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Abstract This paper presents a method for generating semi-algebraic invariants
for systems governed by non-linear polynomial ordinary differential equations
under semi-algebraic evolution constraints. Based on the notion of discrete ab-
straction, our method eliminates unsoundness and unnecessary coarseness found
in existing approaches for computing abstractions for non-linear continuous sys-
tems and is able to construct invariants with intricate boolean structure, in contrast
to invariants typically generated using template-based methods. In order to tackle
the state explosion problem associated with discrete abstraction, we present in-
variant generation algorithms that exploit sound proof rules for safety verifica-
tion, such as differential cut (DC), and a new proof rule that we call differential
divide-and-conquer (DDC), which splits the verification problem into smaller
sub-problems. The resulting invariant generation method is observed to be much
more scalable and efficient than the naı̈ve approach, exhibiting orders of magni-
tude performance improvement on many of the problems.

1 Introduction

Establishing safe operation of embedded systems arising in modern engineering in-
creasingly involves reasoning about the behaviour of hybrid dynamical systems that
combine discrete and continuous state evolution. Continuous dynamics is typically
specified by ordinary differential equations (ODEs). Non-linear ODEs afford the en-
gineer the means of modelling rich dynamic behaviour that cannot possibly occur in
linear systems [12], but are also notoriously difficult to analyse because they rarely
possess solutions that can be expressed in closed form.

This paper is concerned with the problem of automating safety verification for con-
tinuous systems modelled by non-linear ODEs under evolution constraints, which is a
problem of broader interest to automating safety verification for hybrid dynamical sys-
tems. To solve the verification problem, one requires a proof that a given continuous
system does not evolve into an unsafe state at any future time from some given initial

? This material is based upon work supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under grants EP/I010335/1 and EP/J001058/1, the National Sci-
ence Foundation by NSF CAREER Award CNS-1054246, NSF EXPEDITION CNS-0926181,
CNS-0931985 and DARPA FA8750-12-2-0291.
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configuration while obeying its evolution constraint. Additionally, given that solutions
are rarely available, it is highly desirable to arrive at such a proof by working with the
ODEs directly, i.e. without solving the initial value problem.

Traditionally, two popular techniques have been used for proving safety properties
without computing solutions or putting a finite bound on the duration of evolution in
continuous systems: one based on first soundly abstracting the continuous system and
performing reachability analysis in the resulting discrete transition system, and a de-
ductive verification approach that works by reasoning about appropriate invariants in
the continuous system.

Deductive verification tools for hybrid systems crucially rely on (i) the ability to
prove invariance assertions about continuous systems (which was solved for the case
of semi-algebraic 3 invariants and polynomial ODEs in [14]) and (ii) having the means
of automatically generating continuous invariants sufficient to prove safety assertions
about continuous systems. In practice, this latter point is often the main bottleneck when
verifying safety of hybrid systems in which the continuous dynamics are non-linear.

Existing automatic procedures for generating invariants for use in deductive frame-
works only make limited use of the boolean structure in invariants. Approaches based
on abstraction, in computing reachable sets of discrete systems, (implicitly) create in-
variants with more intricate boolean structure; their limitations currently stem from the
conservative nature of the discrete models, whose transition behaviour is often a very
coarse over-approximation of the evolution taking place in the continuous system.

A number of approaches have been proposed for generating invariants for contin-
uous systems [24,38,11,28,27,14,44,8,16], which either put serious restrictions on the
form of the invariant or rely on the user pre-defining a template and then attempt to find
an instantiation of the parameters in the template that yields an invariant. In this paper
we pursue an alternative approach that automatically generates semi-algebraic contin-
uous invariants from discrete semi-algebraic abstractions of continuous systems. Our
rationale is that recent advances in semi-algebraic invariant checking for polynomial
ODEs [14] allow deductive provers to work with arbitrary semi-algebraic invariants,
yet few methods for invariant generation are able to synthesize interesting invariants
with boolean structure that one might find in reachable sets of discrete abstractions. At
the same time, discrete abstraction approaches do not take full advantage of the results
on invariant checking in constructing the transition relation for the discrete transition
system. We seek to address both of these issues.

Currently available methods for creating semi-algebraic abstractions of non-linear
polynomial systems [36,37] result in abstractions that are unsound for certain degener-
ate cases and unnecessarily coarse even in very simple scenarios. Additionally, discrete
abstraction is known to scale poorly owing to (in the worst case) an exponential in-
crease in the number of discrete states as the continuous state space is partitioned [37],
making it very difficult to refine abstractions. To ameliorate this situation, we give a
method for constructing semi-algebraic abstractions that are sound and only as coarse
as the partitioning of the continuous state space into discrete regions itself. We then

3 A semi-algebraic set is a subset of Rn characterized by a finite boolean combination of sets
defined by polynomial equalities and inequalities.
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employ ideas from deductive verification to give more scalable and efficient algorithms
for generating semi-algebraic invariants for polynomial continuous systems.

Contributions.

In Section 3 of this paper we (I) introduce a method for constructing semi-algebraic
abstractions of polynomial continuous systems in which transitions between the dis-
crete states occur if and only if a corresponding continuous evolution is possible in the
continuous system. In Section 4 we give an algorithm for generating semi-algebraic in-
variants for polynomial continuous systems by efficiently extracting reachable sets from
these abstractions. In Section 5 we (II) introduce a sound proof rule DDC (differential
divide-and-conquer) which works to split the safety verification problem into smaller
sub-problems by exploiting properties of invariant real algebraic sets and (III) give
more scalable invariant generation algorithms employing sound proof rules differential
weakening (DW) [19] and differential cut (DC) [19,21] together with the new rule DDC

to address the discrete state explosion problem associated with computing abstractions.
In Section 6 we (IV) evaluate our techniques on a collection of 100 safety verification
problems featuring predominantly non-linear ODEs.

2 Preliminaries

To simplify our presentation, we will use the notation for sets and formulas character-
izing those sets interchangeably in this paper, e.g. H will denote both a semi-algebraic
set H ⊆ Rn and a formula H in the first-order theory of real arithmetic with free vari-
ables in x1, . . . , xn that characterizes this set. In what follows, we shall restrict our
attention to autonomous 4 systems of polynomial ordinary differential equations under
semi-algebraic evolution domain constraints 5 , i.e. systems of the form:

ẋi = fi(x), x ∈ H ⊆ Rn,

where fi ∈ R[x1, . . . , xn] for 1 ≤ i ≤ n and the evolution domain constraint H is semi-
algebraic. We will write this concisely using vector notation as ẋ = f(x) & H.

One may wonder at this stage whether restricting attention to polynomial systems
represents a severe limitation; after all, non-linearities involving transcendental func-
tions such as sin, cos, e, ln, etc., are not uncommon in systems of practical interest. Fortu-
nately, it is often possible to transform such systems into (larger) polynomial systems by
introducing fresh variables and eliminating non-polynomial non-linearities in a rather
general technique [23], which is known in various scientific communities as recast-
ing [30,17] or differential axiomatization [19]. Furthermore, it has been shown that such
a transformation can be mechanised for a broad class of non-polynomial systems using
a terminating algorithm [15]. Likewise, no generality is lost by only considering au-
tonomous systems because any system with explicit time dependence ẋ = f(x, t) & H

4 In the sense of not having an explicit dependence on the time variable t.
5 Evolution constraints are often used to define operating modes in hybrid and cyber-physical

systems (so-called mode, or location invariants in the parlance of hybrid automata [1,13]).
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can be transformed into an autonomous system by introducing a fresh variable to model
time evolution, e.g. if we add ẋn+1 = 1 to the system and replace every instance of t in
the system with xn+1.

To state the safety verification problem for continuous systems in full generality we
require a set of initial states for the system, which we denote by ψ ⊆ Rn, and a set of
safe states denoted φ ⊆ Rn. The problem is to prove that starting inside ψ, the system
ẋ = f(x) &H cannot leave φ by evolving inside the evolution domain constraint H. We
will only consider semi-algebraic ψ and φ in this paper and will state the safety property
formally, using notation from differential dynamic logic (dL) [18], as follows:

ψ → [ẋ = f(x) & H] φ.

The above formula asserts that, starting in any state satisfying the pre-condition (ψ), the
system will necessarily (box modality [ ]) satisfy the post-condition (φ) when following
the system ẋ = f(x) & H for any amount of time.6 The semantic definition of the dL
assertion above is given in terms of the solution, which precisely describes how con-
tinuous states evolve over time. A solution to the initial value problem for the system
ẋ = f(x) with initial value x0 ∈ Rn is a differentiable function ϕt(x0) : (a, b) → Rn

defined for t in some non-empty interval of existence (a, b) ⊆ R ∪ {∞,−∞} including
zero and such that d

dt
ϕt(x0) = f(ϕt(x0)) for all t ∈ (a, b). Formally, the dL continuous

safety assertion above is valid if the following is true:

∀ x0 ∈ ψ. ∀ τ ≥ 0. (∀ t ∈ [0, τ ] .ϕt(x0) ∈ H)→ ϕτ (x0) ∈ φ.

In practice, solutions to non-linear ODEs are almost never available in closed form (by
which we understand a finite expression in terms of polynomials and elementary func-
tions); even when they are, the resulting sentences often belong to an undecidable the-
ory [26] due to transcendental functions in the closed form expression. Alternatively, the
safety verification problem can sometimes be solved directly in a deductive framework.
This involves finding an appropriate set I ⊆ Rn, called a continuous invariant [22], that
satisfies the three premises (above the bar) of the following rule of inference:

(Safety)
H ∧ ψ → I I → [ẋ = f(x) & H] I I → φ

ψ → [ẋ = f(x) & H]φ

to conclude (below the bar) that the system is safe. Continuous invariants generalize
positively invariant sets [6] to systems under evolution constraints.

Definition 1 (Continuous invariant [22]). For a continuous system ẋ = f(x) & H, a
set I ⊆ Rn is a continuous invariant if and only if

∀ x0 ∈ I. ∀ τ ≥ 0. (∀ t ∈ [0, τ ]. ϕt(x0) ∈ H)→ ϕt(x0) ∈ I.

Intuitively, a continuous invariant is any set of states I such that any motion initialized
inside I that respects the evolution constraint H is guaranteed to remain inside I.

6 Considering the continuous system ẋ = f(x) & H as a program, the safety assertion
ψ → [ẋ = f(x) &H] φ expresses the (continuous) Hoare triple {ψ} ẋ = f(x) &H {φ}.
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When H and I are semi-algebraic and fi are polynomial, a decision procedure for
checking whether I is a continuous invariant was reported in [14], enabling us to decide
dL assertions of the form I → [ẋ = f(x) & H] I. The decision procedure involves
computing higher-order Lie derivatives and exploits the ascending chain property of
Noetherian rings. The interested reader is invited to consult [14] for a detailed descrip-
tion of the procedure and also [8], where similar ideas were employed. As a direct
consequence, every premise of the rule (Safety) is known to be decidable, since ψ, φ
and H are also assumed to be semi-algebraic, the goals H ∧ ψ → I and I → φ can be
passed to a decision procedure for real arithmetic [35]. The challenge in applying the
rule now lies in finding an appropriate continuous invariant I.

3 Discrete Abstraction of Continuous Systems

In a certain sense, with discrete abstraction one seeks to approximate continuous sys-
tems by finite discrete transition systems. Such a transformation makes it possible to
perform reachability analysis and verify safety properties in the simpler discrete model.
The approach works by ensuring that the set of behaviours of the discrete (abstract)
system over-approximates the set of behaviours of the continuous (concrete) system;
this is known as sound abstraction. If the discrete abstraction is sound, then any vio-
lation of the safety property in the continuous system is necessarily reproduced by the
abstract discrete transition system. Conversely, an abstraction is complete (with respect
to the safety property) when any violation of the safety property in the abstraction is
reproduced by the concrete continuous system.

Discrete abstraction of continuous systems was previously studied in [2,3] (for lin-
ear systems) and [36,37] (for more general non-linear systems), where a simple method
for constructing abstractions was proposed but results in discrete systems that may fea-
ture transitions between discrete states that are impossible in the continuous system.
In this section we describe the process of constructing sound and exact abstractions of
non-linear continuous systems. That is, the resulting abstraction will feature a discrete
transition between two abstract states if and only if a corresponding continuous trajec-
tory is possible in the concrete system. The method we use is fundamentally different
from [36,37] in computing the discrete transition relation using a decision procedure
for continuous invariant assertions [14].

3.1 Constructing the Discrete State Space

In this section we describe a way of partitioning the evolution domain constraint H in
the continuous system ẋ = f(x) & H using a set of polynomial functions.

Definition 2 (Semi-algebraic decomposition). A semi-algebraic decomposition of a
semi-algebraic set H ⊆ Rn by a set of m polynomials A ⊂ R[x1, . . . , xn] is a par-
tition of H into k ≤ 3m regions giving all the non-empty intersections of the form
H ∩ p1 ∼1 0 ∩ · · · ∩ pm ∼m 0 where pi ∈ A and ∼i∈ {<,=, >} for 1 ≤ i ≤ m.

Computing the semi-algebraic decomposition of the evolution domain constraint H for
a finite set of polynomials A can be achieved using a simple procedure that we will call
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SemiAlgDecomp. The decomposition defines a partition of H into k non-empty regions,
each corresponding to a single discrete state, which we denote by si, where 1 ≤ i ≤ k.
We will denote by S the set of all discrete states obtained from the semi-algebraic
decomposition, i.e. S ≡ {si | 1 ≤ i ≤ k}.

3.2 Constructing the Transition Relation

We now apply the decision procedure for semi-algebraic continuous invariant assertion
checking reported in [14] to exactly determine the transition relation T ⊂ S × S, en-
abling us to construct exact discrete abstractions, which we denote by the pair (S, T ).
We will write si −→ sj for (si, sj) ∈ S × S, the discrete transition from state si to sj .

We begin with a transition relation S × S in which every state is reachable from
every other state (including itself) in a single discrete transition. First, let us observe
that a continuous solution of the differential equation cannot pass from a discrete state
where p > 0 (for some polynomial p ∈ A) to a state where p < 0 without passing
through p = 0 first, nor vice versa. Using this intuition, we can give a general definition
of what it means for two discrete states to be neighbouring (or adjacent [34]).

Definition 3. Let S be the set of discrete states constructed from a semi-algebraic de-
composition of H by a finite set of polynomials A ⊂ R[x1, . . . , xn]. Two discrete states
si, sj ∈ S, where i 6= j, are neighbouring if there are no points x1,x2 ∈ si ∪ sj such
that p(x1) < 0 and p(x2) > 0 for any p in A.

We can now construct a neighbouring transition relation Tn ⊆ S × S in which only the
neighbouring states are reachable in a single transition (note that a state cannot be its
own neighbour using our definition). Intuitively, in the neighbouring transition relation
one cannot “jump across” p = 0 in a single discrete transition; at the same time, any
state is reachable from any other state. An abstraction which results from (S, Tn) is still
maximally coarse and therefore not very useful (illustrated in Fig. 1).
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(a) Discretization S.
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(b) Transition system (S, Tn).

Figure 1: Semi-algebraic decomposition of R2 by A = {p1, p2} resulting in 9 discrete
states S ⊂ 2R

2

and the neighbouring transition relation Tn ⊂ S × S.

We are only interested in retaining those discrete transitions for which the corre-
sponding continuous transitions are possible in the original continuous system. In order
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to eliminate impossible discrete transitions we need to decide an invariance assertion:

si → [ẋ = f(x) & (si ∨ sj)] si,

for each pair of neighbouring discrete states (si, sj) ∈ Tn; we will proceed to remove
transitions si −→ sj from Tn if and only if the decision procedure for continuous invari-
ance assertions returns True. This process can be mechanized in a terminating abstrac-
tion algorithm that we call ExactAbstraction. The result is a discrete transition system
(S, T ) with a transition relation T ⊆ Tn that does not feature discrete transitions that are
impossible; we will state this property formally.

Proposition 4. Abstractions (S, T ) are exact with respect to the discretization, i.e.
si −→ sj is in T if and only if

∃ x0 ∈ si. ∃ τ > 0. ϕ0(x0) ∈ si ∧ ϕτ (x0) ∈ sj and ∀ t ∈ [0, τ ]. ϕt(x0) ∈ si ∪ sj ,

that is, if and only if the system may evolve continuously from state si into a neighbour-
ing state sj without leaving their union si ∪ sj . The abstraction is exactly as coarse as
the partition of the evolution constraint H into regions corresponding to discrete states.

One can view the process of removing impossible discrete transitions as a sound re-
finement of the neighbouring transition relation to T ⊆ Tn. In the worst case, using a
set of m polynomials for the semi-algebraic decomposition of H will result in 3m dis-
crete states and a neighbouring transition relation Tn with a total of 7m − 3m discrete
transitions that need to be checked. In practice, both the number of discrete states and
the number of transitions in Tn will typically be much lower than the pessimistic worst
case bound. Furthermore, removing impossible transitions from Tn is a massively paral-
lel problem, allowing one to exploit multi-core parallelism instead of iterating through
the transitions sequentially.

3.3 Sound and exact abstraction

We will now discuss some important differences between earlier work and our ap-
proach. The discrete abstraction method reported in [37] is fundamentally different in
the way it constructs the transition relation (let us call it T∼ ⊆ S × S), which is de-
scribed in [37, Section 3.2.2]. In essence, the method imposes conditions for removing
transitions from the neighbouring transition relation Tn in the following way: given two
neighbouring states si and sj , it removes the transition si −→ sj from Tn if any of the
following conditions are satisfied for any p ∈ A:

1. si has p < 0 and sj has p = 0 and si → dp
dt
≤ 0 is true,

2. si has p > 0 and sj has p = 0 and si → dp
dt
≥ 0 is true,

3. si has p = 0 and sj has p < 0 and (si → dp
dt

= 0 ∨ si → dp
dt
> 0) is true,

4. si has p = 0 and sj has p > 0 and (si → dp
dt

= 0 ∨ si → dp
dt
< 0) is true.

Remark 5. The abstraction method in [37] also considers so-called stuttering (also self-
looping [34]) transitions si −→ si, which we disregard here (already in the way we
define Tn). This discrepancy makes no practical difference to safety verification as stut-
tering transitions have no effect on the reachable sets of discrete abstractions.
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The approach described in [37] is not (in general) sound when the polynomials in
A are allowed to be non-linear. To see this, consider the simple system with constant
derivatives ẋ1 = 1, ẋ2 = 0 and let A = {x21 + x2, x2 − x21}. The abstraction one obtains
(Fig. 2) suggests that the state x21 + x2 = 0 ∧ x2 − x21 = 0 (equivalent to x1 = 0 ∧
x2 = 0) is invariant under the flow of the system, which is incorrect. The nature of
this problem was studied in non-convex analysis; a solution would require reasoning
about the contingent cone [42], which is not in general computable. A sound and exact
abstraction using our approach is shown in Fig. 3.

Figure 2: Abstraction (S, T∼) generated using method from [37].

Figure 3: Sound abstraction (S, T ) generated by ExactAbstraction.

The abstraction method in [37] additionally suffers from coarseness, because it can
introduce discrete transitions that correspond to evolutions that are impossible in the
concrete continuous system (the abstraction is therefore inexact). For instance, consider
a planar system of non-linear ordinary differential equations featuring a stable limit
cycle in the form of a unit circle enclosing an equilibrium at the origin:

ẋ1 = −x31 − x22x1 + x1 + x2,

ẋ2 = −x32 − x21x2 + x2 − x1.

Let the system evolve under no evolution constraints and consider a simple discretiza-
tion by the axes polynomials, i.e. take A = {x1, x2}. The discrete abstraction (S, T∼)

generated using the method from [37] is shown in Fig. 4. An exact abstraction (S, T )

without impossible transitions generated using our approach is shown in Fig. 5. Ab-
straction (S, T∼) considers the origin reachable, while (S, T ) does not.

4 Extracting Continuous Invariants from Discrete Abstractions

If one constructs a (sound) discrete abstraction of some system ẋ = f(x) & H using
some finite set of polynomials A, one may verify safety properties by showing that they
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Figure 4: Inexact abstraction (S, T∼) generated using method from [37].

Figure 5: Exact abstraction (S, T ) generated by ExactAbstraction.

hold in the abstraction. For this, one needs to check whether an unsafe abstract state (i.e.
one which contains a state that satisfies the formula ¬φ) is reachable by following the
discrete transitions starting from the set of initial abstract states (those defining regions
where ψ is satisfiable). If none of the unsafe abstract states are reachable from the initial
states in the abstraction, one can conclude that the continuous system is safe.

By computing the forward-reachable set from the set of the initial states ψ in the
abstraction, which we denote by Reach→A (ψ,H) ⊆ H, one generates a continuous in-
variant. Provided the abstraction is exact, this is the smallest continuous invariant with
respect to the discretization by the polynomials in A and is furthermore semi-algebraic.
Formally, we define

Reach→A (ψ,H) ≡
∨

i s.t. si∩ψ 6=∅,
j s.t. si−→∗sj

sj ,

where −→∗ represents the reachability relation; that is, si −→∗ sj if state sj is reachable
from si in zero or more discrete transitions in the exact abstraction (S, T ), obtained from
the discretization by polynomials in A. Thus, I ≡ Reach→A (ψ,H) is a semi-algebraic
set that is (by construction) guaranteed to include the initial set (i.e. ψ → I) and is a
continuous invariant for the system (i.e. I → [ẋ = f(x) & H] I). If it is also true that I
does not include any unsafe states (i.e. I → φ), then I is sufficient to conclude that the
system is safe using the proof rule (Safety) from Section 2.
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For invariant generation we are merely interested in extracting a semi-algebraic
continuous invariant containing the initial set of states ψ from the abstraction, not the
full abstraction (S, T ) itself. We now give a simple worklist procedure that we call
LazyReach (Algorithm 1) for constructing the set Reach→A (ψ,H) lazily (on demand),
i.e. without eagerly constructing the exact abstraction (S, T ) first.

Algorithm 1: LazyReach
Data: ψ, ẋ = f(x) &H,A
Result:Reach→A (ψ,H)

1 S := SemiAlgDecomp({H}, A) ;
2 Tn := NeighbourTrans(S) ;
3 Visited := {s ∈ S | s ∩ ψ 6= ∅} ;
4 Processed := {} ;
5 while |Processed| < |Visited| do
6 Unprocessed := Visited \ Processed ;
7 Processed := Visited ;
8 foreach si in Unprocessed do
9 Validate := {(si, sj) ∈ Tn | sj 6∈ V isited};

10 foreach (si, sj) in Validate do
11 if ¬(si → [ẋ = f(x) & (si ∨ sj)] si) then
12 Visited := Visited ∪ {sj} ;

13 return
∨

s ∈ Visited

s

Although the worst-case running time of LazyReach is exponential in m = |A|, in
practice employing Algorithm 1 is often far more efficient than computing the exact
abstraction (S, T ) in full and then extracting Reach→A (ψ,H).

5 Tackling Discrete State Explosion

Discrete abstractions of continuous systems suffer from the discrete state explosion
problem, i.e. the number of discrete states in the abstraction grows exponentially with
the number of polynomials m = |A| used for the discretization.

If one is to consider each individual polynomial p ∈ A, it is intuitive that if one can
show that

1. for the initial set of states ψ, the polynomial p is sign-invariant, i.e. p(ψ) ∼ 0 where
∼∈ {<,=, >}, and

2. that this sign condition defines a continuous invariant for the system, i.e.
p ∼ 0→ [ẋ = f(x) & H] p ∼ 0 ,

then one can refine the evolution constraint to H ∧ p ∼ 0 and remove the polynomial
p from A and obtain an abstraction by the polynomials B ≡ A \ {p} which has the
property that

Reach→B (ψ,H ∧ p ∼ 0) ≡ Reach→A (ψ,H).

The number of discrete states generated using B for the semi-algebraic decomposition
of H ∧ p ∼ 0 is at most 3m−1 and the process can be repeated for other polynomials
that remain in B. This section will explore approaches to tackling the discrete state
space explosion based on this observation without making the abstraction unnecessarily
coarse. For this purpose we will use sound proof rules differential cut and differential
divide-and-conquer.
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5.1 Differential Cut

Platzer and Clarke [22] explored an approach to safety verification based on iteratively
refining the evolution constraint H with differential invariants (a subset of continuous
invariants, see [19]). Such a sound refinement of the evolution domain is possible using
an inference rule called differential cut [21] (henceforth DC). Differential cuts are used
repeatedly in a process called differential saturation (see [22, Proposition 2]). The DC
rule formalizes the idea that it is always sound to restrict the evolution domain H by
some continuous invariant F , provided that it includes the initial set ψ, i.e.

(DC)
ψ → [ẋ = f(x) & H]F ψ → [ẋ = f(x) & H ∧ F ]φ

ψ → [ẋ = f(x) & H] φ

the original rationale being that it is easier to prove the safety property in the more
restricted system in the right premise.

5.2 Differential Divide-and-Conquer

We now introduce a new proof rule, akin to DC, that goes further and exploits a property
of sets that are continuous invariants in both positive and negative time directions to split
the continuous system into smaller continuous sub-systems between which there is no
continuous evolution.

Proposition 6. The proof rule DDC given below (with five premises) is sound.

(DDC)

p = 0→ [ẋ = f(x) & H] p = 0

p = 0→ [ẋ = −f(x) & H] p = 0

ψ ∧ p > 0→ [ẋ = f(x) & H ∧ p > 0] φ

ψ ∧ p = 0→ [ẋ = f(x) & H ∧ p = 0] φ

ψ ∧ p < 0→ [ẋ = f(x) & H ∧ p < 0] φ

ψ → [ẋ = f(x) & H] φ

Proof. For a continuous function p, no continuous trajectory inside H can cross from a
region where p > 0 to a region where p < 0 without first crossing p = 0. If the first two
premises hold, then p = 0 cannot be left inside H in either positive or negative time,
i.e. there are no solutions entering or leaving p = 0 inside H. The reachable sets of the
system initialized in ψ ∧ p > 0, ψ ∧ p = 0 and ψ ∧ p < 0 are thus disjoint and confined
to regions of H where p > 0, p = 0 and p < 0 respectively. The union of these sets
constitutes the reachable set of the system initialized in ψ and the result follows. ut

Informally, the rule allows one to split the original system into three dynamically dis-
connected regions, that is disjoint regions that are not connected by a continuous flow
of the system 7. Note that unlike DC, the rule DDC does not require the initial set ψ to
be wholly contained inside p > 0, p = 0 or p < 0. Instead, DDC splits the initial set of

7 All three regions are invariant sets in the terminology of dynamical systems [5, Chapter II].
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states into three disjoint initial subsets ψ ∧ p > 0, ψ ∧ p = 0 and ψ ∧ p < 0. The rule
DDC thus decomposes the original safety assertion into three independent safety asser-
tions about smaller sub-systems, allowing the user to work on these separately. DDC is
of practical interest in cases when two or more of the sets ψ ∧ p > 0, ψ ∧ p = 0 and
ψ ∧ p < 0 are non-empty (otherwise, ψ lies entirely within p > 0, p = 0 or p < 0 and
DC may be applied to refine the constraint).

We now turn to applying the rules DC and DDC to tackle the state space explosion
problem. In Algorithm 2 we give a procedure for refining the evolution domain con-
straint and removing polynomials from A, whenever this is possible, using the proof
rules DC and DDC. We call this procedure DWC as it also exploits the sound reasoning
principle of differential weakening DW [19], i.e.

(DW)
H → φ

ψ → [ẋ = f(x) & H] φ
,

which simply requires that the evolution domain be contained within the post-condition
to conclude that the system is safe.

Algorithm 2: DWC

Data: ψ, ẋ = f(x) &H,φ,A
Result: Continuous invariant I s.t. ψ ⊆ I

1 ifH ∧ ψ → False then
2 return False

3 ifH → φ then
4 returnH //DW

5 foreach p ∈ A do
6 if (H ∧ ψ → p > 0) ∧ (p > 0→ [ẋ = f(x) &H] p > 0) then
7 return DWC (ψ, ẋ = f(x) &H ∧ p > 0, φ, A \ {p}) //DC

8 if (H ∧ ψ → p < 0) ∧ (p < 0→ [ẋ = f(x) &H] p < 0) then
9 return DWC (ψ, ẋ = f(x) &H ∧ p < 0, φ, A \ {p}) //DC

10 if (H ∧ ψ → p = 0) ∧ (p = 0→ [ẋ = f(x) &H] p = 0) then
11 return DWC (ψ, ẋ = f(x) &H ∧ p = 0, φ, A \ {p}) //DC

12 foreach p ∈ A do
13 if (p = 0→ [ẋ = f(x) &H] p = 0) ∧ (p = 0→ [ẋ = −f(x) &H] p = 0) then
14 GT := DWC (ψ ∧ p > 0, ẋ = f(x) &H ∧ p > 0, φ, A \ {p});
15 EQ := DWC (ψ ∧ p = 0, ẋ = f(x) &H ∧ p = 0, φ, A \ {p});
16 LT := DWC (ψ ∧ p < 0, ẋ = f(x) &H ∧ p < 0, φ, A \ {p});
17 returnGT ∨ EQ ∨ LT //DDC

18 returnH

On lines 3 and 4, DWC applies the rule DW as a sufficiency check for termination.
On lines 7, 9 and 11 the procedure discards those p for which p > 0, p < 0 or p = 0

describe a continuous invariant containing the initial set ψ (conditionals on lines 6, 8
and 10). This step corresponds to an application of the rule DC with F ≡ p > 0,
F ≡ p < 0 and F ≡ p = 0 which, if the rule application is successful, are used to
refine the evolution constraint H in the recursive call. If p = 0 is an invariant in both
positive and negative time and does not contain all the initial states ψ, one can use
the proof rule DDC to work with 3 smaller sub-systems of the original system whose
reachable set may be constructed by combining the reachable sets of these smaller
systems. This idea is implemented on lines 13-17 of Algorithm 2, where DWC recurses
on the 3 smaller sub-systems and removes the polynomial p (used to divide the system)
from A. The over-approximations of reachable sets obtained using these 3 recursive
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calls are then combined into a union (line 17), which gives an over-approximation of
the reachable set for the original system. Finally, when no further progress can be made,
the procedure returns the evolution constraint H (line 18). Because the procedure only
involves applying sound proof rules, one may view DWC as a proof strategy that can be
implemented in a theorem prover. Indeed, if the procedure returns a result while there
are still polynomials remaining in A, one has a proof of safety involving only the proof
rules DW, DC and DDC.

Unlike LazyReach, the invariant generation procedure DWC will not (in general)
always be able to find a sufficiently strong continuous invariant to prove the safety
property, even if one exists in the semi-algebraic abstraction by the polynomials A.
The invariants DWC is able to generate are thus generally coarser than those generated
using LazyReach. However, we observe that in the worst case the running-time of DWC

is only quadratic in the number of polynomials m = |A|, i.e. TDWC (m) = O(m2),
compared the exponential time complexity of LazyReach.

We now combine the procedure DWC together with the LazyReach algorithm by
replacing return H on the final line (18) in DWC with

return LazyReach(ψ, ẋ = f(x) & H,A).

We call the resulting new invariant generation procedure DWCL. Instead of returning
H when no further progress can be made with DWC , DWCL falls back to using the
more expensive LazyReach algorithm with the remaining polynomials. This combined
procedure is theoretically as powerful as LazyReach, i.e. is capable of extracting the
exact reachable set Reach→A (ψ,H) if necessary, but in practice also as fast as DWC ,
although theoretically the running time of DWCL remains exponential in m.

Example 7 (Invariant generated using DWCL). Consider the non-linear planar system
from [7, Ex. 10.7, p. 281] (with H = R2):

ẋ1 = 2x1
(
x21 − 3

) (
4x21 − 3

) (
x21 + 21x22 − 12

)
,

ẋ2 = x2
(
35x61 + 105x22x

4
1 − 315x41 − 63x42x

2
1 + 378x21 + 27x62 − 189x42 + 378x22 − 216

)
,

As an initial set, take ψ ≡ (x1 − 1) 2 + x22 <
1
4

and let φ ≡ x21 + x22 < 8 be the post-
condition. Consider an abstraction of this system using the irreducible polynomial fac-
tors of the right-hand side of the system of ODEs and the post-condition, i.e. let

A = {x1, x21 − 3, 4x21 − 3, x2, x
2
1 + x22 − 8, x21 + 21x22 − 12,

35x61 + 105x22x
4
1 − 315x41 − 63x42x

2
1 + 378x21 + 27x62 − 189x42 + 378x22 − 216}.

There are 7 abstraction polynomials in total, which in the worst case could lead to
37 = 2187 discrete states and 77 − 37 = 821356 discrete transitions in the neighbouring
transition relation Tn. In practice, applying LazyReach to generate the reachable set
Reach→A (ψ,H) for this problem takes an unreasonable amount of time. The procedure
DWC takes significantly less time to run, but is unable to find a suitable invariant using
DW, DC and DDC alone. Our implementation of the combined procedure DWCL is
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able to generate the following continuous invariant I ⊂ φ in 104 seconds: 8

((
35x

6
1 + 105

(
x
2
2 − 3

)
x
4
1 + 27

(
x
6
2 − 7x

4
2 + 14x

2
2 − 8

)
< 63x

2
1

(
x
4
2 − 6

)
∨ x2 = 0

)

∧ 4x
2
1 = 3 ∧ x1 > 0

)
∨
(
x2 = 0 ∧

(
0 < x1 <

√
3

2
∨
√
3

2
< x1 <

√
3
))

∨
(
35x

6
1 + 105

(
x
2
2 − 3

)
x
4
1 + 27

(
x
6
2 − 7x

4
2 + 14x

2
2 − 8

)
< 63x

2
1

(
x
4
2 − 6

)

∧ x2
1 + 21x

2
2 < 12 ∧

(
0 < x1 <

√
3

2
∨
(
2x1 >

√
3 ∧ x2

1 < 3 ∧ x2 6= 0
)))

.

Figure 6: Phase portrait, unsafe states ¬φ (red), initial set ψ (green) and a generated
continuous invariant I ⊂ φ (blue).

For this problem, the procedure DWCL makes repeated use of both DC and DDC

(each is used 4 times in total) before falling back to LazyReach, which in every in-
stance is given 3 polynomials that remain to perform the abstraction (down from 7 in
the original list A).

5.3 Sources of polynomials for abstraction

Discrete semi-algebraic abstraction relies on the user supplying a set of polynomials
A to construct the set of discrete states through semi-algebraic decomposition of the
evolution constraint. The verification problem itself is often a good source of polyno-
mials; e.g. they could come from the description of the (semi-algebraic) post-condition
φ, the pre-condition ψ, or indeed from the right-hand side of the (polynomial) system
of ODEs, i.e. the polynomials f1, f2, . . . , fn, their irreducible factors, etc. The use of
Lie derivatives as a source of polynomials for abstraction was previously investigated
in [37] (see also [39] for related work). In [43] abstraction is explored using Darboux
polynomials (see [10,9]), whose real roots are invariant under the flow of the system.
Recent results on real algebraic invariant checking [8] enable us to consider a more
general class of polynomials that share this property but are not necessarily Darboux.

8 expression simplified in Mathematica.
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6 Practical Evaluation

In this section we compare the performance of our invariant generation algorithms
LazyReach, DWC and DWCL on a set of 100 safety verification problems for continuous
systems. The differential equations used in these problems are predominantly non-linear
and originate from examples found in texts on dynamical systems [33,4,10,41,7,5], pa-
pers on the qualitative theory of ODEs and safety verification of continuous and hybrid
systems [11,25,40,31,32]. 9

The running time performance 10 of the algorithms is summarised in Figure 7. In the
graphs, the vertical axis gives the dependent time variable (in seconds on a log scale)
and the horizontal axis denotes the number of problems that could be solved in under
the time given by the curve for each algorithm. By solved we understand that a semi-
algebraic continuous invariant has been successfully generated and that it implies the
postcondition, i.e. is sufficient to prove the safety assertion.

(a) Factors of f and polynomials in φ. (b) Factors, Lie derivatives.

(c) Factors, algebraic invariants. (d) Factors, Lie derivatives, alg. invariants.

Figure 7: Safety verification performance.

In our experiments we:

1. use polynomial factors of the right-hand side of the ODEs together with the factors
of the polynomials appearing in the postcondition φ to create the set of polynomials
A for the semi-algebraic decomposition (Fig. 7a),

9 See http://homepages.inf.ed.ac.uk/s0805753/invgen for the problems.
10 The comparison was performed on an i5-3570K CPU clocked at 3.40GHz.

http://homepages.inf.ed.ac.uk/s0805753/invgen
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2. extend the set A generated as in (1.) with Lie derivatives of every polynomial in A
(Fig. 7b), and

3. explore the utility of using polynomials whose real roots are invariant real algebraic
sets by extending the list of polynomials generated in (1.) and (2.) with polynomials
generated using a method presented in [8] (Fig. 7c and Fig. 7d respecitvely).

In our results we observe that the DWC algorithm is significantly faster than
LazyReach, confirming our hopes for gains in efficiency. We observe that, when using
polynomial factors of the ODEs and the postcondition to abstract the system, LazyReach
was able to prove as many problems as DWC (43), although the set of problems solved
is different. This is not surprising, since a proof strategy involving DW, DC and DDC,
while very efficient, cannot in general be used to extract reachable sets of exact ab-
stractions like the more expensive LazyReach. The combined method DWCL (using
DW, DC, and DDC before falling back to LazyReach) is seen to be both as practically
efficient as DWC and able to solve more problems (50) than LazyReach under a 600
second timeout; of course, given enough time, DWCL and LazyReach will both succeed
at solving exactly the same problems (with LazyReach taking significantly more time).

Adding the first Lie derivatives of the polynomial factors of the ODE and the post-
condition effectively doubles the size of the list A which, unsurprisingly, leads to di-
minished performance of LazyReach (only 25 problems solved) because it is heavily
affected by the discrete state explosion problem. However, DWC is seen to perform
slightly better than it did without the Lie derivatives in the list, solving a total of 46

safety verification problems. The DWCL algorithm succeeds at proving safety in 52 of
the problems.

We observe that adding algebraic invariants to the list of polynomial factors of the
ODE and the postcondition resulted in a palpable improvement in the number of prob-
lems that could be solved. This is very clearly visible in the case of DWC , which is
guaranteed to process every algebraic invariant by applying the proof rules DC and
DDC. Overall, for this choice of polynomials we see LazyReach solving 46, DWC solv-
ing 52, and DWCL solving 60 problems out of 100 (see Fig. 7c). Likewise, by adding
algebraic invariants to the list of polynomial factors and their Lie derivatives (as in
2.) we were able to solve 26, 53 and 59 problems using LazyReach, DWC and DWCL

respectively (Fig. 7d).
Overall, in every set of benchmarks we observe only one problem for which the

algorithm DWC times out after 600 seconds, whereas LazyReach times out for many of
problems (e.g. in the experiments shown in Fig. 7d LazyReach timed out on 59 of the
problems and was unable to produce a suitable invariant within the time limit in only
15 instances). The procedure DWCL generally times out more often than DWC , but
significantly less frequently than LazyReach (e.g. 25 problems from Fig. 7d resulted in
a timeout, and 16 could not be solved using the resulting invariant).

These results are very encouraging as they demonstrate that the discrete state ex-
plosion problem can, to a certain extent, be addressed using algorithms such as DWCL

and that methods for automatic algebraic invariant generation (such as that in [8]) can
be used to generate polynomials that will often improve the quality of the resulting
abstractions.
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It is perhaps surprising to see that many of the atomic predicates featuring irre-
ducible factors of polynomials harvested from the problem define continuous invariants.
As such, these polynomials are eminently suitable for processing using our algorithms
DWC and DWCL without incurring the performance penalty associated with building
finer abstractions using the conventional approach.

7 Related Work

In [44], the authors apply their earlier results about checking semi-algebraic continuous
invariants to address the invariant generation problem using approaches such as pre-
defining parametric templates and restricting attention to classes of invariants (such as
polyhedra), as well as using qualitative analysis techniques to suggest invariant tem-
plates. Our approach is different in that we do not rely on parametric templates and
put no restrictions on the form of the semi-algebraic invariant which may be gener-
ated. Discrete abstraction of linear systems using linear polynomials to discretize the
state space was investigated in [2,3]. A method for abstracting non-linear systems us-
ing non-linear polynomials was studied in [36,37], but results in abstractions that are
inexact; the fundamental differences between this approach and our work is discussed
at length in Section 3. A powerful technique called relational abstraction was intro-
duced in [29]. With relational abstraction one aims to over-approximate the finite time
reachability relation between states in a continuous system. Computing relational ab-
stractions requires searching for appropriate invariants in a larger auxiliary continuous
system; once a relational abstraction is available, one may use it to extract a continuous
invariant containing any given initial state of the system. Computing good relational ab-
stractions for non-linear systems is in practice expensive because it involves searching
for invariants in continuous systems with double the original number of state variables.

8 Conclusion

This paper presented a powerful method for automatically discovering continuous in-
variants that can be used in a formal deductive system to prove safety assertions about
continuous systems. We removed some important theoretical limitations (unsoundness
and coarseness) in existing methods for constructing discrete abstractions of non-linear
continuous systems and presented scalable and efficient algorithms for continuous in-
variant generation that combine discrete semi-algebraic abstraction with sound proof
rules for deductive safety verification. Verification of hybrid systems constructively re-
duces to proving properties of differential equations [18,20], which provides a wider
context for the future development of our work. The results we observe are highly en-
couraging, but much further work remains before safety verification (in the continuous
fragment) of hybrid systems can enjoy a high level of automation. For instance, now
that issues associated with inexact abstractions have been removed, the (difficult [39])
problem of finding a good choice of polynomials for constructing the semi-algebraic
predicates is the only factor that determines the success of our approach. We observed
that polynomials whose real roots themselves define invariants [8] can often be used to
improve the quality of abstractions; however the broader problem of choosing the right
polynomials leaves many interesting questions for future research.
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