

01
2 1 0 1

2 1
1 1

. .
nn

i ih h i
i h

z g w g w x b b
= =

= + +

∑ ∑ , (1)

where 0
hx denote the n0 inputs of the MLP, 1

ihw indicate the weights connecting the input layer to the hidden

layer, 1
ib represent the biases of the hidden neurons, g1(.) refers to the activation function of the hidden neurons

(in this case, the hyperbolic tangent), 2
iw denote the weights connecting the hidden neurons to the output, b

indicates the bias of the output neuron, g2(.) represents the activation function of the output neuron, and z denotes
the network output. This problem involves classification between two classes 0 and 1. So g2(.) is selected as
sigmoidal in order to allow the evolution of the output value between these two bounds 0 and 1.

In order to determine the number of hidden neurons and to discard spurious inputs, the learning phase starts with
an overparameterized structure. This structure includes all the variables collected during the preceding step and a
number of hidden units clearly greater than necessary (between 2 and 3 times greater than the inputs number).
The weights of this overparameterized structure are initialized using classical Nguyen and Widrow algorithm

(Nguyen and Widrow 1990, Mathworks 2016), and the learning of these weight is performed by using the

Levenberg–Marquard algorithm with a robust criterion (Thomas et al. 1999, Mathworks 2016) in order to

avoid the outliers impact on the resulting model. Due to the overparameterized structure, the resulting model
presents overfitting. In order to avoid it, a weight elimination algorithm (pruning) is used to discard spurious

inputs and hidden nodes (Thomas and Suhner 2015, Mathworks 2016). All this procedure is performed on a

part of the available dataset called learning dataset. The accuracy of the obtained model is determined by using
the remaining data (not used for the learning) and is called validation dataset.

The completion of this process yields a classification model, which can be used as a forecasting system to
monitor the real system. However, this model is static whereas the system or its environment can evolve.
Therefore, an adaptation procedure is needed to fit the model to the real system if changes occur.

3 Proposition of classification neuronal model adaptation process

3.1 Limits of batch learning in a changing context
Two different types of changes can occur in the monitored system (Sebastiéão and Gama 2009):

• A “concept shift” refers to an abrupt change;

• A “concept drift” is associated with gradual change.

Computers In Industry 83 (2016) pp 78-91

Concept drift is more difficult to detect and it is often confused with noise. However, this is the type of change
that we must identify in order to ensure that the behavior of the monitoring system remains as close to reality as
possible.

In our previous study (Noyel et al. 2013a), we highlighted two reasons why the behavior of the forecasting
system starts to deviate from reality. The first concerns the evolution of the input parameters. Thus, with a
learning model, the learning outcome is valid only in the learned domain. In many cases, the data range which
can be determined with the dataset collected (weak bounds) don’t correspond to the complete evolution range of
the considered variable (strong bounds). As example, if we study the evolution of output temperature in Paris
during January 2016, the bounds of the evolution range (weak bounds) are -4.4°C and 13.9 °C. However, by
considering all the dataset available since 1873 the temperature has evolved between -14.9°C and 16.1°C and we
can imagine that these record values may be outperformed in the future and so, the strong bounds are unknown.
For the learning process, the main risk is encountering a situation where one factor is outside the bounds of the
learned domain (weak bounds) because the model cannot give a correct answer. For the example shown in
Figure 3, the strong bounds are given by dashed lines when the colored sectors correspond to the known range
given by the dataset. In this figure, forecasts are possible in cases 1 and 2 but not in cases 3 (factor 5 is out of
weak bounds) and 4 (factor 2 is out of weak bounds). These points may be outside the learning domain due to
concept drift (e.g., a gradual change) or concept shift (e.g., a pressure drop due to a compressor failure).

Figure 3 - Situations where a forecast may or may not be possible.

The second reason concerns the uncontrolled modification of the behavior of the real system. In fact, it is
possible to affect the behavior of the real system by changing a parameter (voluntarily or not) that is not an input
of the forecasting system.

Therefore, the main issue is synchronization with reality, where we have to optimize the synchronization
frequency because synchronization is time consuming (a revision of the model can take several minutes to
several days). It is better to rely on statistical findings (using SPC tools as example) rather than considering the
resynchronization frequency in terms of the response to events (such as the arrival of new information from one
of the connected devices (incremental learning) or solicitation by an operator) or over a period (e.g., every hour
or week). Among the seven basic tools, control charts, also known as “Shewhart charts” or “process-behavior
charts” (Shewhart, 1931), are useful SPC tools in the proposed monitoring system.

First, a prerequisite for detecting changes is the ability to verify hypotheses after being informed about reality.
This step requires an improvement to the information technology system in order to collect data as the output
from the real system. We can monitor the difference between theory and reality by comparing these data with the
system hypotheses, where this value is called the error rate. The evolution of this rate can be disturbed by the

Computers In Industry 83 (2016) pp 78-91

normal production noise. At first glance, it appears to be difficult to determine when the system is actually
drifting in reality.

3.2 Principe of classification neuronal model adaptation process
To take account these limitations, a model monitoring approach is proposed for adapting the forecasting model.
The principle of model monitoring is illustrated in Figure 4 and is an extension of the classical process presented
figure 1. In this approach, a forecasting model is extracted from a dataset in the first step by using a classical
KDD process. In the second step, a monitoring procedure is used to detect the occurrence of drift and to react.
The main objective of this paper is related to this monitoring process.

Figure 4 - Monitoring the forecasting model.

Many optimization algorithms are subdivided in different tasks in order to reach their goals. We can cite, as
example, pruning algorithms which tend to determine the optimal structure of neural network after learning step
(Thomas and Suhner 2015), or METSK-HD algorithm (Gacto et al. 2014) which combines a classical
evolutionary learning of fuzzy model in a first step and a post processing step allowing to perform rule selection
and tuning of membership function. In this paper, two main tasks must be performed to design the monitoring
system, each of which is subdivided into different subtasks, as follows.

1) Design the forecasting model (batch learning process described section 2)
a. dataset collection (described section 2.1)
b. data mining or learning (described section 2.2)

2) Design the model monitoring system
c. Collect the data
d. Detect the occurrence of drift between the forecasting and physical systems (described later

section 3.3)
e. Construct the relearning database (estimate the start time of the drift) (described later section

3.4)
f. Adapt the forecasting system

The first main task (1) is a classical KDD process and it is described in section 2. It allows to obtain the initial
forecasting model.

The design of the model monitoring system (2) includes the collect of data during the production (c) in order to
construct the dataset. It corresponds to the same process as that one described section 2.1. This dataset is used
firstly to detect a drift occurrence by using SPC tools (d) and then to estimate the start time of the drift in order to
define the relearning dataset by using PHT (e). This start time estimated allows to design the dataset used during
the last sub step (f). This dataset includes all the data collected between the estimated start time and the present
time. The last step is a relearning step (f). Its goal is to fit the model with the reality by adapting the parameters
of the forecasting model to the detected drift.

The process presented in Figure 5 can be followed to adapt the model to changes.

Physical
system

Model
Monitoring

+ -

Forecasting
model

Computers In Industry 83 (2016) pp 78-91

Figure 5 - Adaptation process.

The initialization process was described in section 2 and it corresponds to the design of the forecasting model,
which is a classical KDD task, including here the dataset collection (and pre-processing), and the data mining
step (including initialization, learning and pruning sub steps). The supervision step is conducted at the same time
as model exploitation. During this step, the results obtained by the monitoring model are compared with the data
collected from the physical system in order to detect the emergence of drift between both and its correction. The
step employed to detect the occurrence of drift is discussed in section 3.3. The relearning database must be
constructed when drift is detected. This step is discussed in section 3.4. The setup of the classifier is the
relearning step which is performed by using the classical learning algorithm as during the KDD process, here,

the Levenberg–Marquard algorithm with a robust criterion (Thomas et al. 1999, Mathworks 2016). The

relearning is initiated and performed as soon as a drift is detected, its start time estimated and the relearning
dataset constituted.

3.3 Determining whether the system is drifting by using control charts
Control charts are particularly useful for dynamic control based on time-series data (Tague, 2004). This method
is useful for statistically determining whether the dimensional variation of parts is no longer under control.
Indeed, it is known that even when a process is under control, there is a probability of approximately 0.27% that
a point will exceed 3-sigma bilateral control limits (Pareto). These few isolated points should not trigger
relearning, but an increase in the number of points will be detected to indicate the presence of a special cause,
even if it is not yet known.

We propose the combination of a NN with control charts to exploit the robustness of statistical analysis and the
adaptability of the NN. Du et al. (2012) studied the inverse combination of both tools by using a recognition
algorithm for control charts and NNs to obtain alerts in the case of quality problems, as well as providing clues
to identify the causes.

0 - Initialization

4 – Set up
(relearning)

1 – Supervision
(new data)

3 – Database
relearning

design

2 – Drift test

Yes

No

Computers In Industry 83 (2016) pp 78-91

Figure 6 – Control chart for monitoring the real-time forecasting model.

Control charts (p-charts) (NIST/SEMATECH 2012) aim to determine whether the misclassification rate is
drifting according to the principle illustrated in Figure 6, where each point in the figure corresponds to the
misclassification rate obtained with a sample of k data and k corresponds to the sample size (k is selected
according to several criteria such as criticality and frequency). Traditionally, two bounds are determined with
control charts in order to define an acceptable zone for the misclassification rate (dashed green and red lines on
the graph). The misclassification rate is an average of several values, so we assume that if this rate is outside the
green bounds, then many values are outside the bounds, and thus the system is effectively drifting. Therefore, we
need to perform relearning when the misclassification rate obtained for one sample (e.g., sample 7 in Figure 6)
falls outside these bounds. The dotted lines in Figure 6 represent the evolution of the misclassification rate when
no relearning is performed. Three examples are presented which present the evolution of the misclassification
rate if the relearning needed at the 7th, 23th and 34th samples (misclassification rate > UCL95%) are not
performed.

Two pairs of bounds may be determined using the confidence level. The warning bounds, i.e., the lower
(LCL95%) and upper (UCL95%) bounds, are defined with a confidence level of 95%, as follows.

95%

95%

(1)
1.96

(1)
1.96

p p
LCL p

p

k

p
UCL p

k

 −= −

− = +

 2

The forbidden bounds, i.e., the lower (LCL99.8%) and upper (UCL99.8%) bounds, are defined with a confidence
level of 99.8%, as follows:

99.8%

99.8%

(1)
3

(1)
3

p p
LCL p

k

p p
UCL p

k

 −= −

− = +

, 3

where k corresponds to the size of the sample and p is the center line, which must be estimated. The center line
corresponds to the misclassification rate obtained for the validation dataset (defined section 2.2) during the initial
learning process (Noyel et al. 2013b).

UCL99.8%

LCL99.8%

UCL95%

LCL95%

CL

Computers In Industry 83 (2016) pp 78-91

The decision about relearning may be made when the misclassification rate of a sample is outside the warning
bounds (e.g., for sample 7 in Figure 6). This step highlights when to trigger relearning and the next step
determines the amount of data required to perform this action.

3.4 Determining the amount of data required for relearning
Control charts allow us to determine whether the system is actually drifting. To correct our forecasting system,
we need to perform relearning based on a specific amount of new data. The relearning is achieved by using a
batch second order backpropagation algorithm which includes the determination of hessian and gradient matrix
whose size depends on the number of parameters (complexity of the model) and on the number of data (size of
the dataset) (Thomas et al. 1999). So the re-learning speed is improved by reducing model size (pruning step,
section 2.2) and reducing re-learning dataset (estimation of the start time of the drift). It can be noticed that the
re-learning speed is not crucial. In fact, re-learning must be launched only when a new drift is detected by SPC,
and so when k new data corresponding to the size of one sample in SPC are collected since the last supervision
step (figure 5). The re-learning step disposes of the time of collect of these k new data to run.

The control charts enhance the data if drifting is detected, but they cannot determine when the drift started, and
thus they cannot estimate the precise amount of data required to perform relearning. The following two cases
must be considered.

• The time since the last relearning process is not crucial because it is possible to perform relearning
based on all of the newly available data. Thus, the task is very simple and fast (similar to classical
learning).

• The time since the last relearning process is crucial, and to save time, it is possible to restart the entire
learning process based on a defined amount of data, where we can consider “sliding windows.” This
solution allows the system to forget old behaviors that may no longer be relevant so the behavior of the
forecasting system is more flexible. The best data window size must be defined correctly. Thus, the
system will learn the noise if it is too short, whereas there will be insufficient flexibility if it is too long.
The aim is to determine the point of inflexion based on the error rate, i.e. the estimated start time of the
drift.

Different methods may be used to determine the point of inflexion, such as adaptive windowing (ADWIN) (Bifet
and Gavalda 2007), SPC (Gama et al. 2004), the fixed cumulative windows model (FCWM) (Sebastião et al.
2010), and PHT (Page, 1954). Sebastião and Gama (2009) tested and compared these different algorithms, where
the results suggested that PHT and SPC are less time consuming than ADWIN and FCWM. This is crucial
because one of the main objectives is to reduce the calculation time by optimizing the relearning dataset size.
SPC cannot estimate the time when drifting begins but it can determine the drift detection time. This is important
because the difference between these two times may be significantly large, and thus many data that are useful for
relearning might be discarded from the relearning dataset. PHT can detect a drift (not used in the present study)
and estimate the time drifting begins.

The goal of PHT is to detect a mean jump in a constant signal polluted by white noise (Page 1954; Hinkley 1971;
Basseville 1986). This test can determine whether a jump occurs and estimate the time of this jump. In our case,
the signal considered is the absolute value of the error obtained based on different data, where we conduct a
search to determine the time drifting occurs between the behavioral model and the real system. This signal may
be represented by a sequence of random Gaussian variables: E = [ei], i = 1, …, l, with variance 2σ and mean mi.
According to the hypothesis that only one jump occurs at an unknown time r with 1 r l≤ ≤ , detecting this jump
corresponds to accepting hypothesis H1 of a change rather than hypothesis H0 of no change.

2
0 0 0

2
1 0 0

2
1 1

: ~ (,), () () 1, ,

: ~ (,), () () 1, , 1

~ (,), () () , ,

i i i

i i i

i i i

H e N m P e P e i l

H e N m P e P e i r

e N m P e P e i r l

σ
σ
σ

 = =
 = = −
 = =

⋯

⋯

⋯

 4

The use of this test implies that the two mean values m0 and m1 are known a priori. In our case, the mean m0 may
be estimated based on the mean of the error obtained for the validation dataset during the forecasting system
design task. However, the mean m1 is unknown and the minimal absolute value of the amplitude of the jump mδ

Computers In Industry 83 (2016) pp 78-91

that needs to be detected is fixed, where the two tests are performed in parallel to detect an increase and a
decrease in the mean, respectively. These tests may be calculated recursively to detect the increase in the mean
as follows:

0 1 0

0 1

0, , 1
2

0, min(,) , 1

m
i i i

i i i

U U U e m i

U i

δ

γ γ γ

−

−

 = = + − − ≥

 = = ≥

, 5

and the time r i of the last increase in the mean is given as follows.
max()i i ir i U γ= = 6

For the decrease in the mean, the test is given by

0 1 0

0 1

0, , 1
2

0, min(,) , 1

m
i i i

i i i

T T T e m i

T i

δ

η η η

−

−

 = = + − + ≥

 = = ≥

, 7

and the time rd of the last decrease in the mean is given as follows.
max()d i ir i T η= = 8

Therefore, if the control chart detects that relearning is required at time l, then relearning must be performed
using all of the data collected between time r and l, where r given by:

min(,)i dr r r= . 9

Tests (5) and (7) use the minimal absolute value of the amplitude of the jump mδ , which may be fixed as a

multiple of the standard deviation σ of the error obtained for the validation dataset. In the present study, we set

mδ as:

3m

σδ = . 10

In function of the complexity of the neural model (number of parameters) and in the goal to avoid overfitting the
minimal size of the relearning dataset must be limited to a threshold ∆ such that l-r > ∆. It can be noticed that the
overfitting risk is limited by the use of a robust learning criterion (Thomas et al. 1999).

4 Application to a benchmark
In order to propose a simple and comprehensive application of the proposed approach, a simulation example is
used to illustrate the procedure, which is derived from the example proposed by Lin et al. (2000). The main
advantage of this simulation is the possibility to create artificially drifts (concept shift and concept drift) and to
evaluate the capacities of the approach to detect the drifts, evaluate their start time and fit the model to the new
reality. This example considers a population that comprises two subpopulations. The positive subpopulation
follows a bivariate normal distribution with mean (0, 0)T and covariance matrix diag(1, 1), whereas the negative
subpopulation follows two bivariate normal distributions with mean (2, 2)T and covariance diag(2, 1) for the first
subpopulation, and mean (–2, –2)T with covariance diag(2, 1) for the second subpopulation. The population is
unbalanced where the positive and negative subpopulations account for 80% and 20% of the total population,
respectively. The negative subpopulation is balanced and follows two different laws in order to ensure that the
two classes cannot be linearly separable.

4.1 Initial forecasting model
The first step is to determine the initial forecasting model as presented section 2. A dataset comprising 1000
pieces of data is constructed and divided into two datasets with 500 pieces of data in each: one for learning and
the other for validation. A classification model is constructed using these data. The initial structure is constructed
with two inputs and 10 hidden neurons. A pruning phase allows the deletion of three of the 10 hidden neurons.
The resulting model obtains a misclassification rate of 8.1%.

Computers In Industry 83 (2016) pp 78-91

Figure 7 – The validation dataset divided into two classes and the limits between the two classes.

Figure 7 shows the validation dataset and the separation of the input space into the two classes given by the
forecasting model.

Two supplementary datasets are constructed in order to illustrate the procedure, i.e., a concept shift and a
concept drift.

4.2 Impact of concept shift
A dataset comprising 2000 pieces of supplementary data is constructed for the same simulation example, except
the means of the normal distributions change at time 300. At this time, the mean of the positive population
becomes (1.5, 0)T and the means of the two normal distributions for the negative population become (3.5, 2)T and
(–0.5, –2)T. The covariance matrix remains unchanged.

A control chart is constructed to monitor the forecasting model. The sample size for the control chart is fixed to
100. Two relearning procedures are used to adjust the model to reality. The first uses all of the available data
based on the last relearning process, whereas the second uses the PHT procedure described in the previous
section.

-6 -4 -2 0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4

5
Classe 1 (good classification)
Classe 2 (good classification)
Classe 1 (bad classification)
Classe 2 (bad classification)

Computers In Industry 83 (2016) pp 78-91

Figure 8 – Monitoring the forecasting model: concept shift.

Figure 8 shows the control chart used to monitor the forecasting model, where UCL99.8% and LCL99.8% are shown
in the graph, but they are not useful. Each point outside the range [LCL95% – UCL95%] triggers relearning. The
evolution of the control chart without relearning is shown by the dotted cyan line, whereas that with relearning
by using PHT to determine the appropriate size of the dataset is represented by the dashed line blue, and that
with relearning using all of the available data based on the last relearning process is represented in magenta. The
concept shift in the real system occurs at time 300, and the control chart detects this concept shift based on the
fourth sample (which corresponds to time 400 because the size of each sample is 100). If relearning is not
performed, the forecasting model cannot maintain good accuracy. The two relearning strategies allow us to adapt
the model to the new behavior of the system even if other relearning steps are required after time 400 to maintain
the accuracy of the forecasting model. The results obtained by the two relearning strategies are equivalent. Using
the two strategies, no sample is outside the forbidden bounds.

Table 1 – Number, dataset size, time, and duration of relearning: concept shift.

Table 1 shows the number of relearning cycles, time, dataset size for each relearning cycle, and the duration of
the overall procedure. This table shows that even if only three relearning cycles are required when PHT is not
used (compared with four using PHT), the duration of the total procedure is 100% greater than with PHT. This is
because the relearning procedures are performed based on relatively large datasets when PHT is not used.

4.3 Impact of concept drift
A new dataset comprising 2000 pieces of supplementary data is constructed for the same simulation example,
except the drift occurs at time 300. At this time, the mean of the positive population becomes (0.02*(k – 300),

Without relearning
Relearning with PHT
Relearning without PHT

UCL99.8%

LCL99.8%

UCL95%

LCL95%

CL

1 3 5 7 9 11 13 15 17 19 sample-0.05

0

0.05

0.1

0.15

0.2

0.25

Misclassification
rate

number of relearning time to relearning size of the dataset duration
400 400
1000 600
1800 800
400 143
1100 141
1400 209
2000 339

without PHT

with PHT

0.35s

0.17s

3

4

Computers In Industry 83 (2016) pp 78-91

0)T and the means of the two normal distributions for the negative population become (2 + 0.02*(k – 300), 2)T
and (–2 + 0.02*(k – 300), –2)T, where k denotes the index of the data. The covariance matrix remains unchanged.

Figure 9 – Monitoring the forecasting model: concept drift.

As mentioned in the previous section, a control chart is constructed to monitor the forecasting model. The
sample size for the control chart is fixed to 100. The same two relearning procedures are tested.

Figure 9 shows the control chart used to monitor the forecasting model. The evolution of the control chart when
no relearning is performed is shown by the dotted line cyan, relearning using PHT to determine the appropriate
size of the dataset is represented by the dashed line blue, and relearning using all of the available data based on
the last relearning process is represented in magenta. The concept drift occurs at time 300, and the control chart
detects this concept drift in the eighth sample (time 800). When relearning is not performed, the forecasting
model cannot maintain good accuracy. The two relearning strategies allow the model to be adapted to the new
behavior of the system and new relearning processes are launched periodically in order to maintain the accuracy
of the forecasting model. The results obtained for the two relearning strategies are equivalent. Using the two
strategies, no sample is outside the forbidden bounds.

Table 2 – Number, dataset size, time, and duration of relearning: concept drift.

Without relearning
Relearning with PHT
Relearning without PHT

UCL99.8%

LCL99.8%

UCL95%

LCL95%

CL

1 3 5 7 9 11 13 15 17 19 sample-0.1

0

0.1

0.2

0.3

0.4

0.5

Misclassification
rate

number of relearning time to relearning size of the dataset duration
800 800
900 100
1000 100
1500 500
1700 200
1800 100
2000 200
800 233
1200 361
1500 286
1600 91
1700 98
1800 95

without PHT 7 0.35s

with PHT 6 0.19s

Computers In Industry 83 (2016) pp 78-91

Table 2 shows the number of relearning cycles, time, dataset size for each relearning cycle, and the duration of
the overall procedure. This table shows that using PHT avoids one relearning process. Moreover, as in the
previous example, using PHT decreases the time required for the overall procedure by 50%. This is also because
the relearning procedures are performed based on relatively large datasets when PHT is not used.

5 Application to an industrial quality monitoring problem
In order to illustrate the applicability of this approach a real industrial case is presented. Acta-Mobilier is a
company that produces high-quality lacquered panels made of medium-density fiberboard (MDF) for kitchens,
bathrooms, offices, stands, shops, and hotel furniture. According to its certifications (ISO 9001, ISO 14001, and
OHSAS 18001), the product quality is a constant concern for this company. The manufacturing processes are
implemented on several shop floors. In these workshops, each workstation is likely to generate defects and the
company has to include a quality control step in each case. In this study, we focus on a robotic lacquering
workstation because it has the highest defect rate. In literature, many industrial optimization problems have been
considered and we can cite without to be exhaustive, logistics infrastructure problems (Kazakov and Lempert,
2015, Lempert et al. 2015), or continuous regulation problems (El Sehiemy et al. 2013, David et al. 2014). The
main objective of this application is to determine the optimal tuning of the robotic lacquering workstation in
order to reduce the defects rate.

The production quality of this workstation is unpredictable (the risk of defect occurrence is unknown) and
fluctuating (the percentage of defects may vary from 45% one day to 10% the next day without any changes in
the settings). It is very time consuming and difficult to obtain and plan a Taguchi experimental design in order to
improve this setting. Thus, a robotic lacquering workstation is considered as a bottleneck workstation, but it is
very difficult to reduce the time required for the experiments or to plan throughout the production lots according
to the experimental conditions. In addition, the cost of these experiments is very high because they consume
semi-finished products (which already have a high added value).

Therefore, a forecasting system is implemented to predict the occurrence of defects and to determine the optimal
setting of the controllable factors considering the characteristics of the products and the environmental
conditions. This forecasting system should highlight the relationships between process parameters and the
quality of the finished products, which may be extracted from the dataset by using a NN (Yu et al. 2008,
Xiaoqiao et al. 2015).

5.1 Forecasting system
The forecasting system can be represented as shown in Figure 10.

Figure 10 - Forecasting system.

The aim is to give the operator the best production range or the best parameters to set up the machine directly.
So, we need a forecasting system able to predict the risk of defect occurrence considering the characteristics of
the considered products, the state of the environmental factors and the different available settings. These defect

To give to the operator the best
production range to use

Environmental factors recognized
as influent by experts

Lot characteristics recognized
as influent by experts

List of production range available with
their characteristics recognized

as influent by experts

List of predictable defects

Best production range to use

Computers In Industry 83 (2016) pp 78-91

risk predictions allow to propose to the operator the best setting to use in the present condition. Thus, the system
needs three different types of inputs, each of which requires many settings, as follows.

1. Environmental factors and lot characteristics, where there are two prerequisites. The first is the
computerized production monitoring system, for which real-time production information must be
collected in a semi-automated or automated manner. We do not consider that the operator has to enter
data (e.g., temperature) at each production lot. The second is the virtualization of expert knowledge. A
database must be implemented to consider the fact that only experts can know whether a factor is
important for quality or not.

2. The list of available production range or parameter settings. In most cases, the workstation has one
production range/setup according to the type of product. To obtain this high quality level, the
production system needs to be flexible and adaptable. In the case where we consider different
production ranges, alternative routings should be implemented. Similarly, in the case where we consider
the parameter settings, adjustments to the limits of the parameters must be implemented.

3. The list of predictable defects and their criticality value. Experts can list the possible defects that may
occur, but they cannot know whether a defect is actually predictable. This is one of the tasks that we
discuss later in the learning step. However, experts can determine whether a defect is actually
important. They need to attribute a criticality value to each possible defect according to different
factors, such as the possibility of repair or the repair cost. Thus, if the system cannot find a solution
with a zero defect probability, it will try to find a solution that minimizes the penalizing defects.

The forecasting system can be decomposed into two subsystems, as illustrated in Figure 11.

Figure 11 – Decomposition of the forecasting system.

The system needs to compare each production range, so we calculate a confidence level for each production
range. This confidence level is obtained as shown in Figure 12 (decomposition of the “To test production range”
in figure 11).

To determine best production
range on each production
range’s confidence level

Production range confidence level

Environmental factors recognized
as influent by experts

List of production range available with
their characteristics recognized

as influent by experts

Lot characteristics recognized
as influent by experts

Best production range to use

To test production range

Environmental factors and
Lot characteristics

Production range
characteristics

List of predictable defect with
Their MLP parameters

Computers In Industry 83 (2016) pp 78-91

Figure 12 - Details of the production range’s confidence level module.

To calculate the production range’s confidence level, we first need to calculate the probability of occurrence for
each defect. Thus, we use all of the factors validated by experts (such as environmental factors, lot
characteristics, and production range characteristics) and a prediction model can be estimate for the probability
of occurrence for each defect in this condition. The confidence level of production range �� is calculated as
follows:

������ = ∑ 	
 	× 	

��

�� , 11

where 	
 denotes the probability of occurrence for defect � with 1 ≤ � ≤ ��, �� indicates the number of different
defects identified by experts, and ∝
 represents the criticality level of defect �.

The only missing component is the probability of occurrence		
. This probability is given by a forecasting model
built using the approach proposed in Section 2.

5.2 Implementation of the forecasting system
In this application, 25 different quality defects should be considered, thereby leading to the design of 25 quality
prediction neural models. The resulting quality monitoring system (set of 25 neural classifiers) is embedded in
the supervision tool of the lacquering workstation for use by the operators. The memory of these NNs is
physically remote in an SQL database; therefore, each independent program may access this memory if needed.
This tool is a decision support system and it requires a human/machine interface, which is as intuitive as
possible. The tool is implemented directly in the setup interface of the robotic lacquering workstation (Figure
13). Using this additional function, after entering the production information (such as the selected production
range and the number of units produced), the operator may assess the risk of occurrence for a defect (Figure 14).
If the risk appears to be too large, the production parameters can be changed (e.g., choosing another production
range) and the program can be run in parallel to compare the evaluation results until a satisfactory result is
obtained.

The current version of the quality monitoring system requires an average of 12 seconds to display the result.
Thus, within 12 seconds, it can recover the memory from the SQL database, traverse the 25 NNs, and visually
synthesize the results to facilitate interpretation by the operator, so less than half a second is required for the
calculation by the NN.

To calculate production range
confidence level based on

probability of occurrence of each
defect

Probability of occurrence for the
Selected defect

Environmental factors and
Lot characteristics

Production range
characteristics

List of predictable defect with
Their MLP parameters

Production range confidence level

To run model

Environmental factors and
Lot characteristics

Production range
characteristics

Selected defect
model parameters

Computers In Industry 83 (2016) pp 78-91

Figure 13 - Interface for collecting production data.

Figure 14 - Forecast example

However, as expected, the answers provided by our system drift away from reality shortly after its
implementation.

5.3 Design of the initial forecasting neural model
As explain in section 5.2, 25 different quality defects must be monitored leading to the design of 25 different
neural forecasting models. In the sequel, we focus our presentation on one particular defect: “stain on back”. The
different factors which may have an impact on this defect occurrence are collected. These factors are technical
factors (load factor, number of passes, time per table (lacquering batches), liter per table, basis weight, number
of layers, number of products and drying time), environmental ones (as temperature, atmospheric pressure and
humidity). Some of the technical factors are imposed by the products (number of passes, time per table, liter per
table, number of layers, and number of products). The three last factors (load factor, basis weight, drying time)
are the tunable parameters whose optimal setting is seeking. Some of these factors are discrete and are binarized.
So the initial structure of the neural model includes 15 inputs (9 continuous and 6 binary) and 25 hidden neurons.

The dataset is constituted of 2270 data and is split into 2 data sets for identification (1202 data) and validation
(1068 data). After initialization and learning, pruning phase is able to eliminate spurious inputs and hidden
neurons. 6 hidden neurons and 1 input (passes number) are eliminated.

During the validation phase, we therefore compare the results of the NN with the real defects detection. The
defect "Stains on back" occurs 127 times on the 1068 data validation set. The NN can detect 112 defects which
lead to a non-detection rate of 11.8%. The proportion of false positive is 19.2%, which may be partly explained
by the fact that some defects haven’t been identified out of the machine (Noyel et al. 2013a).

Computers In Industry 83 (2016) pp 78-91

5.4 Drift
Two apparent reasons lead our monitoring system to drift away from reality. The first concerns the evolution of
the input parameters. Using a learning model, the learning outcome is valid only in the learned domain, so the
model can only provide a valid solution in this domain.

Figure 15 - Difference between the learning and running domains.

For our implementation, the learning and validation databases were collected during spring and summer. For the
new database (UCI 2016), 446 items of data were collected during autumn and winter, and the exploitation of the
quality monitoring process led to 73% non-detections and 32% false positives for one of the 25 defects
monitored. These poor results can be explained by the different process conditions in the two periods. As shown
in Figure 15, in the first database, the temperature range varies between 0 C° and 32 C° , whereas in the new

database, the temperature range varies between 5.2 C− ° and 24 C° . These negative temperatures represent 25%
of the new database and they correspond to the operating range of the process, which is not learned during the
quality monitoring process.

Figure 16 - Historic data on the defect percentage for grains on edges.

The second reason concerns the uncontrolled modification of the machine behavior. Indeed, it is still possible to
affect the behavior of the machine by changing a parameter (voluntarily or not) that is not an input of the neural
classifier. For example, this parameter may change due to the clogging of a filter or the replacement of a dirty
filter. These changes may or may not be known. Thus, in the application considered, we know that the
lacquering nozzles are changed during the exploitation phase, but the time of this change is not known. In this
case, we can conclude that this parameter should be part of the model inputs, but because it is considered
constant for the duration of the learning step, it is not actually retained. The model will produce results that do
not agree with reality because of this change, which may be unknown to the operators and managers.

For example, as shown in Figure 16, it is clear that the studied defect rate (grains on edges) increases sharply
after June 22, which is due to an unknown change in the real system, so the forecasting system is no longer
pertinent.

Computers In Industry 83 (2016) pp 78-91

It is not always possible to control changes in the production parameters (such as uncontrollable parameters,
weather, and unanticipated changes made by the operator), so it is necessary to be capable of detecting them. By
providing the quality monitoring system with the capacity to verify its hypotheses about reality, it can have the
ability to recognize its failure and react accordingly.

Therefore, a control chart is designed to monitor the forecasting system, where the sample size for the chart is
fixed to 100 values, which corresponds to slightly less than one week of production.

Only the UCLs are considered because the model is better when the misclassification rate is lower. Therefore,
only the UCLs are calculated to represent 95% and 99.8% of the data.

Figure 17 shows the control charts obtained with the new dataset during the exploitation phase. The dotted line
corresponds to a control chart without relearning. We can see that the quality process is under control for sample
1 but the second sample shows that the process is no longer under control (the results are between UCL95% and
UCL99.8%). This is due to the new operating range detected in the data, as explained in the previous section.
Therefore, the quality monitoring process must be improved by relearning the NN using the data from the first
two samples.

The initial structure and weights of the network are those given by the original quality monitoring process, so a
pruning phase is note needed. The initial weights are close to the optimal values; therefore, the relearning phase
is fast and it requires only a few iterations.

Figure 17 - Industrial application of forecast improvement by relearning.

The evolution of the control chart when no relearning is performed is shown by the dotted cyan line, relearning
using PHT to determine the appropriate dataset size is represented by the dashed blue line, and relearning using
all of the available data based on the last relearning process is represented by the continuous magenta line. This
chart shows that relearning allows the quality monitoring process to be adapted to the new operating range. Thus,
the results for sample 3 are greatly improved and the process remains under control until the end. The relearning
processes with and without PHT obtain very similar results.

Table 3 – Number, dataset size, time, and duration of relearning: industrial example.

Without relearning
Relearning with PHT
Relearning without PHT

1 2 3 sample
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Misclassification
rate

UCL99.8%

LCL99.8%

UCL95%

LCL95%

CL

number of relearning time to relearning size of the dataset duration
without PHT 1 200 200 0.22s

with PHT 1 200 101 0.14s

Computers In Industry 83 (2016) pp 78-91

Table 3 shows the number of relearning cycles, time, dataset size for each relearning cycle, and the duration of
the overall procedure. This table shows that using PHT reduces the time required by the overall procedure by
36%. This approach allows us to determine whether the quality monitoring process needs to be adapted without
systematic relearning.

All this procedure is applied in order to maintain the accuracy of the defect prediction models on the robotic
lacquering workstation. These prediction models are use in a second step in order to find the optimal tuning of
parameters which limits the defect risk considering the product characteristics and the environmental condition
(Noyel et al. 2013a).

6 Conclusion
Predicting the behavior of a real system requires the use of a forecasting model that behaves in as similar manner
as possible to the real system. However, drifts and shifts can rapidly create a difference between the model’s
behavior and reality.

Therefore, in the present study, we proposed a method for adapting a classification neuronal model to this
particular changing context by using control charts and PHT. The main goal is to keep under control the
misclassification rate in order to maintain the model close to the reality. This novel hybrid system allows us to
reduce the time required because of the following two reasons: the relearning process is not systematic and it is
triggered only when a drift is finally detected; and the relearning process is not performed based on all of the
available data, but instead it only uses the data that reflect the drift. Thus, we proposed a model monitoring
approach, which aims to detect drifts and shifts between reality and the forecasting model. We tested this method
based on a benchmark case and the results were promising. The results obtained for the industrial quality
monitoring problem demonstrate that the process can be brought under control after adapting the model. These
results based on the management of quality indirectly influence the management of flows in the system.

This approach tends to adapt the model when each drift is detected. However, in some cases, a drift may be a
symptom of a process failure, so the process (and not the model) must be repaired. In our future research, we will
try to determine whether the process or the model should be corrected when a drift occurs.

Bibliography
Adae, I., & Berthold, M., (2013). Eve: a framework for event detection. Evolving systems 4, 61–70.

Agard, B., & Kusiak, A. (2005). Exploration des bases de données industrielles à l'aide du datamining -
Perspectives. 9ème colloque national AIP PRIMECA.

Basseville, M. (1986). Detecting changes in signals and systems. Research Report RR-0658, INRIA,
https://hal.inria.fr/file/index/docid/75895/filename/RR-0658.pdf.

Basseville, M., & Nikiforov, I., (1993). Detection of Abrupt Changes: Theory and Applications. Prentice-Hall
Inc.

Bifet, A., & Gavalda, R. (2007). Learning from Time-Changing Data with Adaptive Windowing. SDM.

Bouchachia, A., (2011). Fuzzy classification in dynamic environments. Soft Comput. 15, 5, 1009–1022.

Clifford, M., & Duncan, S. (2002). Benefits of continuous on-line monitoring of mapping for CD control
systems. Pulp & Paper - Canada, 103(8), 48-51.

David R.C., Precup, R.E., Petriu, E.M., Radac, M.B., & Preitl, S. (2014). Gravitational search algorithm-based
design of fuzzy control systems with a reduced parametric sensitivity. Information Sciences, 247, 154-
173.

Computers In Industry 83 (2016) pp 78-91

Dean, T., & Boddy, M., (1988). An analysis of time-dependent planning. Proceedings of the seventh national
conference on artificial intelligence, pp. 49–54.

Dries, A., & Ruckert, U., (2009). Adaptive concept drift detection. Stat. Anal. Data Min. 2, 5-6, 311–327.

Du, L., Ke, Y., & Su, S. (2012). The embedded Quality Control System of Product Manufacturing. Advanced
Materials Research, 459, 510-513.

El Sehiemy, R., El Ela, A.A., & Shaheen, A. (2013). Multi-objective fuzzy-based procedure for enhancing
reactive power management. IET Generation, Transmission & Distribution, 7(12), 1453-1460.

Gacto, M.J., Galende, M., Alcal, R., & Herrera, F. (2014). METSK-HDe: A multiobjective evolutionary
algorithm to learn accurate TSK-fuzzy systems in high-dimensional and large-scale regression
problems. Information Sciences, 276, 63-79.

Gama, J., (2010). Knowledge Discovery from Data Streams. Chapman and Hall/CRC Press.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. (S. B. Heidelberg, Éd.)
Advances in Artificial Intelligence - SBIA 2004, pp. 286-295.

Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A., (2014). A survey on concept-drift
adaptation. ACM Computing Surveys, 46(4).

Harries, M., Sammut, C., & Horn, K., (1998). Extracting hidden context. Machine Learning 32, 101–126.

Hinkley, D.V. (1971). Inference about the change-point from cumulative sum tests. Biometrika, 58, 509-523.

Karp, R. (1992, 8). On-line algorithms versus off-line algorithms: How much is it worth to know the future?
IFIP Congress, 12, 416-429.

Kazakov, A.L., & Lempert, A.A., (2015). On mathematical models for optimization problem of logistics
infrastructure. International Journal of Artificial Intelligence, 13, 200–210.

Klinkenberg, R., & Renz, I., (1998). Adaptive information filtering: Learning in the presence of concept drifts.
Workshop Notes of the ICML/AAAI-98 Workshop on Learning for Text Categorization. 33–40.

Kotsiantis, S.B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31,
249-268.

Kusiak, A. (2001). Rough set theory: a data mining tool for semiconductor manufacturing. Electronics
Packaging Manufacturing; IEEE Transactions on, 24, 44-50.

Lazarescu, M.M., Venkatesh, S., & Bui, H.H., (2004). Using multiple windows to track concept drift. Intelligent
Data Analysis, 8, 29–59.

Lempert, A.A., Kazakov, A.L., & Bukharov, D.S., (2015). Mathematical model and program system for solving
a problem of logistic objects placement. Automation and Remote Control, 76, 1463–1470.

Lin, Y., Lee, Y., Wahba, G. (2000). Support vector machines for classification in nonstandard situations.
Technical Repport, http://roma.stat.wisc.edu/sites/default/files/tr1016.pdf.

Mathworks (2016) fileexchanges https://fr.mathworks.com/matlabcentral/fileexchange/58102-mlp-

learning

Meyer, D., Leisch, F., & Hornik, K. (2003). The support vector machine under test. Neurocomputing, 55, 169-
186.

Computers In Industry 83 (2016) pp 78-91

Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N., (1986). The Multi-Purpose incremental Learning System
AQ15 and its Testing Application to Three Medical Domains. Proceedings of the Fifth National
Conference on Artificial Intelligence, 1041–1045.

Nguyen, D., & Widrow, B. (1990, juin 17). Improving the learning speed of 2-layer neural networks by choosing
initial values of the adaptive weights. IJCNN International Joint Conference on Neural Networks
1990, 21-26.

NIST/SEMATECH, (2012). e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/.

Noyel, M. (2015) Contrôle intégré du pilotage d’atelier et de la qualité des produits, application à la société
ACTA mobilier, PhD thesis of université de Lorraine.

Noyel, M., Thomas, P., Charpentier, P., Thomas André, & Beaupretre, B. (2013). Improving production process
performance thanks to neuronal analysis. Intelligent Manufacturing System.

Noyel, M., Thomas, P., Charpentier, P., Thomas, A., & Brault, T. (2013). Implantation of an on-line quality
process monitoring. International Conference on Industrial Engineering and Systems Management,
IESM'13.

Page, E.S. (1954). Continuous inspection schemes. Biometrika, 41, 100-115.

Paliwal, M., & Kumar, U. (2009). Neural Networks and Statistical Techniques: A review of applications. Expert
Systems with Applications, 36, 2-17.

Patel, M., & Panchal, M. (2012). A review on ensemble of diverse artificial neural networks. Int. J. of Advanced
Research in Computer Engineering and Technology, 1(10), 63-70.

Ragot, J., Maquin, D., Darouach, M., & Bloch, G., (1990). Validation de données et diagnostic. Hermès, Paris.

Refke, A., Barbezat, G., & Loch, M. (2001). The benefit of an on-line diagnostic system for the optimization of
plasma sprays devices and parameters. Thermal Spray 2001: New Surfaces for a new millennium, 765-
770.

Salperwyck, C., & Lemaire, V., (2009). Classification incrémentale supervisée : un panel introductif. Proc. of
the 9ème conférence francophone Extraction et Gestion des Connaissances EGC'09, 27 au 30 Janvier,
Strasbourg, France.

Sarle, W.S. (2002) (current editor). Comp.ai.neural-nets FAQ, part 2, available on-line at:
ftp://ftp.sas.com/pub/neural/FAQ2.html.

Sebastiéão, R., & Gama, J. (2009). A study on Change Detection Methods. Proceedings of the 14th Portuguese
Conference on Artifcial Intelligence, 353–364, http://epia2009.web.ua.pt/onlineEdition/353.pdf.

Sebastião, R., Gama, J., Rodrigues, P., & Bernades, J. (2010). Monitoring incremental histogram disctribution
for change detection in data streams. (S. B. Heidelberg, Éd.) Knowledge Discovery from Sensor Data,
pp. 25-42.

Shewhart, W. (1931). Economic control of quality of manufactured product. New York, 501.

Sick, B. (2002). On line and indirect tool wear monitoring in turning with artificial neural networks: a review of
more than a decade of research. Mechanical Systems and Signal Processing, 16, pp. 487-546.

Stirl, T., & Skrzypek, R. (2003). Practical experiences and benefits with on-line monitoring systems for power
transformers. Proceedings of the 6th international conference on electrical machines and systems
ICEMS 2003, 1(2), 309-313.

Computers In Industry 83 (2016) pp 78-91

Tague, N. (2004). The Quality Toolbox, 2nd Edition. ASQ Quality Press.

Thomas, P., Bloch, G., Sirou, F., & Eustache, V. (1999). Neurall modeling of an induction furnace using robust
learning criteria. (I. Press, Éd.) Integrated Computer-Aided Engineering, 6(1), 15-26.

Thomas P., Suhner, M.C., Meutelet, B., Brachotte, G. (2004). Quality monitoring of a high pressure die casting
process based on bayesian and neural networks. 11th IFAC Symposium on automation in Mining
Mineral and Metal processing MMM’04, Nancy, France September 8-10.

Thomas P., Suhner M.C., (2015). A new multilayer perceptron pruning algorithm for classification and
regression applications. Neural Processing Letters, 42(2), 437-458

UCI (2016) Machine Learning Repository. http://archive.ics.uci.edu/ml/

Wald, A., 1947. Sequential Analysis. John Wiley and Sons, Inc.

Xiaoqiao W, Mingzhou L., Maogen G., Lin L., Conghu L., (2015). Research on assembly quality adaptive
control system for complex mechanical products assembly process under uncertainty. Computers in
Industry, 74, 43-57.

Yu J., Xi L., Zhou X., (2008). Intelligent monitoring and diagnosis of manufacturing processes using an
integrated approach of KBANN and GA. Computers in Industry, 59, 489-501.

