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Abstract. We investigate decoupling abstractions, by which we seek to
simulate (i.e. abstract) a given system of ordinary differential equations
(ODEs) by another system that features completely independent (i.e.
uncoupled) sub-systems, which can be considered as separate systems in
their own right. Beyond a purely mathematical interest as a tool for the
qualitative analysis of ODEs, decoupling can be applied to verification
problems arising in the fields of control and hybrid systems. Existing ver-
ification technology often scales poorly with dimension. Thus, reducing a
verification problem to a number of independent verification problems for
systems of smaller dimension may enable one to prove properties that are
otherwise seen as too difficult. We show an interesting correspondence
between Darboux polynomials and decoupling simulating abstractions
of systems of polynomial ODEs and give a constructive procedure for
automatically computing the latter.

Keywords: ordinary differential equations, Darboux polynomials, sim-
ulation, abstraction, decoupling

1 Introduction

Simulation relations are an important concept in the study of both discrete and
continuous dynamical systems. Informally speaking, a system simulates another
system if it over-approximates its set of possible behaviours. In practice, when
analyzing systems, one often wants to construct simulations of the original sys-
tem that are in some sense “simpler” to analyze. Then, by demonstrating some
property of interest in the simulation one may infer the property in the original
system.

In [22] Sankaranarayanan investigated an interesting technique for construct-
ing simulations of continuous systems by employing change of basis transforma-
tions. It was shown how linearizing change of basis transformations of non-linear
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systems of ODEs can yield simulations in which the dynamics is given by a sys-
tem of linear ODEs. The motivation for considering such transformations is clear,
since linear systems cannot exhibit some of the rich dynamic phenomena found
in their non-linear counterparts and are more amenable to analysis [11]. In this
paper we consider simulations of non-linear ODEs of a different kind: instead of
linear dynamics, we seek to construct simulations that are potentially non-linear,
but whose analysis can be performed in a lower-dimensional space than that of
the original system.

Although our focus in this paper is on analyzing purely continuous systems,
the methods we present are motivated by the broader goal of aiding the task
of automatic verification of hybrid dynamical systems whose continuous modes
are governed by non-linear ODEs. Hybrid systems combine discrete and contin-
uous behaviour; their formal modelling and verification is of increasing interest
and importance to modern engineering, where discrete digital controllers are
used to control continuously evolving physical plants. In recent years, verifica-
tion technology for hybrid systems has seen significant advances and a number
of interesting case studies have been reported, e.g. verification of train control
systems [20,29], aircraft collision avoidance protocols [13,1], descent guidance
control software in a lunar lander [28] and satellite rendezvous manoeuvres [14],
to give a few examples. However, non-linear ODEs appearing in hybrid system
models often present a serious challenge to verification due to their inherent
complexity. In this paper we seek to overcome some aspects of this hurdle by
constructing simulations of non-linear ODEs with structure that more readily
lends itself to analysis.

1.1 Contributions

In this paper we (I) define decoupled simulating abstractions of non-linear ODEs,
discuss their utility and relationship to first integrals [10] and constant-scale
continuous consecutions [23]. (II) We give an algorithm for checking whether a
given set of polynomial abstract basis functions can be used to create a decou-
pled abstraction of a system of polynomial ODEs and then (III) employ the
theory of Darboux polynomials [10] to give sufficient criteria for non-existence of
polynomial abstract basis functions suitable for constructing decoupled polyno-
mial abstractions. Lastly, (IV) we show how Darboux polynomials can be used
to construct the abstract basis functions for decoupled abstractions whenever
they exist. We conclude with a summary of our findings, an overview of related
work and directions for future research.

1.2 Preliminaries

An autonomous n-dimensional system of ODEs has the following form:

ẋ1 = f1(x1, x2, . . . , xn),

...

ẋn = fn(x1, x2, . . . , xn),
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where for i ∈ {1, . . . , n} each fi : Rn → R is a real-valued function (typically C1),
and ẋi denotes the time derivative of xi, i.e. d

dtxi(t). In applications, constraints
are often imposed on the states where the system is allowed to evolve, i.e. the
system may only evolve inside some given set H ⊆ Rn, which is known as the
evolution constraint. We may write this more concisely using vector notation
as ẋ = f(x), x ∈ H. Here ẋ = (ẋ1, . . . , ẋn) and f : Rn → Rn is a vector field
generated by the system, i.e. f(x) = (f1(x), . . . , fn(x)) for all x ∈ Rn. When no
evolution constraint is specified, H is assumed to be Rn.

A solution to the initial value problem for the system of ODEs ẋ = f(x)
with initial value x0 ∈ Rn is a differentiable function ϕt(x0) : (a, b) → Rn
defined for all t within some non-empty extended real interval including zero, i.e.
t ∈ (a, b) ⊆ R∪{∞,−∞}, where a < 0 < b, and such that d

dtϕt(x0) = f(ϕt(x0))
for all t ∈ (a, b). If the solution ϕt(x0) is available in closed-form,4 then one can
answer questions about the temporal behaviour of the system (such as e.g. safety
and liveness) by analyzing the closed-form expression. In practice, however, it
has long been established that explicit closed-form solutions to non-linear ODEs
are highly uncommon [11].

In this paper we will work with systems of ODEs whose right-hand sides
are given by polynomials in the state variables x1, . . . , xn. Formally, we say that
fi ∈ R[X1, . . . , Xn] for all i ∈ {1, . . . , n}, where R[X1, . . . , Xn] denotes the ring of
multivariate polynomials with real coefficients and indeterminates X1, . . . , Xn.
We write fi(x1, . . . , xn) when we wish to make it clear that the polynomial is
treated as a function, with indeterminates replaced by the appropriate variables.
Polynomial systems of ODEs are necessarily locally Lipschitz continuous, which
guarantees existence of unique solutions on some non-trivial time interval for
any initial value x0 ∈ Rn (by the Picard-Lindelöf theorem; see e.g. [27]).

1.3 Coupling

Given a system of ODEs ẋ = f(x), the maximum coupling coefficient (henceforth
mcc) is the size of the largest sub-system with no independent sub-systems. To
define rigorously, we construct a finite coupling graph CG = (V,E), where the
set of vertices is precisely the set of state variables, i.e. V = {x1, . . . , xn}, and
there is an edge from xi to some other vertex xj , i.e. (xi, xj) ∈ E with i 6= j, if

and only if ∂fi
∂xj
6= 0. The coupling coefficients cc are a finite multiset of natural

numbers corresponding to the orders (i.e. the numbers of vertices) of all the
weakly connected components in CG. The coefficient mcc is defined to be the
maximum order of the weakly connected components in CG, i.e. mcc ≡ max cc.

Definition 1 (Uncoupled system). A system of ODEs ẋ = f(x) is uncou-
pled if and only if its mcc = 1, i.e. if the rate of change of each state variable is
completely independent of the other variables.

4 By this we understand a finite expression in terms of polynomials and elementary
functions such as sin, cos, exp, ln, etc.
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Example 1. Consider the following two planar polynomial systems:

ẋ1 = x21x2 + 5x1 − 1, ẋ1 = x31 + 5x1 − 10,

ẋ2 = 3x32 + 2x1x2 − x1. ẋ2 = 2x22 + 3x2 + 1.

The system on the left has mcc = 2 because the vertices {x1, x2} in the coupling
graph have edges connecting them in both directions, since ∂

∂x2
(x21x2+5x1−1) =

x21 6= 0 and ∂
∂x1

(3x32 + 2x1x2−x1) = 2x2−1 6= 0. On the other hand, the system

on the right has mcc = 1 (i.e. is uncoupled) because ∂
∂x2

(x31 + 5x1 − 10) = 0

and ∂
∂x1

(2x22 + 3x2 + 1) = 0 and therefore the vertices {x1, x2} in the graph are
disconnected.

Uncoupled systems are appealing first and foremost because their 1-
dimensional sub-systems can be analyzed independently, following a standard
technique for 1-dimensional flows (see e.g. [25, Chapter 2]). For instance, con-
sider the 1-dimensional system ẋ = x3 + 5x2 + x − 10. This system evolves on
the real line and has fixed points at the real roots of x3 + 5x2 + x− 10, of which
there are three: {−2, 12

(
−3−

√
29
)
, 12
(
−3 +

√
29
)
}. The direction of the flow is

to the right whenever the graph of ẋ is above zero (i.e. the rate of change of x
is positive) and to the left when it is below (the rate of change is negative), as
shown in Figure 1.3.

Fig. 1. Analysis of the 1-dimensional system ẋ = x3 + 5x2 + x− 10.

From inspecting the figure, one can readily see how one can construct the set
of reachable states of any given initial point x0 in a 1-dimensional polynomial
system ẋ = f(x): either the point is a root of the right-hand side, i.e. f(x0) = 0,
in which case x0 remains invariant and the reachable set is simply {x0}, or x0
is not a root, i.e. f(x) 6= 0, in which case the reachable set is an interval of the
form [x0, r) or (r, x0], where r ∈ R∪{∞,−∞} is either a real root of f or it is∞
or −∞, respectively (if there are no real roots in the direction of motion). The
reachable set from any initial point x0 ∈ Rn in a uncoupled system can thus also
be bounded by combining the independent reachable sets in the 1-dimensional
sub-systems.
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Bounded-time reachable set computation using verified integration methods
is also made easier because large systems of non-linear ODEs are typically ex-
pensive to integrate using methods that yield tight enclosures [16] (such as Tay-
lor models [3,17]), whereas in an uncoupled system, no matter how large, each
1-dimensional sub-system can be integrated separately. An enclosure of the so-
lution to the whole system at some time t can then be constructed directly from
the enclosures of the solutions to the sub-systems at that time.

2 Decoupled Simulating Abstractions

In what follows, we will adopt the approach described by Sankaranarayanan
in [22] to define simulating abstractions of non-linear ODEs using appropriate
change of basis transformations.

Definition 2 (Simulating abstraction). For a system ẋ = f(x), x ∈ H,
where f : Rn → Rn is locally Lipschitz continuous, equipped with an initial set
of states X0 ⊆ Rn, a system α̇ = G(α), α ∈ Ĥ, where G : Rm → Rm is locally

Lipschitz continuous and equipped with an initial set of states X̂0 ⊆ Rm is a
simulating abstraction if there exists a smooth (i.e. C∞) mapping α : Rn → Rm

such that: (i) α(X0) ⊆ X̂0, (ii) α(H) ⊆ Ĥ, and (iii) for any trajectory (i.e.
solution in non-negative time) ϕτ (x0) : [0, T )→ H of the system ẋ = f(x), x ∈
H, the trajectory α ◦ ϕτ (x0) : [0, T )→ Ĥ is a trajectory of α̇ = G(α), α ∈ Ĥ.

To ensure that the last condition in the above definition holds, it is sufficient to
show that G(α(x)) = Jα ·f(x), where Jα is the Jacobian of the smooth mapping
α w.r.t. the state variables x1, . . . , xn (see [22, Theorem 2.1]), i.e.

G(α) =


∂α1

∂x1
. . . ∂α1

∂xn

...
. . .

...
∂αm

∂x1
. . . ∂αm

∂xn

 ·
 f1

...
fn

 .

Definition 3 (Lie derivative). For a given system of ODEs ẋ = f(x), the
Lie derivative of a smooth function p : Rn → R is given by

Lf (p) = ∇p · f =

n∑
i=1

∂p

∂xi
· fi.

Note that since fi(x) = dxi

dt , Lf (p) =
(∑n

i=1
∂p
∂xi
· dxi

dt

)
= dp

dt i.e. the total deriva-

tive of the function p with respect to time, which we denote by ṗ.

Let us recall that the gradient ∇p gives the vector of all the partial derivatives

of p, i.e. ∇p ≡
(
∂p
∂x1

, ∂p∂x2
, . . . , ∂p

∂xn

)
, and thus the necessary condition for (iii) in

Definition 2 to be satisfied may be equivalently stated as:

G(α) =

 ∇α1

...
∇αm

 · f =

 Lf (α1)
...

Lf (αm)

 .

5



Remark 1. It is important to note that, following Def. 2, solutions to simulating
abstractions are guaranteed to exist for at least as long as they do in the concrete
system. This property is crucial to soundness of the abstraction. A rather differ-
ent, but in a certain sense more general, concept was explored by Platzer, who
introduced differential ghosts [19], where the original dynamics is augmented by
introducing some fresh variables whose rate of change may feature the newly in-
troduced variables themselves, but is not restricted in the same way as in Def. 2.
However, extra care needs to be taken to ensure that the solutions of the newly
defined dynamics exist for at least as long as the solutions to the original system
(e.g. see [19, Proof of Theorem 38]).

Definition 4 (Decoupling simulating abstraction). Given a system of
ODEs ẋ = f(x), a simulating abstraction α̇ = G(α) is decoupling if and
only if the equalities Lf (α1) = G1(α1), . . . ,Lf (αm) = Gm(αm) hold, where
(G1, . . . , Gm) = G. Such an abstraction is thus uncoupled:

α̇1 = G1(α1),

...

α̇m = Gm(αm).

In what follows, we will give some examples of how first integrals (see e.g. [10])
and constant-scale continuous consecutions [23] provide the abstract basis func-
tions α which lead to decoupling simulating abstractions.

Example 2 (Algebraically integrable system). The 3-dimensional system

ẋ1 = x1(x3 − x2),

ẋ2 = x2(x1 − x3),

ẋ3 = x3(x2 − x1),

has two independent polynomial conserved quantities, i.e. first integrals, given
by α1 = x1x2x3 and α2 = x1 + x2 + x3 (see [8, Ex. 75]). If we let α = (α1, α2),
we obtain the decoupling simulating abstraction α̇ = 0, i.e. α̇1 = 0, α̇2 = 0.

Remark 2. A polynomial system ẋ = f(x) of size n is algebraically integrable if it
possesses n−1 independent polynomial conserved quantities (also known as first
integrals; see [10,8]), i.e. polynomials {α1, . . . , αn−1}, where for all i = 1, . . . , n−1
one has Lf (αi) ≡ α̇i = 0. Algebraic integrability is a very powerful property,
since it allows one to construct tight approximations of the orbit γ(x0), i.e. the
reachable set from x0 ∈ Rn in positive as well as negative time. That is, for
any given point x0 ∈ Rn, if one evaluates each first integral α1, . . . , αn−1 at
x0, one obtains real constants c1, . . . , cn−1. The orbit through x0 is guaranteed
to satisfy the formula α1 = c1 ∧ · · · ∧ αn−1 = cn−1, which corresponds to a
(real) algebraic subset of Rn given by the common real roots of the polynomials
αi − ci. Every point α0 ∈ Rn−1 in such an abstract system α̇ = 0 is invariant
and corresponds to a real (and invariant) algebraic set containing the orbit of
the system ẋ = f(x).
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Polynomials p such that Lf (p) = λp for some λ ∈ R generalize polynomial
first integrals5 and were investigated by Sankaranarayanan et al. in [23], where
they were used in constant-scale continuous consecution conditions. In general,
if one can find polynomials α1, . . . , αm that satisfy Lf (αi) = λiαi , λi ∈ R for
all i ∈ {1, . . . ,m}, then one obtains a decoupling abstraction of the form

α̇1 = λ1α1,

...

α̇m = λmαm.

We generalize this idea to decoupling polynomial abstractions by considering
polynomial functions αi ∈ R[X1, . . . , Xn] such that Lf (αi) = Gi(α), where Gi ∈
R[X], i.e. the derivative of αi may be expressed as a polynomial in αi with real
coefficients.

Example 3 (Decoupling simulating abstraction). Consider the coupled system:

ẋ1 =
1

3
(1− 3x1 + 2x21 − 6x2 + 4x1x2 + 2x22),

ẋ2 =
1

3
(−1− 3x1 + x21 + 2x1x2 + x22) .

Let α1 = x1 + x2 − 1, α2 = x1 − 2x2. If we consider α = (α1, α2), we arrive at
the following system (left), which can be expressed as an uncoupled system in
the new basis (right):

α̇1 = −2x1 + x21 − 2x2 + 2x1x2 + x22, α̇1 = α2
1 − 1,

α̇2 = 1 + x1 − 2x2, α̇2 = α2 + 1 .

3 Existence and Generation of Abstraction Polynomials

In what follows, we investigate the existence of polynomials that can be used
to construct decoupling simulating abstractions of a given system. We show in
Section 3.1 that their existence (to a given polynomial degree) is decidable and
give a sufficient criterion for their non-existence (to a given degree) based on the
existence of so-called Darboux polynomials (e.g. see [10]). We then explore the
problems of checking and generation. The checking problem is concerned with
determining whether a given candidate polynomial is suitable for constructing
a decoupling simulating abstraction. In Section 3.2 we describe a procedure for
solving the checking problem. In Section 3.3 we present a technique for gener-
ating all suitable polynomials for the decoupling abstract basis (up to a given
polynomial degree).

5 i.e. p is a first integral if Lf (p) = λp where λ = 0.
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3.1 Decidability and Darboux Existence Criterion

For polynomial systems of ODEs ẋ = f(x), the problem of finding a non-
constant polynomial in the state variables, p ∈ R[X1, . . . , Xn], for the decou-
pling abstract basis reduces to searching for those p such that Lf (p) = G(p),
where G ∈ R[X], i.e. G is a univariate polynomial with real coefficients. There
may, however, be no such polynomial. Fortunately, it is decidable to check for
existence of such a p.

Proposition 1 (Existence of decoupling abstract basis polynomials).
Given a positive integer d and a polynomial system ẋ = f(x), it is decidable
to check whether there exists a polynomial p ∈ R[X1, . . . , Xn] of total degree d
such that Lf (p) = G(p), where G ∈ R[X] is a univariate polynomial with real
coefficients.

Proof. The problem can be stated as a sentence in the theory of real arithmetic
which is decidable [26]. Let λ0, . . . , λk denote the unknown coefficients of the
generic polynomial template p of degree d, where k :=

(
n+d
d

)
− 1 is the number

of non-constant monomials of degree at most d in n variables. The Lie derivative
Lf (p) can therefore be symbolically computed (Def. 3). Let κ0, . . . , κm denote the
unknown coefficients of the polynomial G ∈ R[X] where m := ddeg(Lf (p))/de.
The decision problem stated in the proposition is therefore equivalent to deciding
the truth of the following sentence:

∃ (λ0, . . . , λk) ∈ Rk+1. ∃ (κ0, . . . , κm) ∈ Rm+1.

∀(X1, . . . , Xn) ∈ Rn. d > 0 ∧ Lf (p)− (κ0 + κ1p+ · · ·+ κmp
m) = 0 .

If λ0 denotes the constant term of the generic polynomial template p, then the
condition d > 0 is equivalent (over the reals) to the inequality

∑
0<i≤k λ

2
i > 0,

ensuring that p is non-constant. ut

In practice, there is currently no question of applying existing decision pro-
cedures to formulas constructed in the proof or Prop. 1. The complexity of the
most popular procedure for real quantifier elimination (CAD, due to Collins [4])
is doubly exponential in the number of variables. In Section 3.3 we will pursue a
more promising method of searching for decoupling abstract basis polynomials.
First, we shall recall so-called Darboux polynomials, a well-known tool in the
study integrability of dynamical systems (e.g. see [10]), and use them to give
a non-existence criterion for decoupling abstract basis polynomials. We then
explore an interesting relationship between the two concepts.

Definition 5 (Darboux polynomial). A polynomial q ∈ K[X1, . . . , Xn],
where K is a field of characteristic zero (e.g. C,R,Q), is a Darboux polyno-
mial6 for ẋ = f(x) iff Lf (q) = λq, for some λ ∈ K[X1, . . . , Xn].

6 When q is a constant, the Darboux polynomial is trivial [10, Definition 2.14]. In this
paper we will generally be interested in the non-trivial case.
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Proposition 2 (Criterion for non-existence of decoupled abstractions).
If a given system ẋ = f(x) does not admit any Darboux polynomials over C of
degree d, then there is no polynomial p ∈ R[X1, . . . , Xn] of degree d such that
Lf (p) = G(p) for some non-constant G ∈ R[X].

Proof. We prove the contrapositive. Suppose there exists a polynomial p ∈
R[X1, . . . , Xn] such that Lf (p) = G(p), where G ∈ R[X] is non-constant. By
the fundamental theorem of algebra, G must have at least one complex root
c ∈ C. Therefore G = (X − c)H, where H ∈ C[X]. We see that (p − c) is a
Darboux polynomial for the system because

Lf (p− c) = Lf (p)− Lf (c) = Lf (p) = G(p) = (p− c)H(p).

The degree of the Darboux polynomial p− c is equal to the degree of p. ut

3.2 Checking Abstraction Polynomial Candidates

Before proceeding to methods for generating decoupling abstract basis polynomi-
als for polynomial systems ẋ = f(x), we discuss the (easier) problem of checking
if for a given p ∈ R[X1, . . . , Xn] one can write Lf (p) = G(p), where G ∈ R[X].

In general, given any two polynomials P, p ∈ R[X1, . . . , Xn], if deg(P ) ≥
deg(p), one may obtain a rewriting P = G(p) by solving a system of lin-
ear equations. One proceeds by first defining the maximum degree of a pos-
sible G to be d = ddeg(P )/deg(p)e. If an appropriate rewriting exists, then
there is guaranteed to be a solution (λ0, . . . , λd) ∈ Rd+1 to the equation
P = λ0 + λ1p+ λ2p

2 + · · ·+ λdp
d. By expanding and equating the monomial

coefficients on both sides one arrives at a system of linear equations (of size
no larger than the number of monomials of P ) in the real variables λ0, . . . , λd.
Thus, in the worst case, one has to solve a linear system with d+1 variables and(
n+deg(P )
deg(P )

)
equational constraints. A solution may be computed using a linear

solver and the rewriting polynomial constructed as G = λ0 +λ1X + · · ·+λdX
d.

In what follows, we will refer to the procedure for obtaining the rewriting as
Rewrite, that is Rewrite(P, p) gives G whenever P = G(p).

Remark 3. It is worth remarking that the procedure Rewrite can be imple-
mented by performing successive polynomial reductions, rather than by solving
a linear program. Polynomial reduction extends polynomial division for univari-
ate polynomials to the multivariate case and in general requires the computation
of Gröbner bases. This functionality is available in most modern computer alge-
bra systems.

3.3 Automated Generation of Decoupling Abstractions

A highly efficient method for synthesizing polynomial first integrals for polyno-
mial ODEs was reported by Matringe et al. in [15], where the synthesis problem
is reduced to computing the null space of a matrix with real entries. In [7], the
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authors extended the work of Matringe et al. to generate real algebraic invari-
ants of polynomial ODEs, giving a search procedure for the most general class
of invariant sets that can be expressed using polynomial equations. The same
procedure can be used to generate Darboux polynomials over the reals or over
the complexes only by changing the underlying computational field. In general,
there is no known bound for the degree of Darboux polynomials in a given sys-
tem. However, the automatic generation procedure is guaranteed to find all the
independent Darboux polynomials for the system up to a given degree.

In this section, we explore the relationship between polynomials in a decou-
pling abstract basis and Darboux polynomials. This relationship will enable us
to exploit the efficient symbolic generation methods reported in [15,7]. We out-
line a procedure for constructing polynomials p such that Lf (p) = G(p), where
G ∈ R[X], from a list of automatically generated Darboux polynomials (up to
some given degree). The procedure will require two lemmas given below.

We note first that whenever q is a Darboux polynomial, any constant multiple
of q, i.e. aq for some a ∈ R or C, is also Darboux. A similar property holds for
the decoupling abstract basis functions in simulating abstractions.

Lemma 1. If p ∈ R[X1, . . . , Xn] is such that Lf (p) = G(p) where G ∈ R[X],
then s = ap + b for any real numbers a, b, is such that Lf (s) = F (s), where
F ∈ R[X].

Proof. If a = 0 then Lf (s) = Lf (b) = 0 and F is simply the zero polynomial in
R[X]. If a 6= 0, by our hypothesis we have Lf (p) = G(p). Let us write p = s−b

a
and note that

Lf (s) = Lf (ap+ b) = aLf (p) + Lf (b) = aLf (p) = aG(p) = aG

(
s− b
a

)
.

We see that Lf (s) = aG
(
s−b
a

)
is a polynomial in s with real coefficients. ut

One consequence of Lem. 1 is that whenever we assume the existence of a
polynomial p such that Lf (p) = G(p) for some G ∈ R[X], it always suffices to
assume the existence of a decoupling abstract basis polynomial p−r for any real
number r.

In Prop. 2 we established that the existence of decoupling abstract basis poly-
nomials p is related to the existence of a special Darboux polynomial p − c for
some complex number c. For any polynomial s, we denote by s∗ the polynomial
obtained by setting the constant term of s to zero. For instance, if s = x + 1
then, s∗ = x. Thus, for the (Darboux) polynomial p − c, one has (p − c)∗ = p∗

(by definition of the ∗ operator) and therefore p∗ is a decoupling abstract basis
polynomial by Lem. 1, since it is an offset of the polynomial p by a real num-
ber (the constant term of p). Therefore, if one generates Darboux polynomials
over the complex numbers and finds a Darboux polynomial q such that q∗ is a
polynomial over the reals (i.e. all the coefficients of q∗ are real numbers), then
q∗ is potentially a decoupling abstract basis polynomial, which can be checked
by solving a linear program, i.e. by running Rewrite(Lf (q∗), q∗), as outlined
in Section 3.2.
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Nevertheless, generating Darboux polynomials over the complex numbers will
not necessarily return Darboux polynomials q such that q∗ is a polynomial over
the reals even if the latter exist. For instance, if q = x2 + xy + c is a Darboux
polynomial with some complex constant term c, then the procedure may return
ıq instead of q (ı being the imaginary number satisfying ı2 = −1), although
we are rather interested in looking for q. Enforcing such a constraint in the
procedure for generating Darboux polynomials will require solving mixed non-
linear equations where some variables are real and some are complex numbers. To
avoid solving mixed problems, we can easily adapt the generation procedure to
produce monic Darboux polynomials for any variable ordering, for instance the
lexicographic order X1 > · · · > Xn. Recall that monic univariate polynomials are
those polynomials where the leading coefficient (i.e. the coefficient of the leading
monomial) is equal to 1. In the multivariate case, the notion of leading coefficient
additionally requires a monomial ordering. For instance, for the order X1 > X2,
the leading monomial of the polynomial 2X1X2 + X2

1 is X2
1 and therefore the

leading coefficient is 1, whereas the leading monomial in the reverse lexicographic
ordering X2 > X1 is X1X2 and the leading coefficient is 2.

Lemma 2. Given a polynomial q ∈ C[X1, . . . , Xn], let p ∈ C[X1, . . . , Xn] be the
monic polynomial q

LC(q) , where LC(q) is the leading coefficient of q with respect to

some fixed monomial ordering. There exists a non-zero complex number z such
that (zq)∗ ∈ R[X1, . . . , Xn] if and only if p∗ ∈ R[X1, . . . , Xn].

Proof. Suppose there exists such a non-zero complex number z such that (zq)∗ ∈
R[X1, . . . , Xn]. Since zLC(q) = LC(zq) we have that zq

LC(zq) = zq
zLC(q) = q

LC(q) = p,

therefore 1
LC(zq) (zq) = p and 1

LC(zq) (zq)
∗ = p∗. Since LC(zq) ∈ R, we have

p∗ ∈ R[X1, . . . , Xn]. Conversely, if p∗ ∈ R[X1, . . . , Xn], take z = 1
LC(q) so that

(zq)∗ = p∗. ut

We now describe a procedure for generating decoupling abstract basis poly-
nomials. Suppose we are given all the independent Darboux polynomials in
C[X1, . . . , Xn] for the system ẋ = f(x) up to some degree d > 0. By Prop. 2,
if there exists a polynomial p ∈ R[X1, . . . , Xn] of degree d′ ≤ d such that
Lf (p) = G(p), where G ∈ R[X] is non-constant, then there necessarily exists
a Darboux polynomial q of degree d′ such that q∗ is a polynomial over the reals,
i.e. q∗ ∈ R[X1, . . . , Xn]. This fact suggests a simple search method. Below we
describe the three main steps in the procedure.

1. For a fixed positive integer d, automatically generate all monic Darboux
polynomials for the system up to degree d with coefficients in C.

2. For each generated Darboux polynomial q check if q∗ ∈ R[X1, . . . , Xn] and
if so, store q∗ as a candidate in a list L.

3. For all polynomials q∗ in L, run Rewrite(Lf (q∗), q∗). If q∗ is a decoupling
abstract basis polynomial, the rewriting procedure will return G ∈ R[X] s.t.
Lf (q∗) = G(q∗).
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Example 4. Consider the following system

ẋ1 =
1

3
(1 + x1 − 2x2 + 2(1 + (−1 + x1 + x2)2))

ẋ2 =
1

3
(−x1 + 2x2 + (−1 + x1 + x2)2)

The automatic generation procedure for Darboux polynomials over C up to
degree 1 gives us (q1, q2, q3) = (1+x1−2x2, (−1+ı)+x1+x2, (−1−ı)+x1+x2). In
this case, q∗1 ,q∗2 and q∗3 are all candidates for the short list L. Since q∗2 = q∗3 , L =
{x1 − 2x2, x1 + x2}. Running Rewrite(Lf (q∗1), q∗1) and Rewrite(Lf (q∗2), q∗2)
returns 2 − 2X + X2 and 1 + X, respectively. Thus, letting (α1, α2) = (q∗1 , q

∗
2),

we obtain the decoupled abstraction:

α̇1 = 2− 2α1 + α2
1,

α̇2 = 1 + α2.

In general, a Darboux polynomial q, with q∗ ∈ R[X1, . . . , Xn], is not nec-
essarily a decoupling abstract basis polynomial. For instance, in the system
ẋ1 = x1x2, ẋ2 = x2, one has x1 as a Darboux polynomial; however x1 is not a
decoupling abstract basis polynomial because Lf (x1) = x1x2 cannot be rewrit-
ten as polynomial in x1 only. The checking procedure Rewrite(Lf (x1), x1) will
thus fail to produce a solution.

It is natural to ask under what extra conditions is a Darboux polynomial q
satisfying q∗ ∈ R[X1, . . . , Xn] also a decoupling abstract basis polynomial. The
following theorem explores this connection.

Theorem 1. Given a system of polynomial ODEs ẋ = f(x), there exists a
polynomial p ∈ R[X1, . . . , Xn] such that Lf (p) = G(p), where G ∈ R[X]
is of degree d > 0, if and only if the system has d Darboux polynomials
q1, . . . , qd ∈ C[X1, . . . , Xn] satisfying:

(i) q∗1 = q∗2 = · · · = q∗d ∈ R[X1, . . . , Xn],
(ii) Lf (q1) = Lf (q2) = · · · = Lf (qd) = rq1q2 · · · qd, r ∈ R,

(iii) for all i = 1, . . . , d, either q∗i − qi ∈ R or there exists j 6= i, j = 1, . . . , d,
such that qi = q̄j.

Proof. Suppose there exists a p ∈ R[X1, . . . , Xn] such that Lf (p) = G(p). When
G ∈ R[X] is a non-constant polynomial of degree d, it can be factorized as
r(X − c1) · · · (X − cd), where r ∈ R and the roots ci are either real numbers, or
complex numbers that come in conjugate pairs, i.e. if ci ∈ C is a root of G, then
its complex conjugate c̄i is also a root. In the proof of Prop. 2 we have seen that
for any such factor (X − ci) the polynomial qi = p− ci is a Darboux polynomial
for the system such that Lf (qi) = G(p). The properties (i), (ii) and (iii) follow
immediately.

Conversely, let us assume that there are d Darboux polynomials q1, q2, . . . , qd
satisfying properties (i), (ii) and (iii). Then for any r ∈ R we have

rq1q2 · · · qd = r(q∗1 − c1)(q∗2 − c2) · · · (q∗d − cd),
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where each ci = q∗i − qi is, by definition, a constant. By property (i) we have
q∗1 = q∗2 = · · · = q∗d ∈ R[X1, . . . , Xn], so let us take p = q∗1 = q∗2 = · · · = q∗d to
obtain r(q∗1−c1)(q∗2−c2) · · · (q∗d−cd) = r(p−c1)(p−c2) · · · (p−cd). One can now
write this as r(p − c1)(p − c2) · · · (p − cd) = G(p), where G ∈ R[X] has degree
d. The coefficients of G are real because by (iii) the roots ci come in complex
conjugate pairs. Since qi = q∗i − (q∗i − qi) = p− ci, we have Lf (qi) = Lf (p− ci) =
Lf (p)−Lf (ci) = Lf (p) and by (ii) Lf (p) = r(p− c1)(p− c2) · · · (p− cd) = G(p).

ut

Notice that Rewrite does not require all of the d Darboux polynomials
in order to construct G. If a family of Darboux polynomials {q1, . . . , qd} as
stated in Theorem 1 exists, it suffices to supply only one element, say q∗1 , to
Rewrite, which will then find a rewriting of Lf (q∗1) as G(q∗1), with G ∈ R[X].
If however, the algorithm fails, then the polynomial supplied was not obtained
from such a family of Darboux polynomials and therefore cannot be used to
obtain a rewriting of its derivative in terms of itself.

Theorem 1 exposes the structure inherent in systems for which one can find
decoupled simulating abstractions. The requirements (i)–(iii) are indeed quite
strong. Observe that when G is a linear polynomial with a real coefficient λ, i.e.
is of the form G(X) = λX and therefore necessarily has one real root, Theorem 1
reduces to the conditions for constant-scale consecution [23].

Remark 4. Theorem 1 relies on generating Darboux polynomials in order to com-
pute a decoupling abstraction of a given system of polynomial ODEs. Nev-
ertheless, polynomials having constant Lie derivatives (that is, those p s.t.
Lf (p) = G(p) where G has degree zero) can also be used for decoupling abstrac-
tions, but are not covered by Theorem 1, which requires the degree ofG to be pos-
itive. The special case when G has degree zero is also related to Darboux polyno-
mials as follows: (i) when G is the zero polynomial, then the system has a first in-
tegral which is a special Darboux polynomial as discussed in Section 2, (ii) when
G is a non-zero constant, then the augmented system (ẋ, ṫ) = (f(x), 1) obtained
by appending the time derivative to the original system has a polynomial first in-
tegral. More precisely, when p ∈ R[X1, . . . , Xn] and the Lf (p) is a real constant,
say r, then in the augmented system L(f,1)(p−rt) = L(f,1)(p)−r = Lf (p)−r = 0
and p− rt is thus a polynomial first integral of the augmented system. One may
thus handle this case by computing first integrals (e.g. using the approach de-
scribed in [15]) before searching for more sophisticated decoupling polynomials
where G has a positive degree.

4 Outlook

Verification problems for systems of ODEs can be soundly translated to verifi-
cation problems for their simulating abstractions. Below we sketch the case of a
standard safety verification problem (Sx, f, Fx), where one wishes to prove that
a given property, encoded as the region Fx ⊂ Rn, is always satisfied if the system
ẋ = f(x) is initialised in x0 ∈ Sx ⊂ Rn. If a decoupling abstraction α̇ = G(α)
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exists, one can attempt to solve the simpler abstract safety verification prob-
lem (Sy, G, Fy) where (y1, . . . , ym) = (α1(x), . . . , αm(x)), denoted henceforth by
y = α(x), i.e. ẏ = G(y) is a decoupled simulating abstraction. The initial set
in the new abstract coordinates, Sy ⊂ Rm (resp. Fy), is computed as a projec-
tion of the semialgebraic set Sx ∧ y = α(x), which is a subset of Rn+m (resp.
Fx ∧ y = α(x)), onto Rm. Such a projection can in principle be obtained by
eliminating the existential quantifiers in the following sentence

∃ (x1, . . . , xn) ∈ Rn. Sx ∧ y1 = α1(x1, . . . , xn) ∧ · · · ∧ ym = αm(x1, . . . , xn) .

The soundness of such an abstraction relies essentially on two facts: (i) the sets
Sy and Fy are the exact images through α of the sets Sx and Fx respectively
(although using over-approximations of these sets is also sound) and (ii) the
invariant regions of the decoupled abstract system, when expressed in terms
of the old coordinates, define invariant regions of the original system (i.e. the
abstraction is indeed sound [22, Theorem 2.2]). This means that if the safety
problem holds true in the decoupled abstraction it also holds true in the original
concrete system. If not, however, the abstraction may be too coarse.

Interesting directions for refining the abstraction include searching for more
general simulating abstractions that are not necessarily completely decoupling.
For instance, it is conceivable that a simulating abstraction may possess inde-
pendent sub-systems that are of the form

α̇i = Gi(αi, αj),

α̇j = Gj(αi, αj),

whereGi, Gj ∈ R[X1, X2] and αi, αj ∈ R[X1, . . . , Xn] are the abstract basis func-
tions. This idea is similar to the so-called algebraizing transformations, briefly
discussed in [22, Definition 2.4]. The analysis of 2-dimensional (i.e. planar) poly-
nomial ODEs is however vastly more difficult than the 1-dimensional case. In-
deed, qualitative analysis of planar polynomial flows is an active area of math-
ematical research (e.g. see [6,5]). However, one hope is this greater generality
would make simulating abstractions of this form more “common” in systems
that one might encounter in applications.

Decoupling can help overcome some of the scalability issues in existing ver-
ification methodologies. For instance, in reachability analysis, relational ab-
straction [24] seeks to abstract the flow of a differential equation by an over-
approximation of the reachability relation on the states of the system. Mathemat-
ically, a (timeless) relational abstraction of an autonomous system ẋ = f(x) is a
relation R ⊆ Rn×Rn such that (x,y) ∈ R if y is reachable from x in finite time
by following the flow of the system [24, Definition 4], i.e. if ∃ t ≥ 0. ϕt(x) = y.
Computing timeless relational abstractions for non-linear systems is difficult be-
cause it reduces to searching for positive invariants in the extended system of
ODEs ẏ = f(y), ẋ = 0 with dimension 2n, i.e. with twice the number of state
variables [24, Definition 5, Lemma 1]. When the system is uncoupled, one can
instead work with n extended systems ẏi = fi(yi), ẋi = 0, i = 1, . . . , n, each of
dimension 2.

14



5 Related Work

Our work is closest in spirit to that of Sankaranarayanan [22], which studied
simulating abstractions resulting from linearizing change of basis transforma-
tions. Our approach instead focused on simulating abstractions obtained via
decoupling change of basis transformations.

Change of basis transformations are a standard technique for decoupling lin-
ear homogeneous systems of ODEs with constant coefficients, i.e. systems of the
form ẋ = Ax, where A is an n×n real matrix. A common technique applies when
the matrix A has n real distinct eigenvalues and produces a decoupled linear ho-
mogeneous system α̇ = Bα of the same dimension, where α = (α1, . . . , αn) is
made up of linear functions αi : Rn → R in the state variables x1, . . . , xn (see
e.g. [21, §28.2, §28.3]); in particular, such a decoupling is always possible when
A is a real symmetric matrix. In our work, we consider more general polynomial
systems of ODEs and a more general class of polynomials to act as the new basis;
additionally, we do not require the dimension of the resulting decoupled system
to match that of the original system of coupled ODEs. In short, our focus is not
placed on solving the system, but rather on automatically discovering simulating
abstractions that are more amenable to analysis.

Girard and Pappas explored approximate bisimulation of continuous systems
in [9], and Pappas earlier developed (exact) bisimulations between continuous
linear systems [18]. However, these works employ a different notion of simulation
and do not seek to make the structure of the simulation easier to analyze in the
way that we do with decoupling, and are in practice limited to linear ODEs due
to reliance on solving linear matrix inequalities (LMIs). Han and Krogh have
also explored sound order reduction techniques for verification with reachability
analysis, but their approach is also limited to linear ODEs [12]. In contrast to all
these existing works that employ different techniques as well as different formal
development, our decoupled simulating abstractions are applicable to non-linear
polynomial ODEs, and as such, are developed using significantly different meth-
ods.

6 Conclusion

In this paper we explored a technique for constructing decoupling simulating
abstractions of non-linear polynomial ODEs, which can be more easily analyzed
because their 1-dimensional sub-systems may be treated independently. We em-
ployed the theory of Darboux polynomials to give a sufficient criterion for non-
existence of decoupled simulating abstractions (up to a some maximum degree of
the abstract basis polynomials; see Prop. 2). Lastly, we described how automati-
cally generated Darboux polynomials (up to some given polynomial degree) can
be used to construct abstract basis polynomials that can yield decoupling sim-
ulating abstractions. The abstractions developed in this paper are in essence a
form of model transformation, which can be integrated in source transformation
and translation tools such as HyST [2]; we leave this for future work.
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