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Abstract 

In the context of smart industries, learning machines currently have various uses such as self-reconfiguration or 
self-quality improvement, which can be classification forecasting problems. In this case, learning machines are 
tools that facilitate the modeling of the physical system. Thus, it is obvious that the model must evolve with 
changes in the physical system, thereby leading to adaptability/reconfigurability problems. Among the various 
tools reported previously, real-time systems seem to be the best solution because they can evolve autonomously 
according to the behavior of the physical system. In the present study, we propose a method for using learning 
machines efficiently in an evolving context. This method is divided into two components: (1) model conception 
by defining the objective function and influential factors, setting up data collection, and learning using multilayer 
perceptrons; and (2) monitoring system conception with the aim of tracking the misclassification rate, 
determining whether the physical system is drifting, and reacting by model adaptation based on the control 
charts. This paper focuses on the model monitoring procedure because the model conception procedure is quite 
classical. The proposed method was applied to a benchmark derived from previous research and then to an 
industrial case of defect prevention on a robotic coating line for which other methods have proved unsuccessful. 
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1 Introduction 
In the smart industry domain, the elements of the physical system share information with each other and with a 
real time decision-making system. These decision systems must evolve and adapt according to the physical state 
of the environment. For example, in the quality control domain, we may consider the impact of environmental 
factors (such as temperature and humidity) on a die-casting process (Thomas et al. 2004) or a lacquering process 
(Noyel et al. 2013a), as well as the impact of tool wear on the finished surface in a machining process (Sick 
2002). Other examples of real-world change detection problems include modeling in bio-medicine monitoring 
and industrial processes, as described by Basseville and Nikiforov (1993).  
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These different contexts lead to classification or supervised classification problems, which can be resolved using 
machine learning algorithms, where various techniques can be applied, including logic-based algorithms (such as 
decision trees and rule-based classifiers), neural networks (NNs such as multilayer perceptrons (MLPs) and 
radial basis function networks), statistical learning (such as naive Bayes classifiers and Bayesian networks), and 
support vector machines (SVMs). The present study focuses on classification problems where continuous data 
are mainly considered. In this case, Kotsiantis (2007) has highlighted that the most suitable approaches are logic-
based algorithms, NNs, and SVMs.  

To extract a classifier from data using machine learning, the complete learning dataset is provided to the learning 
machine, which obtains descriptions for the underlying concepts in the dataset (Lazarescu et al. 2003). This type 
of learning is called batch learning. However, the target concept may be non-stationary and it can change over 
time, thereby leading to concept modification (Michalski et al. 1986). Gama (2010) separated this conceptual 
evolution into concept drift when the evolution is gentle and concept shift when the evolution is sudden. For 
example, a concept drift may result from tool wear or filter clogging, whereas a concept shift may occur after the 
replacement of parts or a system modification. When a concept shift or concept drift occurs, the model obtained 
using batch learning may no longer be accurate. Therefore, incremental algorithms, online algorithms, and 
anytime algorithms have been proposed to respond to this problem. Incremental algorithms consider new data in 
order to adapt the model without restarting the complete learning process (Salperwick et al. 2009). Online 
algorithms are used when the stream of data is continuous and the data are used individually and sequentially 
(Salperwick et al. 2009). In these two approaches, the learning must be faster and the data are generally 
presented only once to the algorithm. Anytime learning is defined as learning the best model (considering a 
given criterion) until a break occurs (such as new data arrival) (Dean and Boddy 1988). In these three 
approaches, the learning and exploitation of the model must be performed simultaneously, so the computational 
time required may be prohibitive in real-time applications, even if anytime approaches include resource 
constraints. These learning approaches may exhibit slower convergence than batch approaches, thereby leading 
to an inaccurate model. Moreover, because the data are used individually, outliers may have a deleterious impact 
on the model obtained. Finally, incremental learning must address the plasticity-stability dilemma (Bouchachia 
2011), which demands a compromise between the stability and reconfigurability of the model. 

Due to the limitations of the online approaches, batch learning is useful because it can be performed in real time 
whereas learning is performed offline. Batch learning can approximate every nonlinear function with the desired 
accuracy, as well as using a variety of algorithms to avoid bad local minima or the overfitting problem, and 
cross-validation can be performed based on the validation dataset. None of these processes can be performed 
with incremental learning, and Sarle (2002) showed that it is generally more difficult and unreliable than batch 
learning. Considering the drift or shift concepts allows changes to be detected during batch learning, and change 
detection can be performed with different approaches (Salperwick et al. 2009), as follows: 

- Relearning the classifier from scratch,  
- Adapting the classifier,  
- Adapting the data summary used in the classifier (e.g., the kNN model), 
- Using the sequence of classifiers that is learned over time in a classifier ensemble as example (Bifet 

and Gavalda 2007).  

Using of classifier ensemble allows to improve the accuracy of the classification. However, many individual 
classifiers must be evaluated simultaneously and this fact may be time consuming during the exploitation phase 
of the model. Adapting the classifier by parameters relearning allows to limit the computational cost by 
considering that even if a drift occurs, the original model is not so far of the desired one. However, in case of 
major context change, the model structure itself must be corrected. In this case, the classifier must be relearned 
from scratch.     

We propose an adaption of the classifier in order to limit the computational cost. We focus on the use of a MLP 
classification model due to its adaptability to change. In fact, the adaptation of a MLP classifier may be 
performed by a learning process based on the new dataset using the initial model parameters as the parameter set 
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for initialization. It is assumed that even if a concept shift or concept drift occurs, the initial classifier is no more 
accurate but its parameter set will remain close to the optimal set.  

The following different approaches may also be used for change detection (Gama et al. 2014): 

- Using sequential analysis (e.g., sequential probability ratio test (Wald 1947), Page-Hinkley test 
(PHT) (Page 1954, Hinkley 1971), and cumulative sum (Page 1954)); 

- Using statistical process control (SPC) (Klinkenberg and Rentz 1998, Gama et al. 2004, 
Bouchachia 2011); 

- Monitoring the distribution based on two different time windows (Dries and Ruckert 2009, Adae 
and Berthold 2013); 

- Contextual approaches (Harries et al. 1998, Bouchachia 2011). 

Sequential analysis approaches are very sensitive to the choice of the detection threshold (Ragot et al. 1990). The 
main limitation of time window-based approaches is the possibility of high memory consumption (Gama et al. 
2014). Contextual approaches are used mainly in conjunction with incremental learning. Thus, in the present 
study, a SPC approach is used to determine when relearning is required. However, even if a change is detected 
and the need for relearning is evident, a question remains: What dataset should we use for relearning? PHT can 
estimate the time when a drift or shift concept starts (Ragot et al. 1990); thus, PHT may be used in conjunction 
with SPC to build the relearning dataset. Finally, industrial datasets are often affected by outliers so a robust 
learning algorithm is required in order to limit the impact of outliers on the classifier.  

The main contribution of this paper is the proposition of a model monitoring procedure which associates SPC 
and PHT algorithms in order to adapt the model to change (by using relearning procedure). MLP is used as 
model and its adaptation is performed by using backpropagation algorithm. SPC is used to estimate the need of 
model’s adaptation. PHT is used to determine the dataset which must be used during the relearning procedure.  

In the following, after explaining the batch learning approach for designing the monitoring system, we discuss 
the impact of changing the context. The need for adaptation is highlighted and the proposed method is developed 
in two steps: determining when the system is finally drifting using control charts and evaluating how much data 
must be relearned. Finally, the proposed approach is tested on both a benchmark case and an industrial case, i.e., 
a quality monitoring problem for a lacquering company. 

2 Description of the batch learning process  
To predict the behavior of a real system, a classical approach involves the design of a forecasting model (Figure 
1). The behavior of this forecasting system, which is parallel to the physical one, is as similar as possible to that 
of the real system. It can measure different parameters in the physical system and compare its forecasts with 
reality. For classification problems, the considered forecasting system can predict the class of the output data; 
therefore, it can be used to evaluate the decision taken upstream.  

 

Figure 1 - Relationship between the forecasting model and physical system. 

The classical approach to the design of the forecasting model employs a learning machine in order to extract the 
forecasting model directly from the data using batch learning. This task is performed according to a classical 
knowledge discovery and data mining (KDD) process, which comprises two main steps: collecting the dataset 
(including identification and data collection and pre-processing) and the data mining task (which needs to define 

Physical 
system

+ -
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the training and validation datasets) (Patel and Panchal 2012). This KDD process is summarized by figure 2 and 
the two main task will be more detailed in the two following subparts.  

 

 

Figure 2: The process of supervised machine learning (Kotsiantis 2007). 

2.1 Dataset collection 
To design the dataset collection, the first step is to define the objective function, which is the output of the 
forecasting model and it corresponds to the characteristics of the physical system that we aim to monitor.  

Next, the factors that are most likely to affect the objective function must be identified. Different efficient 
strategies may be used in order to identify these influential factors, such as the Ishikawa method.  

After the objective function and influential factors have been identified, the values of these different parameters 
must be collected. This step should aim to improve the instrumentation by adding some captors in order to 
collect influential factors that have not yet been collected. However, in some cases, automatic data collection is 
not possible and manual data collection must be performed. Unfortunately, manual data collection is often 
viewed as a waste of time by the operators, and the low priority given to this task often leads to corruption of the 
dataset by outliers. To reduce this risk, it is necessary to ensure that the operators consider the importance of this 
task and to make the interfaces as intuitive and quick as possible (Noyel et al. 2013b). 

The data preparation process required before learning includes selecting, preprocessing, and transforming the 
data. For example, the data must be preprocessed in order to synchronize the different databases, delete evident 
outliers, and digitalize qualitative data (e.g., as colors) (Patel and Panchal 2012).  

After these steps, a dataset can be used to extract knowledge with learning tools.  

2.2 Data mining or learning 
Management and quality improvement using data mining methods were discussed by Kusiak (2001). Data 
mining is the main part of the KDD process, which involves data analysis to summarize the data in the form of 
useful information. The KDD process may be performed to identify valid, novel, useful, and understandable 
patterns by exploiting the full volume of data collected.  
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As shown by Agard and Kusiak (2005), the volume of data that needs to be analyzed is often large. Classically, 
the collected dataset is divided into two parts, where one is used for learning the model and the other for 
validation. This procedure allows us to check that our model exhibits the same behavior as the physical system. 

Different tools may be used to perform the data mining task, such as Naïve Bayes, decision trees, SVMs, and 
NNs. Decision trees are faster at classifying the data but they do not work well with noisy data (Patel and 
Panchal 2012); therefore, this approach is not efficient with industrial data. Naïve Bayes is appropriate for the 
treatment of discrete data, so we need to discretize the data to apply this approach to continuous data. Both 
SVMs and NNs employ very similar concepts, and thus they yield very similar results, where SVMs sometimes 
give better results (Meyer et al. 2003) whereas NNs may give the best at other times (Paliwal and Kumar 2009). 
These four tools (SVM, MLP, decision trees, and kNN) have been tested and compared based on the real 
example used in this study, and MLP obtained the best results (Noyel 2015). The proposed approach presented 
section 3 may be adapted to each type of model. However, in the present study, we focus on the use of a MLP 
with only one hidden layer, a sigmoidal activation function, and an output neuron. Its structure is given by the 
following formula (1): 

01
2 1 0 1

2 1
1 1

. .
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i ih h i
i h

z g w g w x b b
= =

  
= + +  
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where 0
hx  denote the n0 inputs of the MLP, 1

ihw  indicate the weights connecting the input layer to the hidden 

layer, 1
ib  represent the biases of the hidden neurons, g1(.) refers to the activation function of the hidden neurons 

(in this case, the hyperbolic tangent), 2
iw  denote the weights connecting the hidden neurons to the output, b 

indicates the bias of the output neuron, g2(.) represents the activation function of the output neuron, and z denotes 
the network output. This problem involves classification between two classes 0 and 1. So g2(.) is selected as 
sigmoidal in order to allow the evolution of the output value between these two bounds 0 and 1.  

In order to determine the number of hidden neurons and to discard spurious inputs, the learning phase starts with 
an overparameterized structure. This structure includes all the variables collected during the preceding step and a 
number of hidden units clearly greater than necessary (between 2 and 3 times greater than the inputs number). 
The weights of this overparameterized structure are initialized using classical Nguyen and Widrow algorithm 

(Nguyen and Widrow 1990, Mathworks 2016), and the learning of these weight is performed by using the 

Levenberg–Marquard algorithm with a robust criterion (Thomas et al. 1999, Mathworks 2016) in order to 

avoid the outliers impact on the resulting model. Due to the overparameterized structure, the resulting model 
presents overfitting. In order to avoid it, a weight elimination algorithm (pruning) is used to discard spurious 

inputs and hidden nodes (Thomas and Suhner 2015, Mathworks 2016). All this procedure is performed on a 

part of the available dataset called learning dataset. The accuracy of the obtained model is determined by using 
the remaining data (not used for the learning) and is called validation dataset.  

The completion of this process yields a classification model, which can be used as a forecasting system to 
monitor the real system. However, this model is static whereas the system or its environment can evolve. 
Therefore, an adaptation procedure is needed to fit the model to the real system if changes occur.  

3 Proposition of classification neuronal model adaptation process 

3.1 Limits of batch learning in a changing context 
Two different types of changes can occur in the monitored system (Sebastiéão and Gama 2009): 

• A “concept shift” refers to an abrupt change; 

• A “concept drift” is associated with gradual change.  
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Concept drift is more difficult to detect and it is often confused with noise. However, this is the type of change 
that we must identify in order to ensure that the behavior of the monitoring system remains as close to reality as 
possible.  

In our previous study (Noyel et al. 2013a), we highlighted two reasons why the behavior of the forecasting 
system starts to deviate from reality. The first concerns the evolution of the input parameters. Thus, with a 
learning model, the learning outcome is valid only in the learned domain. In many cases, the data range which 
can be determined with the dataset collected (weak bounds) don’t correspond to the complete evolution range of 
the considered variable (strong bounds). As example, if we study the evolution of output temperature in Paris 
during January 2016, the bounds of the evolution range (weak bounds) are -4.4°C and 13.9 °C. However, by 
considering all the dataset available since 1873 the temperature has evolved between -14.9°C and 16.1°C and we 
can imagine that these record values may be outperformed in the future and so, the strong bounds are unknown. 
For the learning process, the main risk is encountering a situation where one factor is outside the bounds of the 
learned domain (weak bounds) because the model cannot give a correct answer. For the example shown in 
Figure 3, the strong bounds are given by dashed lines when the colored sectors correspond to the known range 
given by the dataset. In this figure, forecasts are possible in cases 1 and 2 but not in cases 3 (factor 5 is out of 
weak bounds) and 4 (factor 2 is out of weak bounds). These points may be outside the learning domain due to 
concept drift (e.g., a gradual change) or concept shift (e.g., a pressure drop due to a compressor failure). 

 

Figure 3 - Situations where a forecast may or may not be possible. 

The second reason concerns the uncontrolled modification of the behavior of the real system. In fact, it is 
possible to affect the behavior of the real system by changing a parameter (voluntarily or not) that is not an input 
of the forecasting system. 

Therefore, the main issue is synchronization with reality, where we have to optimize the synchronization 
frequency because synchronization is time consuming (a revision of the model can take several minutes to 
several days). It is better to rely on statistical findings (using SPC tools as example) rather than considering the 
resynchronization frequency in terms of the response to events (such as the arrival of new information from one 
of the connected devices (incremental learning) or solicitation by an operator) or over a period (e.g., every hour 
or week). Among the seven basic tools, control charts, also known as “Shewhart charts” or “process-behavior 
charts” (Shewhart, 1931), are useful SPC tools in the proposed monitoring system.  

First, a prerequisite for detecting changes is the ability to verify hypotheses after being informed about reality. 
This step requires an improvement to the information technology system in order to collect data as the output 
from the real system. We can monitor the difference between theory and reality by comparing these data with the 
system hypotheses, where this value is called the error rate. The evolution of this rate can be disturbed by the 
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normal production noise. At first glance, it appears to be difficult to determine when the system is actually 
drifting in reality.  

3.2 Principe of classification neuronal model adaptation process 
To take account these limitations, a model monitoring approach is proposed for adapting the forecasting model. 
The principle of model monitoring is illustrated in Figure 4 and is an extension of the classical process presented 
figure 1. In this approach, a forecasting model is extracted from a dataset in the first step by using a classical 
KDD process. In the second step, a monitoring procedure is used to detect the occurrence of drift and to react. 
The main objective of this paper is related to this monitoring process. 

  

Figure 4 - Monitoring the forecasting model. 

Many optimization algorithms are subdivided in different tasks in order to reach their goals. We can cite, as 
example, pruning algorithms which tend to determine the optimal structure of neural network after learning step 
(Thomas and Suhner 2015), or METSK-HD algorithm (Gacto et al. 2014) which combines a classical 
evolutionary learning of fuzzy model in a first step and a post processing step allowing to perform rule selection 
and tuning of membership function. In this paper, two main tasks must be performed to design the monitoring 
system, each of which is subdivided into different subtasks, as follows. 

1) Design the forecasting model (batch learning process described section 2) 
a. dataset collection (described section 2.1) 
b. data mining or learning (described section 2.2) 

2) Design the model monitoring system 
c. Collect the data 
d. Detect the occurrence of drift between the forecasting and physical systems (described later 

section 3.3) 
e. Construct the relearning database (estimate the start time of the drift) (described later section 

3.4) 
f. Adapt the forecasting system 

The first main task (1) is a classical KDD process and it is described in section 2. It allows to obtain the initial 
forecasting model.  

The design of the model monitoring system (2) includes the collect of data during the production (c) in order to 
construct the dataset. It corresponds to the same process as that one described section 2.1. This dataset is used 
firstly to detect a drift occurrence by using SPC tools (d) and then to estimate the start time of the drift in order to 
define the relearning dataset by using PHT (e). This start time estimated allows to design the dataset used during 
the last sub step (f). This dataset includes all the data collected between the estimated start time and the present 
time. The last step is a relearning step (f). Its goal is to fit the model with the reality by adapting the parameters 
of the forecasting model to the detected drift. 

The process presented in Figure 5 can be followed to adapt the model to changes. 
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Figure 5 - Adaptation process. 

The initialization process was described in section 2 and it corresponds to the design of the forecasting model, 
which is a classical KDD task, including here the dataset collection (and pre-processing), and the data mining 
step (including initialization, learning and pruning sub steps). The supervision step is conducted at the same time 
as model exploitation. During this step, the results obtained by the monitoring model are compared with the data 
collected from the physical system in order to detect the emergence of drift between both and its correction. The 
step employed to detect the occurrence of drift is discussed in section 3.3. The relearning database must be 
constructed when drift is detected. This step is discussed in section 3.4. The setup of the classifier is the 
relearning step which is performed by using the classical learning algorithm as during the KDD process, here, 

the Levenberg–Marquard algorithm with a robust criterion (Thomas et al. 1999, Mathworks 2016). The 

relearning is initiated and performed as soon as a drift is detected, its start time estimated and the relearning 
dataset constituted.  

3.3 Determining whether the system is drifting by using control charts 
Control charts are particularly useful for dynamic control based on time-series data (Tague, 2004). This method 
is useful for statistically determining whether the dimensional variation of parts is no longer under control. 
Indeed, it is known that even when a process is under control, there is a probability of approximately 0.27% that 
a point will exceed 3-sigma bilateral control limits (Pareto). These few isolated points should not trigger 
relearning, but an increase in the number of points will be detected to indicate the presence of a special cause, 
even if it is not yet known.  

We propose the combination of a NN with control charts to exploit the robustness of statistical analysis and the 
adaptability of the NN. Du et al. (2012) studied the inverse combination of both tools by using a recognition 
algorithm for control charts and NNs to obtain alerts in the case of quality problems, as well as providing clues 
to identify the causes. 
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Figure 6 – Control chart for monitoring the real-time forecasting model. 

Control charts (p-charts) (NIST/SEMATECH 2012) aim to determine whether the misclassification rate is 
drifting according to the principle illustrated in Figure 6, where each point in the figure corresponds to the 
misclassification rate obtained with a sample of k data and k corresponds to the sample size (k is selected 
according to several criteria such as criticality and frequency). Traditionally, two bounds are determined with 
control charts in order to define an acceptable zone for the misclassification rate (dashed green and red lines on 
the graph). The misclassification rate is an average of several values, so we assume that if this rate is outside the 
green bounds, then many values are outside the bounds, and thus the system is effectively drifting. Therefore, we 
need to perform relearning when the misclassification rate obtained for one sample (e.g., sample 7 in Figure 6) 
falls outside these bounds. The dotted lines in Figure 6 represent the evolution of the misclassification rate when 
no relearning is performed. Three examples are presented which present the evolution of the misclassification 
rate if the relearning needed at the 7th, 23th and 34th samples (misclassification rate > UCL95%) are not 
performed.  

Two pairs of bounds may be determined using the confidence level. The warning bounds, i.e., the lower 
(LCL95%) and upper (UCL95%) bounds, are defined with a confidence level of 95%, as follows. 
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The forbidden bounds, i.e., the lower (LCL99.8%) and upper (UCL99.8%) bounds, are defined with a confidence 
level of 99.8%, as follows: 
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where k corresponds to the size of the sample and p is the center line, which must be estimated. The center line 
corresponds to the misclassification rate obtained for the validation dataset (defined section 2.2) during the initial 
learning process (Noyel et al. 2013b). 
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The decision about relearning may be made when the misclassification rate of a sample is outside the warning 
bounds (e.g., for sample 7 in Figure 6). This step highlights when to trigger relearning and the next step 
determines the amount of data required to perform this action. 

3.4 Determining the amount of data required for relearning  
Control charts allow us to determine whether the system is actually drifting. To correct our forecasting system, 
we need to perform relearning based on a specific amount of new data. The relearning is achieved by using a 
batch second order backpropagation algorithm which includes the determination of hessian and gradient matrix 
whose size depends on the number of parameters (complexity of the model) and on the number of data (size of 
the dataset) (Thomas et al. 1999). So the re-learning speed is improved by reducing model size (pruning step, 
section 2.2) and reducing re-learning dataset (estimation of the start time of the drift). It can be noticed that the 
re-learning speed is not crucial. In fact, re-learning must be launched only when a new drift is detected by SPC, 
and so when k new data corresponding to the size of one sample in SPC are collected since the last supervision 
step (figure 5). The re-learning step disposes of the time of collect of these k new data to run.   

The control charts enhance the data if drifting is detected, but they cannot determine when the drift started, and 
thus they cannot estimate the precise amount of data required to perform relearning. The following two cases 
must be considered. 

• The time since the last relearning process is not crucial because it is possible to perform relearning 
based on all of the newly available data. Thus, the task is very simple and fast (similar to classical 
learning).  

• The time since the last relearning process is crucial, and to save time, it is possible to restart the entire 
learning process based on a defined amount of data, where we can consider “sliding windows.” This 
solution allows the system to forget old behaviors that may no longer be relevant so the behavior of the 
forecasting system is more flexible. The best data window size must be defined correctly. Thus, the 
system will learn the noise if it is too short, whereas there will be insufficient flexibility if it is too long. 
The aim is to determine the point of inflexion based on the error rate, i.e. the estimated start time of the 
drift. 

Different methods may be used to determine the point of inflexion, such as adaptive windowing (ADWIN) (Bifet 
and Gavalda 2007), SPC (Gama et al. 2004), the fixed cumulative windows model (FCWM) (Sebastião et al. 
2010), and PHT (Page, 1954). Sebastião and Gama (2009) tested and compared these different algorithms, where 
the results suggested that PHT and SPC are less time consuming than ADWIN and FCWM. This is crucial 
because one of the main objectives is to reduce the calculation time by optimizing the relearning dataset size. 
SPC cannot estimate the time when drifting begins but it can determine the drift detection time. This is important 
because the difference between these two times may be significantly large, and thus many data that are useful for 
relearning might be discarded from the relearning dataset. PHT can detect a drift (not used in the present study) 
and estimate the time drifting begins.  

The goal of PHT is to detect a mean jump in a constant signal polluted by white noise (Page 1954; Hinkley 1971; 
Basseville 1986). This test can determine whether a jump occurs and estimate the time of this jump. In our case, 
the signal considered is the absolute value of the error obtained based on different data, where we conduct a 
search to determine the time drifting occurs between the behavioral model and the real system. This signal may 
be represented by a sequence of random Gaussian variables: E = [ei], i = 1, …, l, with variance 2σ  and mean mi. 
According to the hypothesis that only one jump occurs at an unknown time r with 1 r l≤ ≤ , detecting this jump 
corresponds to accepting hypothesis H1 of a change rather than hypothesis H0 of no change.  

2
0 0 0

2
1 0 0

2
1 1

: ~ ( , ), ( ) ( ) 1, ,

: ~ ( , ), ( ) ( ) 1, , 1

~ ( , ), ( ) ( ) , ,

i i i

i i i

i i i

H e N m P e P e i l

H e N m P e P e i r

e N m P e P e i r l

σ
σ
σ

 = =
 = = −
 = =

⋯

⋯

⋯

 4 

The use of this test implies that the two mean values m0 and m1 are known a priori. In our case, the mean m0 may 
be estimated based on the mean of the error obtained for the validation dataset during the forecasting system 
design task. However, the mean m1 is unknown and the minimal absolute value of the amplitude of the jump mδ  
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that needs to be detected is fixed, where the two tests are performed in parallel to detect an increase and a 
decrease in the mean, respectively. These tests may be calculated recursively to detect the increase in the mean 
as follows: 
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and the time r i of the last increase in the mean is given as follows. 
max( )i i ir i U γ= =  6 

For the decrease in the mean, the test is given by 
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and the time rd of the last decrease in the mean is given as follows. 
max( )d i ir i T η= =  8 

Therefore, if the control chart detects that relearning is required at time l, then relearning must be performed 
using all of the data collected between time r and l, where r given by: 

min( , )i dr r r= . 9 

Tests (5) and (7) use the minimal absolute value of the amplitude of the jump mδ , which may be fixed as a 

multiple of the standard deviation σ  of the error obtained for the validation dataset. In the present study, we set 

mδ  as:  

3m

σδ = . 10 

In function of the complexity of the neural model (number of parameters) and in the goal to avoid overfitting the 
minimal size of the relearning dataset must be limited to a threshold ∆ such that l-r  > ∆. It can be noticed that the 
overfitting risk is limited by the use of a robust learning criterion (Thomas et al. 1999).  

4 Application to a benchmark  
In order to propose a simple and comprehensive application of the proposed approach, a simulation example is 
used to illustrate the procedure, which is derived from the example proposed by Lin et al. (2000). The main 
advantage of this simulation is the possibility to create artificially drifts (concept shift and concept drift) and to 
evaluate the capacities of the approach to detect the drifts, evaluate their start time and fit the model to the new 
reality. This example considers a population that comprises two subpopulations. The positive subpopulation 
follows a bivariate normal distribution with mean (0, 0)T and covariance matrix diag(1, 1), whereas the negative 
subpopulation follows two bivariate normal distributions with mean (2, 2)T and covariance diag(2, 1) for the first 
subpopulation, and mean (–2, –2)T with covariance diag(2, 1) for the second subpopulation. The population is 
unbalanced where the positive and negative subpopulations account for 80% and 20% of the total population, 
respectively. The negative subpopulation is balanced and follows two different laws in order to ensure that the 
two classes cannot be linearly separable. 

4.1 Initial forecasting model 
The first step is to determine the initial forecasting model as presented section 2. A dataset comprising 1000 
pieces of data is constructed and divided into two datasets with 500 pieces of data in each: one for learning and 
the other for validation. A classification model is constructed using these data. The initial structure is constructed 
with two inputs and 10 hidden neurons. A pruning phase allows the deletion of three of the 10 hidden neurons. 
The resulting model obtains a misclassification rate of 8.1%.  
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Figure 7 – The validation dataset divided into two classes and the limits between the two classes. 

Figure 7 shows the validation dataset and the separation of the input space into the two classes given by the 
forecasting model. 

Two supplementary datasets are constructed in order to illustrate the procedure, i.e., a concept shift and a 
concept drift.  

4.2 Impact of concept shift 
A dataset comprising 2000 pieces of supplementary data is constructed for the same simulation example, except 
the means of the normal distributions change at time 300. At this time, the mean of the positive population 
becomes (1.5, 0)T and the means of the two normal distributions for the negative population become (3.5, 2)T and 
(–0.5, –2)T. The covariance matrix remains unchanged. 

A control chart is constructed to monitor the forecasting model. The sample size for the control chart is fixed to 
100. Two relearning procedures are used to adjust the model to reality. The first uses all of the available data 
based on the last relearning process, whereas the second uses the PHT procedure described in the previous 
section. 
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Figure 8 – Monitoring the forecasting model: concept shift. 

Figure 8 shows the control chart used to monitor the forecasting model, where UCL99.8% and LCL99.8% are shown 
in the graph, but they are not useful. Each point outside the range [LCL95% – UCL95%] triggers relearning. The 
evolution of the control chart without relearning is shown by the dotted cyan line, whereas that with relearning 
by using PHT to determine the appropriate size of the dataset is represented by the dashed line blue, and that 
with relearning using all of the available data based on the last relearning process is represented in magenta. The 
concept shift in the real system occurs at time 300, and the control chart detects this concept shift based on the 
fourth sample (which corresponds to time 400 because the size of each sample is 100). If relearning is not 
performed, the forecasting model cannot maintain good accuracy. The two relearning strategies allow us to adapt 
the model to the new behavior of the system even if other relearning steps are required after time 400 to maintain 
the accuracy of the forecasting model. The results obtained by the two relearning strategies are equivalent. Using 
the two strategies, no sample is outside the forbidden bounds.  

Table 1 – Number, dataset size, time, and duration of relearning: concept shift. 

  
 

Table 1 shows the number of relearning cycles, time, dataset size for each relearning cycle, and the duration of 
the overall procedure. This table shows that even if only three relearning cycles are required when PHT is not 
used (compared with four using PHT), the duration of the total procedure is 100% greater than with PHT. This is 
because the relearning procedures are performed based on relatively large datasets when PHT is not used.  

4.3  Impact of concept drift 
A new dataset comprising 2000 pieces of supplementary data is constructed for the same simulation example, 
except the drift occurs at time 300. At this time, the mean of the positive population becomes (0.02*(k – 300), 
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0)T and the means of the two normal distributions for the negative population become (2 + 0.02*(k – 300), 2)T 
and (–2 + 0.02*(k – 300), –2)T, where k denotes the index of the data. The covariance matrix remains unchanged.  

  

Figure 9 – Monitoring the forecasting model: concept drift. 

As mentioned in the previous section, a control chart is constructed to monitor the forecasting model. The 
sample size for the control chart is fixed to 100. The same two relearning procedures are tested.  

Figure 9 shows the control chart used to monitor the forecasting model. The evolution of the control chart when 
no relearning is performed is shown by the dotted line cyan, relearning using PHT to determine the appropriate 
size of the dataset is represented by the dashed line blue, and relearning using all of the available data based on 
the last relearning process is represented in magenta. The concept drift occurs at time 300, and the control chart 
detects this concept drift in the eighth sample (time 800). When relearning is not performed, the forecasting 
model cannot maintain good accuracy. The two relearning strategies allow the model to be adapted to the new 
behavior of the system and new relearning processes are launched periodically in order to maintain the accuracy 
of the forecasting model. The results obtained for the two relearning strategies are equivalent. Using the two 
strategies, no sample is outside the forbidden bounds. 

Table 2 – Number, dataset size, time, and duration of relearning: concept drift. 
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Table 2 shows the number of relearning cycles, time, dataset size for each relearning cycle, and the duration of 
the overall procedure. This table shows that using PHT avoids one relearning process. Moreover, as in the 
previous example, using PHT decreases the time required for the overall procedure by 50%. This is also because 
the relearning procedures are performed based on relatively large datasets when PHT is not used.  

5 Application to an industrial quality monitoring problem 
In order to illustrate the applicability of this approach a real industrial case is presented. Acta-Mobilier is a 
company that produces high-quality lacquered panels made of medium-density fiberboard (MDF) for kitchens, 
bathrooms, offices, stands, shops, and hotel furniture. According to its certifications (ISO 9001, ISO 14001, and 
OHSAS 18001), the product quality is a constant concern for this company. The manufacturing processes are 
implemented on several shop floors. In these workshops, each workstation is likely to generate defects and the 
company has to include a quality control step in each case. In this study, we focus on a robotic lacquering 
workstation because it has the highest defect rate. In literature, many industrial optimization problems have been 
considered and we can cite without to be exhaustive, logistics infrastructure problems (Kazakov and Lempert, 
2015, Lempert et al. 2015), or continuous regulation problems (El Sehiemy et al. 2013, David et al. 2014). The 
main objective of this application is to determine the optimal tuning of the robotic lacquering workstation in 
order to reduce the defects rate.  

The production quality of this workstation is unpredictable (the risk of defect occurrence is unknown) and 
fluctuating (the percentage of defects may vary from 45% one day to 10% the next day without any changes in 
the settings). It is very time consuming and difficult to obtain and plan a Taguchi experimental design in order to 
improve this setting. Thus, a robotic lacquering workstation is considered as a bottleneck workstation, but it is 
very difficult to reduce the time required for the experiments or to plan throughout the production lots according 
to the experimental conditions. In addition, the cost of these experiments is very high because they consume 
semi-finished products (which already have a high added value). 

Therefore, a forecasting system is implemented to predict the occurrence of defects and to determine the optimal 
setting of the controllable factors considering the characteristics of the products and the environmental 
conditions. This forecasting system should highlight the relationships between process parameters and the 
quality of the finished products, which may be extracted from the dataset by using a NN (Yu et al. 2008, 
Xiaoqiao et al. 2015).  

5.1 Forecasting system 
The forecasting system can be represented as shown in Figure 10.  

 

Figure 10 - Forecasting system.  

The aim is to give the operator the best production range or the best parameters to set up the machine directly. 
So, we need a forecasting system able to predict the risk of defect occurrence considering the characteristics of 
the considered products, the state of the environmental factors and the different available settings. These defect 
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risk predictions allow to propose to the operator the best setting to use in the present condition. Thus, the system 
needs three different types of inputs, each of which requires many settings, as follows. 

1. Environmental factors and lot characteristics, where there are two prerequisites. The first is the 
computerized production monitoring system, for which real-time production information must be 
collected in a semi-automated or automated manner. We do not consider that the operator has to enter 
data (e.g., temperature) at each production lot. The second is the virtualization of expert knowledge. A 
database must be implemented to consider the fact that only experts can know whether a factor is 
important for quality or not. 

2. The list of available production range or parameter settings. In most cases, the workstation has one 
production range/setup according to the type of product. To obtain this high quality level, the 
production system needs to be flexible and adaptable. In the case where we consider different 
production ranges, alternative routings should be implemented. Similarly, in the case where we consider 
the parameter settings, adjustments to the limits of the parameters must be implemented. 

3. The list of predictable defects and their criticality value. Experts can list the possible defects that may 
occur, but they cannot know whether a defect is actually predictable. This is one of the tasks that we 
discuss later in the learning step. However, experts can determine whether a defect is actually 
important. They need to attribute a criticality value to each possible defect according to different 
factors, such as the possibility of repair or the repair cost. Thus, if the system cannot find a solution 
with a zero defect probability, it will try to find a solution that minimizes the penalizing defects. 

The forecasting system can be decomposed into two subsystems, as illustrated in Figure 11. 

 

Figure 11 – Decomposition of the forecasting system. 

The system needs to compare each production range, so we calculate a confidence level for each production 
range. This confidence level is obtained as shown in Figure 12 (decomposition of the “To test production range” 
in figure 11). 
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Figure 12 - Details of the production range’s confidence level module. 

To calculate the production range’s confidence level, we first need to calculate the probability of occurrence for 
each defect. Thus, we use all of the factors validated by experts (such as environmental factors, lot 
characteristics, and production range  characteristics) and a prediction model can be estimate for the probability 
of occurrence for each defect in this condition. The confidence level of production range �� is calculated as 
follows: 

������ = ∑ 	
 	× 	

��

�� , 11 

 
where 	
 denotes the probability of occurrence for defect � with 1 ≤ � ≤ ��, �� indicates the number of different 
defects identified by experts, and ∝
 represents the criticality level of defect �. 

The only missing component is the probability of occurrence		
. This probability is given by a forecasting model 
built using the approach proposed in Section 2. 

5.2 Implementation of the forecasting system 
In this application, 25 different quality defects should be considered, thereby leading to the design of 25 quality 
prediction neural models. The resulting quality monitoring system (set of 25 neural classifiers) is embedded in 
the supervision tool of the lacquering workstation for use by the operators. The memory of these NNs is 
physically remote in an SQL database; therefore, each independent program may access this memory if needed. 
This tool is a decision support system and it requires a human/machine interface, which is as intuitive as 
possible. The tool is implemented directly in the setup interface of the robotic lacquering workstation (Figure 
13). Using this additional function, after entering the production information (such as the selected production 
range and the number of units produced), the operator may assess the risk of occurrence for a defect (Figure 14). 
If the risk appears to be too large, the production parameters can be changed (e.g., choosing another production 
range) and the program can be run in parallel to compare the evaluation results until a satisfactory result is 
obtained. 

The current version of the quality monitoring system requires an average of 12 seconds to display the result. 
Thus, within 12 seconds, it can recover the memory from the SQL database, traverse the 25 NNs, and visually 
synthesize the results to facilitate interpretation by the operator, so less than half a second is required for the 
calculation by the NN.  
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Figure 13 - Interface for collecting production data. 

 

Figure 14 - Forecast example 

However, as expected, the answers provided by our system drift away from reality shortly after its 
implementation.  

5.3 Design of the initial forecasting neural model 
As explain in section 5.2, 25 different quality defects must be monitored leading to the design of 25 different 
neural forecasting models. In the sequel, we focus our presentation on one particular defect: “stain on back”. The 
different factors which may have an impact on this defect occurrence are collected. These factors are technical 
factors (load factor, number of passes, time per table (lacquering batches), liter per table, basis weight, number 
of layers, number of products and drying time), environmental ones (as temperature, atmospheric pressure and 
humidity). Some of the technical factors are imposed by the products (number of passes, time per table, liter per 
table, number of layers, and number of products). The three last factors (load factor, basis weight, drying time) 
are the tunable parameters whose optimal setting is seeking. Some of these factors are discrete and are binarized. 
So the initial structure of the neural model includes 15 inputs (9 continuous and 6 binary) and 25 hidden neurons.  

The dataset is constituted of 2270 data and is split into 2 data sets for identification (1202 data) and validation 
(1068 data). After initialization and learning, pruning phase is able to eliminate spurious inputs and hidden 
neurons. 6 hidden neurons and 1 input (passes number) are eliminated.  

During the validation phase, we therefore compare the results of the NN with the real defects detection. The 
defect "Stains on back" occurs 127 times on the 1068 data validation set. The NN can detect 112 defects which 
lead to a non-detection rate of 11.8%. The proportion of false positive is 19.2%, which may be partly explained 
by the fact that some defects haven’t been identified out of the machine (Noyel et al. 2013a). 
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5.4 Drift 
Two apparent reasons lead our monitoring system to drift away from reality. The first concerns the evolution of 
the input parameters. Using a learning model, the learning outcome is valid only in the learned domain, so the 
model can only provide a valid solution in this domain. 

 

Figure 15 - Difference between the learning and running domains. 

For our implementation, the learning and validation databases were collected during spring and summer. For the 
new database (UCI 2016), 446 items of data were collected during autumn and winter, and the exploitation of the 
quality monitoring process led to 73% non-detections and 32% false positives for one of the 25 defects 
monitored. These poor results can be explained by the different process conditions in the two periods. As shown 
in Figure 15, in the first database, the temperature range varies between 0 C°  and 32 C° , whereas in the new 

database, the temperature range varies between 5.2 C− °  and 24 C° . These negative temperatures represent 25% 
of the new database and they correspond to the operating range of the process, which is not learned during the 
quality monitoring process. 

 

Figure 16 - Historic data on the defect percentage for grains on edges. 

The second reason concerns the uncontrolled modification of the machine behavior. Indeed, it is still possible to 
affect the behavior of the machine by changing a parameter (voluntarily or not) that is not an input of the neural 
classifier. For example, this parameter may change due to the clogging of a filter or the replacement of a dirty 
filter. These changes may or may not be known. Thus, in the application considered, we know that the 
lacquering nozzles are changed during the exploitation phase, but the time of this change is not known. In this 
case, we can conclude that this parameter should be part of the model inputs, but because it is considered 
constant for the duration of the learning step, it is not actually retained. The model will produce results that do 
not agree with reality because of this change, which may be unknown to the operators and managers.  

For example, as shown in Figure 16, it is clear that the studied defect rate (grains on edges) increases sharply 
after June 22, which is due to an unknown change in the real system, so the forecasting system is no longer 
pertinent.  
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It is not always possible to control changes in the production parameters (such as uncontrollable parameters, 
weather, and unanticipated changes made by the operator), so it is necessary to be capable of detecting them. By 
providing the quality monitoring system with the capacity to verify its hypotheses about reality, it can have the 
ability to recognize its failure and react accordingly. 

Therefore, a control chart is designed to monitor the forecasting system, where the sample size for the chart is 
fixed to 100 values, which corresponds to slightly less than one week of production. 

Only the UCLs are considered because the model is better when the misclassification rate is lower. Therefore, 
only the UCLs are calculated to represent 95% and 99.8% of the data. 

Figure 17 shows the control charts obtained with the new dataset during the exploitation phase. The dotted line 
corresponds to a control chart without relearning. We can see that the quality process is under control for sample 
1 but the second sample shows that the process is no longer under control (the results are between UCL95% and 
UCL99.8%). This is due to the new operating range detected in the data, as explained in the previous section. 
Therefore, the quality monitoring process must be improved by relearning the NN using the data from the first 
two samples.  

The initial structure and weights of the network are those given by the original quality monitoring process, so a 
pruning phase is note needed. The initial weights are close to the optimal values; therefore, the relearning phase 
is fast and it requires only a few iterations. 

  

Figure 17 - Industrial application of forecast improvement by relearning. 

The evolution of the control chart when no relearning is performed is shown by the dotted cyan line, relearning 
using PHT to determine the appropriate dataset size is represented by the dashed blue line, and relearning using 
all of the available data based on the last relearning process is represented by the continuous magenta line. This 
chart shows that relearning allows the quality monitoring process to be adapted to the new operating range. Thus, 
the results for sample 3 are greatly improved and the process remains under control until the end. The relearning 
processes with and without PHT obtain very similar results.  

Table 3 – Number, dataset size, time, and duration of relearning: industrial example. 
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Table 3 shows the number of relearning cycles, time, dataset size for each relearning cycle, and the duration of 
the overall procedure. This table shows that using PHT reduces the time required by the overall procedure by 
36%. This approach allows us to determine whether the quality monitoring process needs to be adapted without 
systematic relearning.  

All this procedure is applied in order to maintain the accuracy of the defect prediction models on the robotic 
lacquering workstation. These prediction models are use in a second step in order to find the optimal tuning of 
parameters which limits the defect risk considering the product characteristics and the environmental condition 
(Noyel et al. 2013a). 

6 Conclusion 
Predicting the behavior of a real system requires the use of a forecasting model that behaves in as similar manner 
as possible to the real system. However, drifts and shifts can rapidly create a difference between the model’s 
behavior and reality. 

Therefore, in the present study, we proposed a method for adapting a classification neuronal model to this 
particular changing context by using control charts and PHT. The main goal is to keep under control the 
misclassification rate in order to maintain the model close to the reality. This novel hybrid system allows us to 
reduce the time required because of the following two reasons: the relearning process is not systematic and it is 
triggered only when a drift is finally detected; and the relearning process is not performed based on all of the 
available data, but instead it only uses the data that reflect the drift. Thus, we proposed a model monitoring 
approach, which aims to detect drifts and shifts between reality and the forecasting model. We tested this method 
based on a benchmark case and the results were promising. The results obtained for the industrial quality 
monitoring problem demonstrate that the process can be brought under control after adapting the model. These 
results based on the management of quality indirectly influence the management of flows in the system. 

This approach tends to adapt the model when each drift is detected. However, in some cases, a drift may be a 
symptom of a process failure, so the process (and not the model) must be repaired. In our future research, we will 
try to determine whether the process or the model should be corrected when a drift occurs.  
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