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Design of Stochastic Machines Dedicated to
Approximate Bayesian Inferences

Marvin FAIX , Raphaël LAURENT, Pierre BESSIÈRE, Emmanuel MAZER and Jacques DROULEZ

Abstract—We present an architecture and a compilation toolchain for stochastic machines dedicated to Bayesian inferences. These
machines are not Von Neumann and code information with stochastic bitstreams instead of using floating point representations. They
only rely on stochastic arithmetic and on Gibbs sampling to perform approximate inferences. They use banks of binary random
generators which capture the prior knowledge on which the inference is built. The output of the machine is devised to continuously
sample the joint probability distribution of interest. While the method is explained on a simple example, we show that our machine
computes a good approximation of the solution to a problem intractable in exact inference.

Index Terms—Stochastic computing, Bayesian Programming.

F

1 INTRODUCTION

This project is inspired by E.T. Jaynes. His book, “Proba-
bility as Logic” [1], proposes probability as an extension

of logic to reason with incomplete and uncertain informa-
tion. Since the beginning of our work in the 90s [2], [3], it
has always been our goal to build a machine able to perform
this type of reasoning on specialized hardware. We started
by designing a method to automate probabilistic reason-
ing called Bayesian Programming [4] and an associated pro-
gramming langage ProBT1 to specify and perform Bayesian
inferences on standard computers. The formalism and the
inference engine of ProBT have been used to develop many
academic [5], [6], and industrial applications2.

Recently the European project BAMBI3 gave us the op-
portunity to pursue our project. We started this project by
designing and implementing machines performing exact
inference with stochastic arithmetics on an FPGA. While
these non conventional machines could already be used to
synchronize a pair of Linear Feedback Shift Registers [7]
or to control a robot [8], they could not handle any prob-
lem of reasonable complexity. Here we describe a second
generation of machines based on sampling which allow to
approximate the solution of otherwise intractable problems.

The paper is organized as follows. Related works with
similar goals and approaches are described next. Section 3
presents stochastic bitstreams and explains why we made
the choice to sample binary probabilistic variables. In par-
ticular, it introduces the two only building blocks required
to build the stochastic machine: Conditional Distribution El-
ements (CDEs) and Extended C-Elements (ECEs). CDEs are
used to generate programmable and addressable stochastic
bitstreams. ECEs extend Muller C elements and are used
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for inference. In the following section we recall the Gibbs
algorithm in the case of binary variables and show how
it may be implemented by combining our previously de-
fined building blocks. Then, in Section 5 we describe our
compilation toolchain. It starts from a Bayesian program on
discrete variables, transforms it into an equivalent program
on binary variables and finally compiles it into a VHDL
circuit specification. Finally we use a simulator to demon-
strate the performance of the obtained circuits performing
approximate inference on an intractable problem.

2 RELATED WORK

The design of unconventional or non Von Neumann ma-
chines is essentially driven by the idea of reducing the
power consumption of computing devices. It is also related
to the need to process larger amounts of data while being
closer as ever to the limits imposed by physical laws on
current processors and the end of Moore’s law. The need
for more data processing with less energy comes from the
common availability of extremely large data bases and from
applications related to sensor fusion and interpretation.

Massively parallel and multi-core architectures are the
current response to these challenges but several projects
tend to investigate alternate paths. Projects like SpiNNaker4

and TrueNorth5 are still standing on the side of the multi-
core approach while being bio-inspired. The global archi-
tecture they propose changes to comply with the artificial
neural network inspiration, but the core computations are
still made with Von Neuman processor architectures.

The PCMOS (Probabilistic-CMOS) project [9] modifies
the structure of processors to build resilient and energy
efficient machines. The key idea is to lower the nominal
voltage at which standard CMOS circuits operate and to
compensate errors with a robust design. An algebra for-
malizes how errors are propagated along a chain of logical

4. http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
5. http://www.research.ibm.com/articles/brain-chip.shtml
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operations, leading to circuits computing the correct result
with a specified probability. Contrary to our approach, in
which we design new theory and components to compute
inference, PCMOS manages errors on classic CMOS arith-
metic operators to perform approximate computation with
compromises between circuit size, voltage, and precision.

Closer from our own work are the approaches taken by
Vigoda, Masinkha and Jonas at MIT. In all cases, probabilis-
tic programming is seen as a way to program/specify the
future machines and they all avoid the Von Neuman archi-
tecture as well as the use of FPUs. Vigoda [10] was the first
to initiate, in 2003, the design of non conventional machines
dedicated to Bayesian inference. The track chosen was to
represent probability distributions on binary variables with
analog electrical values. He focused on a well known algo-
rithm for exact inference: the message passing algorithm,
and devised the necessary analog components to perform
the message passing to obtain the circuit performing the
desired inference. While the approach has many practical
applications it will not handle complex inference problems.

To address this scalability issue, V. Mansinghka [11] and
E. Jonas [12] are promoting a sampling approach based
on stochastic calculus: Gibbs samplers or MCMC methods
(Metropolis-Hastings) to perform approximate probabilistic
inferences and return samples of the posterior distribution.
These methods are already established in probabilistic lan-
guages such as Church [13] or Venture [14], but also exist
inside inference engines supporting approximate inference
such as ProBT [15]. To obtain a hardware implementa-
tion they proposed a set of transition circuits to sample
quantized or continuous variables. In [16] the circuits are
based on building blocks performing operations (for exam-
ple normalisation) by evaluating mathematical expressions
with dedicated hardware or by using precomputed tables.
Our goal was to propose simpler building blocks, and the
architecture we propose only uses two types of probabilistic
gates: the CDE (similar to the CPT gate of Jonas) and
the ECE gate which has no equivalent in the previously
proposed architectures.

Our project is also strongly related to the study of nano
scale devices to perform Bayesian inference, which moti-
vates our architecture choices. These devices are nanoscale
samplers for Poisson distributions which could eventually
replace the current source of entropy (PRNG for pseudo
random number generator) of the presented architecture, as
in the work of the Computing Fabrics Laboratory of the
University of Massachusetts Amherst [17] which is present-
ing an unconventional hardware architecture and nanoscale
technology implementation of Bayesian inference.

3 STOCHASTIC BITSTREAMS AND OPERATORS

3.1 Definition

A stream of bits may be considered as encoding the proba-
bility p of a binary variable: p = n1/(n1 + n0) where n1 is
the number of 1 and n0 the number of 0 in the stream. It may
also be considered as coding the odds o = p/(1− p) of this
binary variable. The odds ratio is then given by o = n1/n0.

Conversely, given a probability p (or an odds ratio o) we
may use software or hardware stochastic processes to gener-

ate a bitstream B(p) (respectively B(o)) that approximately
encodes the probability p (respectively the odds ratio o).

Operators on bitstreams may then be used to perform
probabilistic calculus on binary distributions. A central
point of this paper is to show that using only two simple
operators called CDE and ECE we can solve complex prob-
abilistic problems.

As these operators compute with an approximate repre-
sentation of probabilities, we will use the root of the mean
square error (RMSE) to measure the precision of an operator:
if p′ is the observed result given by an operator and p the
desired result, we compute the RMSE by considering several
experiments leading to several p′ and averaging the square
error on p and 1− p.

RMSE = 2
√
2 < (p− p′)2 > .

3.2 CDE: Conditional Distribution Element
Gupta & Kumaresan [18], [19], proposed a circuit able to
generate a stochastic bitstream B(p) encoding a probability
p stored in a fixed point format p =

∑i=m
i=1 xi2

−i in a buffer
X (see red part of Figure 1).

We propose to complement this circuit by an addressable
memory (see blue part of Figure 1). Given a value in Y the
content of the memory at this address (a given probability
pY ) is written in X . The generated stochastic bitstream
B(pY ) is then conditioned by the value Y .

LFSR
Weighted bit Generator 

M
E

M
O

R
Y

yj

P = ∑4
i=1 xi2

−i

xi

B(p)

Fig. 1. Hardware implementation of the Conditional Distribution Element.

3.3 ECE: Extended C-Element
As in Gaines [19], [20] we use operators to combine stochas-
tic signals and perform arithmetic operations. For example,
assuming B(p1) and B(p2) are two independent stochas-
tic bitstreams we may use a simple AND gate to obtain
B(p1.p2). As we will see in the next section, what we really
need is the product of two odds: a way to generate B(o1.o2)
from two independent bitstreams B(o1) and B(o2). For
that purpose we propose to use an extension of Muller C-
elements using more memory resources.

The Muller C-element truth table is given in Table 1. It
uses a one bit memory to provide the previous value Zprev
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X Y Z
0 0 0
0 1 Zprev

1 0 Zprev

1 1 1

TABLE 1
Truth table of a Muller C element with inputs X and Y , and output Z.

as output when the inputs are either (0, 1) or (1, 0). When
two independent and not autocorrelated bitstreams B(o1)
and B(o2) are given as inputs to a C-element, the output
B(o1.o2) is an unbiased estimator of the product of the
odds o1 and o2. This result can be obtained by applying the
detailed balance principle to the Markov chain Zn → Zn+1.

However, there is some autocorrelation in the output
stream (a bit at time t is not independent of a bit at time
t − 1) due to the effect of memory. This autocorrelation
induces troubles when C-elements are cascaded [21]. To
reduce the autocorrelation of the output, we extend the
memory capacity using a buffer C of size D bits. This
toroidal buffer works as follows. When the inputs have the
same value (X=Y =v) the content of the buffer is shifted to
the left, its rightmost bit is set to v and we provide v as
output. When the inputs have different values, we provide
the rightmost value of C as output and rotate the buffer
content to the right. If D=1 we have a regular Muller C
element. The truth table of the ECE is presented in Table 2.

X Y Z Action

0 0 0 shift C left, set rightmost bit of C to 0
0 1 rightmost bit of C Rotate C right
1 0 rightmost bit of C Rotate C right
1 1 1 shift C left, set rightmost bit of C to 1

TABLE 2
Truth table of an ECE with inputs X and Y , and output Z.

Several methods using some memory to mitigate the
bitstream autocorrelation issue have been compared in [22]
where the authors conclude that Edge Memories provide the
best performances and speed on their decoding application.
The toroidal buffer of the ECE serves the same purpose,
but without the need of generating a random address, thus
reducing the circuit area and power needs. Figure 2 presents
the experimental RMSE for a cascade of two products of
odds computed either with ECEs or with Edge Memories.
As the buffer size is increased, the error decrease (until the
precision threshold determined by the bitstream size N is
reached) is faster for ECEs than for Edge Memories.

4 GIBBS ALGORITHM AND PRODUCT OF ODDS

4.1 Gibbs algorithm
Let us consider a set X of bXc binary variables
X = {B1, · · · , BbXc}. Let us consider a subset K =
{K1, · · · ,KbKc} of X made of binary variables with
known values {k1, · · · , kbKc}. Let us consider a subset
I = {I1, · · · , IbIc} of X made of binary variables of in-
terest. Finally, let us consider a complementary subset F
of free variables. We have, X = K ∪ I ∪ F and, of course,
bXc = bKc+bIc+bF c. The purpose of the Gibbs algorithm
is to sample the distribution P (I1, · · · , IbIc|k1, · · · , kbKc). It
operates as follows:

ECE

ECE

B(o1.o2.o3)

B(o1.o2)

B(o1)B(o2)B(o3)

1 5 10 15 20
Buffer size D
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Edge Memory, N=10000
ECE, N=10000

Fig. 2. The bitstream B(o1.o2.o3) is computed, the odds of which are the
product of the three input stream odds o1, o2 and o3, which correspond
to probability values uniformly drawn between 0 and 1. The RMSE is
experimentally computed for buffer sizes ranging from 1 to 20, over
10000 runs. As usual with stochastic computing, the precision depends
on the size N of the bitstream (here 1000 or 10000) and goes as 1

2√
N

.

for Bi ∈ K do
Set Bi to the corresponding value kj

end for
for Bi ∈ I ∪ F do

Draw a value bi at random.
end for{Initialization}
while TRUE do

for Bi ∈ I ∪ F do
Draw bi according to P (Bi|b1 . . . bi−1, bi+1, . . . , bbXc)
Output the binary values of the variables in I

end for
end while
We see that this algorithm only needs to be able to

sample from a distribution P (Bi|b1 . . . bi−1, bi+1, . . . , bbXc).

4.2 Sampling from P (Bi|b1 . . . bi−1, bi+1, . . . , bbXc)

Any joint probability distribution on bXc binary variables
can be written as:

P
(
B1, B2, · · · , BbXc

)

=
∏bXc

n=1 [P (Bn|B1, · · ·Bn−1)] .
(1)

If we are interested in the probability distribution of one
of these binary variables Bi knowing the bXc − 1 values bj
of all the others, we get:

P
(
Bi|b1, · · · , bi−1, bi+1, · · · , bbXc

)

∝ ∏i−1
n=1 [P (bn|b1, · · · , bn−1)]

P (Bi|b1, · · · , bi−1)∏bXc
n=i+1 [P (bn|b1, · · · , Bi, · · · , bn−1)] .

(2)

To compute the odds of Bi, we get:
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O
(
Bi|b1, · · · , bi−1, bi+1, · · · , bbXc

)

=
∏i−1

n=1

[
P (bn|b1,··· ,bn−1)
P (bn|b1,··· ,bn−1)

]

P (Bi=1|b1,··· ,bi−1)
P (Bi=0|b1,··· ,bi−1)∏bXc

n=i+1

[
P (bn|b1,··· ,Bi=1,··· ,bn−1)
P (bn|b1,··· ,Bi=0,··· ,bn−1)

]
.

(3)

The first term vanishes:

O
(
Bi|b1, · · · , bi−1, bi+1, · · · , bbXc

)

= P (Bi=1|b1,··· ,bi−1)
P (Bi=0|b1,··· ,bi−1)∏bXc

n=i+1

[
P (bn|b1,··· ,Bi=1,··· ,bn−1)
P (bn|b1,··· ,Bi=0,··· ,bn−1)

]
.

(4)

As some variables may be independent, it may occur that
some terms in the remaining products are independent of
Bi in which case they also get simplified. Equation 4 shows
how to compute the odds of any binary variable knowing
the value of all the others as a product of probability ratios.
Each term has a likelihood, homogeneous to odds o, which
can be sampled by bitstreams generated with probability
p = o/(1 + o) by CDEs described in Section 3.2, and their
product can be computed by ECEs described in Section 3.3.

4.3 Stochastic Gibbs Circuit

4.3.1 Principle

Let us take an example with three binary variables X =
{R,S,G} to present the architecture of the stochastic
Gibbs circuit. This example is inspired from the classical
“sprinkler” Bayes net. R,S,G are binary variables corre-
sponding to the predicates “it has been Raining”, “the
Sprinkler was turned on” and “the Grass is wet”. The
joint distribution may be decomposed as P (R,S,G) =
P (R)P (S|R)P (G|R,S). We are interested in the probability
that it rained knowing that the grass is either wet or dry:
P (R|G = g). We have K = {G}, I = {R} and F = {S}.

According to the Gibbs algorithm we need to sample R
and S, which means, according to Equation 4, to compute
two odds with the following formulas:

O(R|G = g, S = s) = P (R=1)
P (R=0) ·

P (s|R=1)
P (s|R=0) ·

P (g|R=1,s)
P (g|R=0,s) ,

O(S|G = g,R = r) = P (S=1|r)
P (S=0|r) ·

P (g|r,S=1)
P (g|r,S=0) .

These formulas include 13 ratios which are preliminary
knowledge specified in the model. We use CDEs to store
them and to produce the associated bitstreams. We need one
CDE for each of the 3 terms appearing in the decomposition.
One for P (R) to produce when needed a bitstream B(oR)

with oR = P (R=1)
P (R=0) . One for P (S|R) with a 4 slot memory to

produce respectively B(o1S) with o1S = P (S=1|R=0)
P (S=0|R=0) , B(o2S)

with o2S = P (S=1|R=1)
P (S=0|R=1) , B(o3S) with o3S = P (S=0|R=1)

P (S=0|R=0)

and B(o4S) with o4S = P (S=1|R=1)
P (S=1|R=0) . Finally, one more for

P (G|R,S) with a 8 slot memory.
We then need 2 ECEs to compute the product of the 3

ratios required to sample o(R|G = g) or the 2 required for
o(S|G = g). This leads to the circuit sketched in Figure 3
dedicated to computing the inference P (R|G = g). The
input has to be set to the desired value g and the output
is a binary bitstream B(o) encoding O(R|G = g).
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Fig. 3. Stochastic Gibbs Circuit implementation of the Sprinkler example.

4.3.2 Control and subtleties
The Gibbs algorithm requires to scan in sequence all the
binary variables in I ∪ F . This is obtained using a counter
c. c is used by the multiplexer at the top left of Figure 3 to
select which variable to update. It is also used as an input
of each CDE to select the appropriate ratio to produce as
they depend on the sampled variable being either R or S.
For instance, if we sample S (c = 0), we do not need the
ratio P (R=1)

P (R=0) and the output of the CDER should be the
bitstream B(o = 1) with equal number of 0 and 1. This
bitstream is the neutral element for an ECE.

Note that the conditional distributions implemented by
the CDEs are not necessarily the conditional distributions
of the model. For instance, for CDES , the compiler will set
in memory at address {S = 1, R = 1, C = 1} the value
p =

o4S
1+o4

S

with o4S = P (S=1|R=1)
P (S=1|R=0) . This is due to the fact that

CDEs are used not only to store odds but more generally to
store probability ratios.

As ECEs involve memory buffers, a burning sequence
is required for the memory content to be reliable. This is
implemented using a counter l which validates the output
after a burning sequence of length k.

5 EXPERIMENTATION AND RESULTS

5.1 The compilation toolchain

A compilation toolchain was developed to evaluate the
proposed architecture. The input is any Bayesian program
using discrete variables written in ProBT (see Figure 4 for
an example). The output is a VHDL program specifying the
circuit dedicated to the corresponding inference.

5.2 Preprocessing

Any probabilistic program using discrete variables is first
transformed into an equivalent specification using only
binary variables. For example, a distribution P (V ) on a
discrete variable with 2n values will be transformed into one
distribution and n − 1 conditional distributions on binary
variables BV

i : i ∈ 1 . . . n:
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P (V ) = P (BV
1 , BV

2 , BV
3 , . . . , BV

n−1)

= P (BV
1 )P (BV

2 |B
V
1 )P (BV

3 |B
V
1 BV

2 ) . . . P (BV
n |BV

1 . . . BV
n−1) .

While the “Binary” representation looks less compact,
it requires at most the same number of parameters as for
representing P (V ). Each probability distribution, as for
instance “P (BV

2 |BV
1 )”, is automatically computed using the

inference engine of ProBT.

5.3 Compiler
The compiler starts from the previously generated “binary”
Bayesian program and generates a VHDL file describing
the final circuit. It specifies a circuit implementation of
Equation 4 the architecture of which is similar to the one
presented in Figure 3, with two extra simplifications. One
allowing to reduce the size of the memory of the CDE: it
is not necessary to store all the terms which cancel out in
equation 3. Another one which reduces the number of ECEs
by only considering informative binary signals: B(o), o 6= 1.

5.4 Simulator
The generated VHDL code could easily be simulated at the
gate or the transistor levels with the standard EDA tools.
However, this type of simulation is time consuming. We
have developed our own simulation engine allowing very
fast simulation of our virtual stochastic machines.

5.5 Experiments
We designed a problem with circular dependences between
its variables (as is happens in some image processing appli-
cations) and chose the parametric forms so that we could
compute an analytic solution to be used as reference. We
define a joint probability distribution on the n variables
Bi ∈ 0, 1 and the n variables Vj ∈ {0, . . . , 2m − 1} as:

P (V1, ..., Vn, B1, ..., Bn) =

(
n∏

i=1

P (Vi)

)
n∏

i=1

P (Bi|ViV1+i%n)

(5)
with

P (Vi = k1) ∝ u(1− u)
P (Bi = 1|Vi = k1V1+i%n = k2)

= g(ai, bi, ci, di)u
ai(1− u)bivci(1− v)di ,

(6)

(see the Appendix for the definition of g) where u = (k1 +
0.5)2−m and v = (k2 + 0.5)2−m. We consider the following
inference based on the previous joint distribution:

P (Vi|b1 = 1, . . . , bn = 1) .

In this particular example 2m∗n floating point additions
would be necessary to compute the exact inference, which
is intractable for large values of m and n. However it is
possible to get an approximation of the exact solution with
the following close form expression:

P (Vi = k|b1 = 1, . . . , bn = 1) ≈ 2−mBeta((k + 0.5)2−m, α, β)
(7)

where Beta(u, α, β) is the probability density function of a
beta distribution with two known integer parameters α and
β (see the Appendix).

from probt import *
V = plArray(”V”, plIntegerType(0, 1), 10)
B = plArray(”B”, plIntegerType(0, 255), 10)
model = plComputableObjectList()
b = plValues(B)
for i in range(10) do
j = (i+ 1) mod 256
model = model*plDistribution(V[i], FV(i))
model = model*plCndDistribution(B[i], V[i]ˆV[j], FB(i))
b[i] = 1 # to perform an inference with all B[i] set to 1

end for
joint = plJointDistribution(model)
joint.ask(V[9],b).instantiate(b).VHDL(‘Ex.vhd’)

Fig. 4. The specification of the test example written in ProBT: FV and
FB are Python functions implementing Equation 6. This program is
compiled to VHDL code, which is simulated to evaluate the result.

5.6 Results

We used a tractable instance of the previously defined
inference (with m = n = 5) to evaluate the quality of
our analytic approximation. ProBT was used to compute
P (V2|b1 = 1 . . . b5 = 1) with exact inference by marginal-
izing over all unknown variables. The absolute difference
with the analytic solution is always lower than 10−17, which
validates the quality of the analytic approximation.

Increasing m will increase further the precision (see the
Appendix). We now report results for a problem of size
m = 8, n = 20. The exact inference would require 2160

operations. We use the analytic approximation to evaluate
the results since the exact inference solution is out of reach.
The precision depends on:

• The size D of the buffers used in ECEs to prevent the
output bitstream autocorrelation.

• The burn-in duration BI allowing the ECEs to sta-
bilize the output bitstream encoding the product
B(o1o2).

• The numberN of samples chosen to approximate the
output distribution.

Figure 5 shows the histogram resulting from the ap-
proximate inference of P (V3|b1 = 1, . . . , b20 = 1) with the
following parameters: D = 16, BI = 200 , N = 100000.
The size D of the ECE buffers depends on the depth of
ECE cascades. In the example Figure 2, the precision was
evaluated with a two stage product of odds. Here we use
ECEs with a buffer size D=16, which provides a good
compromise between size and precision for this example
cascading 3 ECEs. (Indeed, we compute the product of 8 odd
ratios, by arranging the ECEs as a binary tree of depth 3.)

Table 3 shows the impact of the burn-in BI and of
the number N of samples on the Kullback-Leibler diver-
gence between the analytic approximation and the results
obtained with our stochastic architecture. We observe that
the precision increases with N , but slowly. This is unsur-
prising since as mentionned before the precision of Bernoulli
sequences go as 2

√
N . Increasing the length of the burning

sequence after which the samples computed by the tree of
ECEs are considered valid has a cost in terms of computa-
tion time, but it allows to significantly increase the precision
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Fig. 5. Comparison of the approximation computed by our stochastic
machine (in green) with a floating point implementation of the same
sampling algorithm (in red) and with the analytic solution (in blue).

of the results until they are as good as for floating point
computations. This suggests a way to use the same circuits
with different tradeoffs between latency (and power needs)
and the desired precision.

Number of samples 1000 10000 100000
burn in = 10 1.5293 1.2222 1.15294
burn in = 20 1.3145 1.1482 1.13608
burn in = 50 0.2447 0.1000 0.07979
burn in = 100 0.1414 0.0178 0.00218
burn in = 200 0.1333 0.0155 0.00182
burn in = 400 0.1529 0.0151 0.00188
floating point 0.1458 0.0184 0.00181

TABLE 3
Kullblack divergence from the Closed-Form Solution (in bits).

6 CONCLUSION

We have presented a compilation toolchain to design au-
tomatically stochastic machines that solve approximate
Bayesian inference problems using the Gibbs sampling algo-
rithm. This compilation toolchain is generic: it can translate
any inference problem expressed as a Bayesian program into
a circuit comprised only of two types of stochastic compo-
nents: the CDE and the ECE. We implemented a quantitative
test to evaluate our architecture on intractable problems.
The results are promising: the output distribution of our
stochastic machine approximates the analytic solution as
well as a floating point implementation of Gibbs sampling.

In the near future we will extend and test our approach
on Bayesian filters. In a second step, we will design a generic
and programmable machine, which will accept any new
Bayesian program without the need for a new circuit syn-
thesis, opening the way to actually programmable Bayesian
computing devices.
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