
HAL Id: hal-01374876
https://hal.science/hal-01374876v1

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

MADONA: a method for automateD prOvisioning of
cloud-based component-oriented busiNess Applications

Hind Benfenatki, Catarina Ferreira da Silva, Gavin Kemp, Benharkat
Aïcha-Nabila, Parisa Ghodous, Zakaria Maamar

To cite this version:
Hind Benfenatki, Catarina Ferreira da Silva, Gavin Kemp, Benharkat Aïcha-Nabila, Parisa Ghodous,
et al.. MADONA: a method for automateD prOvisioning of cloud-based component-oriented
busiNess Applications. Service Oriented Computing and Applications, 2017, 11 (1), pp.87-100.
�10.1007/s11761-016-0199-0�. �hal-01374876�

https://hal.science/hal-01374876v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

MADONA - a Method for AutomateD prOvisioning of
cloud-based component-oriented busiNess Applications

Hind Benfenatki · Catarina Ferreira Da Silva · Gavin Kemp ·
Aı̈cha-Nabila Benharkat · Parisa Ghodous · Zakaria Maamar

Received: date / Accepted: date

Abstract Service-oriented computing and cloud com-
puting offer many opportunities for developing and de-

ploying applications. In this paper, we propose and
describe a component-oriented method for automated
provisioning of cloud business applications. The method

covers the whole application’s lifecycle and is based on
cloud orchestration tools that manage the deployment
and dependencies of supplied components. We aim to
reduce the necessary technical knowledge for provision-

ing component-oriented cloud applications. To this end,
we extend Linked Unified Service Description Language
to describe services for matching user’s requirements.

We adopt a real case study to show the feasibility of
the method.

Keywords Cloud computing · Linked services ·
Component-oriented business applications develop-
ment · Service description · Cloud orchestration

tool

1 Introduction

Today’s business applications are typically complex
calling for the collaboration of several independent
components, providing each a separate functionality.

H. Benfenatki, C. Ferreira Da Silva, G. Kemp, P. Ghodous
Université Lyon 1, LIRIS, CNRS, UMR5205, F-69621,
France
E-mail: {hind.benfenatki, catarina.ferreira-da-silva,
gavin.kemp, parisa.ghodous}@liris.cnrs.fr

A.N. Benharkat
INSA - Lyon, LIRIS, CNRS, UMR5205, F-69621, France
E-mail: nabila.benharkat@insa-lyon.fr

Z. Maamar
Zayed University, Dubai, U.A.E
E-mail: zakaria.Maamar@zu.ac.ae

Service-Oriented Computing (SOC) refers to these com-
ponents as services that can be assembled in a loosely-

coupled way. In conjunction with using SOC to address
integration problems, cloud computing has emerged as
another way of helping enterprises access hardware and

software resources on demand and pay-per-use. There is
a consensus in the R&D community that both SOC and
cloud computing constitute a successful combination for

the management of Service-Oriented Cloud Computing
Architecture (SOCCA) [1]. On the one hand, SOC au-
tomates the development of composite applications. On
the other hand, cloud computing provisions deployment

environments for these applications.

Several efforts are put into developing support
tools and languages for the deployment of applica-
tions on cloud environments such as Amazon Web Ser-

vices (AWS) CloudFormation [2], Heat [3], TOSCA [4],
and Juju [5]. These tools and languages use scripts
to describe components of the future cloud applica-
tions and necessary infrastructure resources. Unfortu-
nately, developing such scripts requires a good technical
knowledge of both the deployment language and the
necessary components of the applications. It is worth
noting that these scripts only allow a static composi-
tion of the underlying application components. As a
result, they do not accommodate changes in compo-
nents smoothly. This constitutes a major limitation to
the use of scripts in dynamic environments. In fact, an
implementation change or upgrade of a component can
have an impact for instance, on its composability, nec-

essary resources for its deployment, and its configura-
bility. These changes cannot be taken into account au-
tomatically if we would work with a ready to use script
only.

In this paper, we leverage the benefits of cloud
computing and Service-Oriented Architecture (SOA)

This is a postprint version of the paper published in the Service Oriented Computing and Applications Journal,
2017, Springer, 11 (1), pp.87-100. The final version is available at DOI 10.1007/s11761-016-0199-0

2 Hind Benfenatki et al.

in order to reduce the necessary technical knowledge

and human involvement in provisioning component-

oriented cloud applications (component composition

and application deployment). Our first contribution

is MADONA that stands for Method for AutomateD

prOvisioning of cloud-based component-oriented busi-

Ness Applications. MADONA consists of the follow-

ing phases: (a) Requirement elicitation; (b) Application

components discovery; (c) Integration of new compo-

nents if necessary; (d) Composition plans generation;

(e) Infrastructure as a Service (IaaS) discovery for ap-

plication hosting; (f) Composition plans ranking and

selection; (g) Application configuration and customiza-

tion; (h) Automatic deployment of cloud application;

and (i) Test and Validation of the deployed applica-

tion. Human involvement and technical knowledge are

reduced since MADONA phases are automated. In fact,

the user intervenes only in requirement elicitation phase

and when the application is deployed and ready to use.

The application components discovery and IaaS dis-

covery phases rely on Linked Unified Service Descrip-

tion Language (USDL) [6], [7], [8] descriptions of avail-

able application components and IaaS. According to

Thoma et al., [9] ”Linked USDL is the only current

standardization effort driven by large corporations (such

as SAP, Siemens and Attensity) with the goal of ex-

pressing not only purely functional aspects of a service,

but also the business and operational aspects. A com-

prehensive introduction into each can be found in [10]”.

Our second contribution aims to increase composability

of a component [11] to favor the development of cloud

component business applications. We extend Linked

USDL to track relations that a component can have

and must have with other peers. Based on this exten-

sion, our third contribution is an algorithm for gener-

ation of components composition plans meeting user’s

requirements and taking into account each component’s

composition constraints and possibilities.

The rest of this paper is organized as follows.

Section 2 describes existing service description lan-

guages and application development and deployment

approaches. Section 3 presents MADONA’s phases.

Section 4 describes the implementation of MADONA.

Sections 5 and 6, respectively, evaluates and discusses

our work. Section 7 draws final conclusions.

2 Related work

Our literature review resulted into classifying service-

oriented cloud application provisioning into two cate-

gories: (i) cloud application development environments

and architectures [12], [13], and (ii) cloud application

deployment languages and tools [4], [5].

Several efforts are put into providing environ-

ments for developing service-oriented cloud applica-

tions. SOCCA [1] combines SOA and cloud comput-

ing so that clouds can interoperate with each other

when developing service-oriented applications. In [1],

Software as a Service (SaaS) applications are built by

assembling services which, unlike traditional SOA, are

packages that can be deployed on different clouds. We

refer to these services as components. A cloud broker is

used for discovering the necessary cloud platform and

infrastructure resources for SaaS components. In [13],

Sun et al. describe Service-Oriented Software Develop-

ment Cloud (SOSDC); it is a cloud platform for de-

veloping a service-oriented software and dynamic host-

ing environment. SOSDC’s architecture encompasses

the three levels of cloud services. IaaS level provides

infrastructure resources. Platform as a Service (PaaS)

level provides App Engine for hosting, testing, running,

and monitoring service-oriented software applications.

And, SaaS level provides online service-oriented soft-

ware development environment. Once an application is

built, the developer may request an App Engine for

hosting the application by specifying requirements like

Virtual Machine (VM) images and software appliance.

Zhou et al. [14] extend the conventional architecture of

cloud computing by inserting ”Composition as a Ser-

vice” (CaaS) layer between SaaS and PaaS layers for dy-

namic composition of services. The CaaS layer provides

users with a Cloud-based Middleware for Dynamic Ser-

vice Composition (CM4SC) that allows automatic ser-

vice discovery and automatic and dynamic composition

of Web services.

Other works focus on the deployment of cloud appli-
cations. AWS CloudFormation [2] and Heat [3] (Open-

Stack [15] module) describe the necessary infrastruc-

ture for supporting cloud application execution. In [4],

Binz et al. describe the Topology and Orchestration

Specification for Cloud Applications (TOSCA) OASIS

standard language [16], [17]. TOSCA defines a topology

for deploying cloud applications in terms of components

and relations between these components. TOSCA, also,

allows to describe management plans, which can be ex-

ecuted automatically to deploy, configure, and operate

a cloud application. Juju [5], an open source orches-

tration management tool allows to deploy, configure,

and compose software components on the cloud using

high-level scripts (close to natural language, e.g., ”juju

deploy mysql”). These scripts call charms, which de-

scribe YAML Ain’t Markup Language (YAML) config-

uration files and hooks. Juju environment can be boot-

strapped on many clouds: Amazon Elastic Compute

Cloud (EC2) [18], HP Cloud Services [19], Microsoft

Windows Azure [20], OpenStack, etc.

MADONA - a Method for AutomateD prOvisioning of cloud-based component-oriented busiNess Applications 3

The aforementioned works are used to deploy

cloud applications but require a good prior knowl-

edge of (i) the application components [2], [3], [4], [5],

(ii) the necessary environment for deploying each com-

ponent [4], and (iii) the infrastructure resources for

component deployment [2], [3].

Our work aims to reduce the necessary technical

knowledge for provisioning component-oriented cloud

applications. We rely on Linked USDL to describe

application components and IaaS. Linked USDL de-

scribes business and cloud services and is based on

Linked Data principles [21], which eases its extension.

It reuses several linked vocabularies to describe busi-

ness (e.g., legal issue and provider information), opera-

tional (e.g., service features and operations), and tech-

nical (e.g., used ports and protocols) aspects. Further-

more, Linked USDL is based on HTTP URIs allowing

a global service identification, and on HTTP URLs and

RDF to access service descriptions in a global, standard,

and uniform manner [22]. However, Linked USDL does

not describe composition interactions that a component

has with peers. Nguyen et al. [23] describe services using

blueprints. A blueprint describes a service’s offers, re-

quirements, and performance constraints. Nonetheless,

Nguyen et al. cover environment and composition con-

straints in the requirement description. In fact, require-

ments can be either database (composition) or Web

server (environment). Encompassing environment and

composition constraints in the same concept is not suit-

able while automating the composition of components.

3 Method for automated provisioning of

component-oriented cloud business applications

This section describes first services and then MADONA

in terms of main phases, rationales, and illustrations.

3.1 Overview

Fig. 1 illustrates MADONA’s phases. MADONA is

built upon SOA and cloud computing principles so that

automatic provisioning of component-oriented cloud

applications is achieved (i.e., component composition

and deployment). It takes user’s requirements as in-

put and generates composition plans as output for fu-

ture composite applications to deploy on the cloud. A

composition plan is an abstract application that assigns

components to IaaS. If there are not components that

meet user’s functional requirements, assistance is pro-

vided to the user so that she integrates new components

into the service repository. Juju charms store [24] is an

example of service repository that offers open source ap-

plication components. We enrich this store by adding

cloud services such as IaaS for hosting the generated ap-

plication. We refer to the set of application components

and IaaS as services. We use cloud orchestration tools

(e.g., Juju) to deploy an abstract application on the pre-

selected IaaS. Indeed, orchestration tools allow software

deployment, integration, and scaling on several clouds.

Deployment constraints represent IaaS upon which an

orchestration tool can deploy application components.

3.2 Case study

Our case study refers to a user who needs to provision

a project management system for a software develop-

ment company. The user, also, needs a version control

system so that developers can store, retrieve, and merge

different versions of application development. A partic-

ular project management system may require compo-

nents, which in turn may require other components to

function. It can be composed with a particular Ver-

sion Control System (VCS) or may not have any pos-

sibilities to be composed with a VCS. We do not ex-

pect from the user to specify these technical details

of this requirement. Instead, the user focuses on high-

level functional (such as project management and ver-

sion control systems) and non-functional requirements

(e.g., application cost). The user prefers to host the

generated application in Europe, on ”Amazon” [18]

due to successful previous uses, and to pay application

use costs in ”Euro”, below 50 euros per month. Three

challenges are associated with this scenario: (i) how to

provision a project management application dynami-

cally on the cloud with minimal human intervention,

(ii) how to specify and model the project management

scenario’s functional and non-functional requirements,

and (iii) how to adapt or extend service description lan-

guages to facilitate the selection and composition of the

project management’s components.

3.3 Description of services

Providers are expected to describe supplied application

components and IaaS. Each component has deployment

and configuration scripts and an additional script that

connects it to other components. We extend USDL core

module [25] (Fig. 2) to track the composition interac-

tions that a component has with peers. We consider

two types of interactions when describing a component:

constraints and possibilities. Constraints refer to an ap-

plication’s necessary components, environment, and re-

sources. And possibilities refer to optional components

4 Hind Benfenatki et al.

Fig. 1: MADONA’s main phases

that can be composed together. We consider that en-

vironment constraints (e.g., Web server) are automati-

cally integrated into the deployment scripts. Composi-

tion constraints concern the application components.

To automate the configuration and deployment

of components, we describe configurable parameters

and minimal required resources for each component.

In Fig. 2, the new properties are numbered from 1

to 7 and the new concepts are at the top of these

properties. Each component is described as follows

S={CC, CP, CCP, MRR}.

- CC is the set of Composition Constraints on a compo-

nent. Constraints are either hard or soft. The former

describe the components that must be put together,

e.g., MediaWiki and MySQL database. The lat-

ter describe choices like MSSQL versus PostgreSQL

versus MySQL databases to connect to Joomla.

- CP represents Composition Possibilities of a compo-

nent, i.e., compositions that a component can have

with peers (e.g., memcached, a memory caching

component represents a possible composition of Me-

diaWiki).

- CCP describes Component Configurable Parameters,

like name and logo. Each configurable parameter

is described with a name and type of the Web

page element (e.g., text area or drop-down list)

which serves to generate configuration Web inter-

faces (Section 3.4.7).

- MRR represents the Minimal Resource Requirements

of a component (e.g., number of CPU and memory

size).

1 <http ://mydomain . f r / usd l s /projectman>
2 <ProjectMan>
3 a usdl : s e r v i c e ;
4
5 gr : name ”ProjectMan” ;
6
7 usdl : hasDescr ipt ion ”ProjectMan i s a p ro j e c t
8 management engine . ” ;
9

Fig. 2: Extended Linked USDL core module

10 usdl : hasHardConstraint
11 [
12 a usdl : hardConstraint ;
13 gr : name ”MySQL”
14] ,
15
16 [
17 a usdl : hardConstraint ;
18 gr : name ”MyCRM”
19] ;
20
21 usdl : hasPoss ib leCompos it ion
22 [
23 a usdl : poss ib leCompos i t ion ;
24 gr : name ”MyVCS”
25] ,
26
27 [
28 a usdl : poss ib leCompos i t ion ;
29 gr : name ”Memcached”
30] ;
31
32 usdl : hasMinimalResourceRequirements
33 [
34 a usdl : MinimalResourceRequirements ;
35 usdl : hasCpu ”4” ;
36 usdl : hasMemory ”1G”
37] ;
38
39 hasConf igurableParameter
40 [
41 a usdl : Conf igurableParameter ;
42 gr : name ”name” ;
43 usdl : hasType ” text area ”
44] .

Listing 1: ProjectMan description via .usdl file

Services’ descriptions are stored in a .usdl file.

Listing. 1 illustrates the description of ProjectMan, a

MADONA - a Method for AutomateD prOvisioning of cloud-based component-oriented busiNess Applications 5

project management component, using the extended

Linked USDL. ProjectMan has two possible compo-

sitions with respectively MyVCS (lines 22-25), a ver-

sion control component, and Memcached (lines 27-

30), a memory caching component. It requires MySQL

database to store data (lines 11-14), and My-

CRM (lines 16-19), a CRM component, to link em-

ployees with the customer who initiated the project.

ProjectMan component requires minimal VM configu-

ration with 4 CPU and 1 Go memory (lines 32-37) and

can be personalized by its name (lines 39-44). In addi-

tion, MyCRM needs to communicate with EmployMan

(an employees’ management system) to identify the em-

ployees involved in a project. MyCRM and MyVCS,

each requires MySQL database.

3.4 MADONA’s phases

This subsection illustrates MADONA’s phases (Fig. 1)

from requirement elicitation to tests and validation of

deployed application.

3.4.1 Requirement elicitation phase

This phase describes user’s requirements for the fu-

ture cloud applications using RequIrement VocAbu-

Lary (RIVAL). RIVAL formalizes these requirements

using linked vocabularies and introduces a distinction

between primary and secondary functionalities. These

latter help respectively select primary components and

their possible compositions. The functionality of the de-

sired application is considered as primary, e.g., a project

management functionality in our scenario. Any addi-

tional functionality to this project management ap-

plication is considered as secondary, e.g., requiring a

version control system with the project management

component to store several development versions of a

project. Only one primary functionality is allowed by

project. Several secondary functionalities can be asso-

ciated with it. Fig. 3 illustrates RIVAL classes that de-

scribe vocabulary’s concepts and properties describing

relations between concepts.

It is challenging for a user to estimate acceptable

tolerance thresholds for QoS parameters such as ser-

vice availability and data integrity. In fact, users always

aim for a maximum quality. For these reasons, we use

weights that a user affects to QoS parameters accord-

ing to her priority in the way that the sum of affected

weights equals 10. The choice of the amount of weights

of QoS parameters to equal to 10 is due to the simplic-

ity, in our view, to distribute 10 points rather than a

percentage.

User preferences concern application cost and de-

ployment. The former concerns the maximum cost au-

thorized, currency, and purchase period. The latter con-

cerns the preferred provider and location.

Requirements are translated into a .rival file. List-

ing. 2 illustrates a .rival file generated for the project

management scenario. Lines 3 and 4 describe respec-

tively the user’s primary and secondary functionalities.

The user’s preferences are described from lines 6 to 17,

including the preferred deployment provider and loca-

tion (lines 8-9), and price specification (lines 10-16).

Lines 19-39 describe the user’s QoS requirements. The

.rival file is used in the application component discovery

phase.

User’s requirements may generate conflicts among

themselves. A conflict occurs when requirements gen-

erate incompatibilities between common software at-

tributes [26] or when performing an activity that pre-

vents the execution of another one [27]. It can be due

to inconsistency in the specifications in case of multiple

stakeholders [28]. In our work:

- QoS requirements are expressed as weights rather

than as precise values for each QoS parameter in

order to try to avoid conflicts, such as imposing

multiple authentications (security) and requiring a

minimum time to login at the same time.

- If conflicts exist between two components, they will

not be reflected on the generated application. In

fact, the generation of composition plans consists of

composing components that can be composed and

the ones that have to be composed (composition

constraints and possibilities).

1 <http ://mydomain . f r / r i v a l /project management>
2 <Pro jec t management scenar io> a r i v a l : Pro j ec t
3 r i v a l : hasPr imaryFunct ional i ty ” p ro j e c t management ” ;
4 r i v a l : hasSecondaryFunct iona l i ty ” ve r s i on con t ro l system ” ;
5
6 r i v a l : w i thPre f e r ence s
7 [a r i v a l : Pre f e r ence ;
8 r i v a l : hasPreferredDeploymentProvider Amazon ;
9 r i v a l : hasPreferredDeploymentLocation Europe ;

10 gr : h a sP r i c e Sp e c i f i c a t i o n ;
11 [
12 a gr : P r i c e Sp e c i f i c a t i o n ;
13 gr : hasCurrency ” euro ” ;
14 gr : hasCurrencyValue ”50”;
15 r i v a l : perPeriodOf ”month ” ;
16]
17]
18
19 r i v a l : withQoSRequirements
20 [
21 a r i v a l : QoSRequirement ;
22 gr : hasValue ”Data Privacy ” ;
23 gr : hasIntegerValue ”4”
24] ,
25 [
26 a r i v a l : QoSRequirement ;
27 gr : hasValue ”Response Time ” ;
28 gr : hasIntegerValue ”1”
29] ,
30 [
31 a r i v a l : QoSRequirement ;
32 gr : hasValue ”Data lo s s ” ;
33 gr : hasIntegerValue ”4”
34] ,
35 [
36 a r i v a l : QoSRequirement ;
37 gr : hasValue ” Ava i l a b i l i t y ” ;
38 gr : hasIntegerValue ”1”
39] .

Listing 2: Project management scenario de-
scribed via .rival file

6 Hind Benfenatki et al.

Fig. 3: RIVAL’s concepts and properties

3.4.2 Application components discovery phase

This phase consists of looking for application compo-

nents that meet user requirements’ functionalities (pri-

mary and secondary). This requires matching the user

requirements with existing components. For the sake

of simplicity we adopt a syntactic matching. Semantic

matching is part of our future work and could be based

on some well-defined techniques [29], [30].

Listing. 3 illustrates the SPARQL Protocol and

RDF Query Language (SPARQL) query that returns

the components satisfying the user’s requirements. The

query construction is automatically done by the system.

It follows these steps: check if the user has a preferred

component meeting her requirements based on previous

experiences. If so, the selection is done following the

component’s name rather than using keywords (lines 2-

3); for each desired secondary functionality, selects the

components meeting the latter and that can be com-

posed with the primary components (lines 4-7).

1 SELECT ?x ?b ?e WHERE {
2 ?x usdl : hasDescr ipt ion ” p ro j e c t management ” .
3 ?x gr : name ?b .
4 ?c usdl : hasDescr ipt ion ” ve r s i on con t ro l system ” .
5 ?c gr : name ?e .
6 ?x usdl : hasPoss ib leComposit ion ? f .
7 ? f gr : name ?e .}

Listing 3: SPARQL query for a project manage-
ment application

The components discovery phase returns the possi-

ble combinations of components (CMB) meeting user’s

desired functionalities (primary and secondary).

While generating composition plans, we look for

composition constraints per component involved in a

composition plan via another SPARQL query (Sec-

tion 3.4.4).

3.4.3 Integration of new components phase

The user can upload new components to the service

repository when the existing ones do not meet her re-

quirements. This phase consists of two steps.

1) Integration into the service repository of deploy-

ment, configuration, and composition scripts: these

scripts are used respectively to automate the de-

ployment and customization of a component, and

the management of dependencies with other compo-

nents. These scripts are developed by a component’s

provider and are uploaded to the service repository

via a Web interface. This step is dependent on an

orchestration tool. It allows, in our implementation,

to integrate charms of new components into Juju

store.

2) Component description: this is introduced via a Web

form and automatically translated into a .usdl file

that constitutes our repository of services.

3.4.4 Composition plans generation phase

We generate composition plans that meet user’s re-

quirements and components’ constraints (Listing 4). A

composition plan consists of functional and deployment

parts. The former consists of a list of relations that con-

nects components together. Composition plans’ func-

tional part is generated as follows: we associate with

each possible combination cmb from CMB, a compo-

sition plan (lines 6-29). The first relation of a compo-

sition plan contains the first component of cmb (rep-

resenting a primary component) (line 13), its composi-

tion constraints (lines 14-18), and the other components

MADONA - a Method for AutomateD prOvisioning of cloud-based component-oriented busiNess Applications 7

from cmb (lines 20-23) (representing the possible com-

positions of the primary component meeting all user’s

secondary functionalities). For each component (from

the second component) of the first relation, we look

for its composition constraints (line 26) through a new

SPARQL query. If a query’s result is not null, a new re-

lation is created containing the component and its con-

straints. The added relations are also checked for their

composition constraints (lines 35-53). The deployment

part of a composition plan represents the IaaS upon

which it can be deployed.

Fig. 4 illustrates the composition plans generated

for the running scenario. The functional part of the first

plan is composed of three relations. The first one is com-

posed of ProjectMan, a primary component; MySQL

and MyCRM, its composition constraints; and MyVCS

a component that provides version control manage-

ment functionalities and represents a possible compo-

sition of ProjectMan. The other two relations bound

respectively MyCRM and MyVCS with their compo-

sition constraints. The functional part of the second

composition plan is composed of one relation because

none of the composition constrains and possibilities of

MyProject has a composition constraint.

Fig. 4: Possible composition plans generated for the project
management scenario

1 CMB: Discovery Resu l t s : l i s t o f cmb ;
2 CP: L i s t o f composit ion plans ;
3 cp : A composit ion plan (L i s t o f r e l a t i o n s) ;
4 Relat ion : L i s t o f components invo lved in a r e l a t i o n ;
5
6 f o r (i n t i =0; i<CMB. s i z e ; i++)
7 {
8 cmb=CMB. get (i) ;
9 f o r (i n t j =0; j<cmb . s i z e ; j++)

10 {
11 i f (j==0)
12 {
13 Relat ion . add (cmb . get (j))
14 i f (ge tConst ra in t s (cmb . get (j)) not nu l l)
15 f o r (i n t k=0; k<getConst ra in t s (cmb . get (j)) . s i z e ; k++)
16 {
17 Relat ion . add (getConstra int (cmb . get (j)) . get (k))
18 }
19 }
20 e l s e
21 {
22 Relat ion . add (cmb . get (j)
23 }
24 }
25 cp . add (Relat ion) ;
26 cp=ve r i fCon s t r a i n t s (cp) ;
27 CP. add (cp) ;
28 Relat ion=new(l i s t) ;
29 }
30
31 compos i t ion p lan v e r i fCon s t r a i n t s (compos i t ion p lan cp)
32 {
33 i n t l =0;
34 nb r e l a t i on =1;
35 whi le (l< nb r e l a t i on)

36 {
37 f o r (i n t k=1; k<cp . get (l) . s i z e ; k++)
38 {
39 i f (ge tConst ra in t s (cp . get (l) . get (k)) not nu l l)
40 {
41 Relat ion=new(l i s t) ;
42 Relat ion . add (cp . get (l) . get (k)) ;
43 f o r (i n t m=0; m<getConst ra in t s (cp . get (l) . get (k)) . s i z e ; m++)
44 {
45 Relat ion . add (ge tConst ra in t s (cp . get (l) . get (k)) . get (m)) ;
46 }
47 cp . add (Relat ion) ;
48 nb r e l a t i on++;
49 }
50 }
51 l++;
52 }
53 return (cp) ;
54 }

Listing 4: Composition plan generation algorithm

3.4.5 IaaS discovery phase

This phase selects the IaaS necessary to deploy the gen-

erated composition plans. IaaS available in the service

repository are those upon which the orchestration tool

can deploy components. A SPARQL query (Listing 5)

is automatically generated to select IaaS (line 2) meet-

ing user’s preferences: preferred location (line 3) and

preferred deployment provider (line 4).

1 SELECT ?x WHERE {
2 ?x usdl : h a sC l a s s i f i c a t i o n IaaS .
3 ?x gr : AvailableAtOrFrom Europe .
4 ?x gr : name Amazon .}

Listing 5: SPARQL query for IaaS selection

The discovered IaaS are ranked according to QoS

requirements (service ranking is described in Sec-

tion 3.4.6). The one with the highest rank is selected.

The price of each previously generated composition

plans using the selected IaaS is estimated. If the cost

of a composition plan exceeds the maximum cost set

by the user, the corresponding composition plan is ex-

cluded. If no composition plan remains, the IaaS having

the next better rank is selected. Else, the functional

part of the remaining composition plans are ranked.

The configuration file of the orchestration tool is auto-

matically updated to set the deployment environment

upon the selected IaaS.

In the running scenario, the user prefers Amazon in

Europe for hosting needs. The latter allows to deploy

the two generated composition plans without exceeding

the maximum cost set by the user. In Fig. 4, Amazon

Europe has been added as a deployment part to the

composition plans.

3.4.6 Composition plans ranking and selection phase

Composition plan’s services are ranked according to

user’s QoS requirements and thanks to a ”history of ser-

vice invocation”. The latter provides the QoS param-

eters describing the services according to their previ-

ous invocations. We consider that the history of service

invocation is provided by an independent third-party

8 Hind Benfenatki et al.

service as now we see the proliferation of cloud services

comparison Websites. Cloud armor [31] and Cloudo-

rado [32] provide such third-party evaluation. The for-

mer provides a dataset of cloud services consumers’ QoS

ranking (availability, response time, ease of use etc).

The latter provides a comparison of cloud providers in

terms of SLA level, price, and features.

Two scenarios are available for QoS parameters:

(i) the highest the value of the QoS parameter is, the

better the service is (e.g., availability), and (ii) the low-

est the value of the QoS parameter is, the better the

service is (e.g., response time). Rupper and Rlower are

respectively the ranks regarding these two kinds of QoS

parameters. Let Si be a service and Qj be a QoS pa-

rameter.

R(Si, Qj)

{
Rupper =

V al(Si,Qj)

Max(Qj)
∗ Coefficient

Rlower = (1 −
V al(Si,Qj)

Max(Qj)
) ∗ Coefficient

(1)

Where:

- Val is the value of the QoS parameter for a given

service.

- Max is the maximum value of the QoS parameter

among all services supplying the same functionality.

- And, Coefficient is the weight previously assigned to

the QoS parameter by the user.

Let R(Si) be the global ranking regarding the whole

QoS parameters for Si.

R(Si) =

m∑
j=1

R(Si, Qj) (2)

The rank associated with each possible composition

plan is calculated as the average rank of the compo-

nents involved in it (Equation 3). The plan that has

the highest rank is selected.

R(CompositionP lan) =

∑NB
i=1 R(Si)

NB
(3)

Where NB is the number of components involved in the

composition plan.

3.4.7 Business application configuration phase

Some components can be configured according to user’s

preferences. For the selected composition plan, several

Web interfaces are automatically displayed to the user

according to the selected components and their con-

figurable parameters so that she can personalize the

generated application with specific details related to

its business. For example, the user can personalize the

component with the name and logo of her organization.

She can also introduce username and password of the

administrator and so on. From these information (intro-

duced by the user via the Web form), the orchestration

dedicated scripts are automatically created to configure

the application.

3.4.8 Business application deployment phase

This phase consists of deploying the highly ranked com-

position plan that was generated in the composition

plans generation phase. We generate a high-level script

deploying the components and considering the relations

between them. The script is dedicated to the cloud or-

chestration tool used (”Juju” in our implementation) in

MADONA system for managing components deploy-

ment, configuration, and composition. It is generated

as illustrated in Listing 6. For each relation from the

selected composition plan, the first component is de-

ployed. Then, each other component of the relation is

deployed, and related to the first component (lines 13-

17). Finally, the first component of the first relation is

exposed (line 20) to allow the user access the deployed

application.
1 Input : Plan (r ep r e s en t s the s e l e c t e d plan)
2 Output : s c r i p t (deployment s c r i p t)
3
4 f o r (i n t i =0, i<Plan . s i z e , i++)
5 {
6 f o r (i n t j =0; j<Plan . get (i) . s i z e ; j++)
7 {
8 i f (Plan . get (i) . get (j) has not been deployed yet)
9 {

10 s c r i p t=s c r i p t+”Juju deploy ”
11 +Plan . get (i) . get (j) ;
12 }
13 i f (j >1)
14 {
15 s c r i p t=s c r i p t+”ju ju add−r e l a t i o n ”
16 +Plan . get (i) . get (j)+” ”+Plan . get (i) . get (0) ;
17 }
18 }
19 }
20 s c r i p t=s c r i p t +”ju ju expose ”+Plan . get (0) . get (0) ;

Listing 6: Deployment script generation algorithm

Listing. 7 illustrates the automatically generated

Juju dedicated command lines that deploy the selected

composition plan. For each component deployment, we

take into account its minimal resource requirements

(line 1 of Listing. 7).
1 ju ju deploy −−c on s t r a i n t s ”cpu−co r e s=4 mem=1G” projectMan ;
2 ju ju deploy mysql ;
3 ju ju add−r e l a t i o n MySQL projectMan ;
4 ju ju deploy MyCRM;
5 ju ju add−r e l a t i o n MyCRM projectMan ;
6 ju ju deploy MyVCS;
7 ju ju add−r e l a t i o n MyVCS projectMan ;
8 ju ju add−r e l a t i o n MySQL MyCRM;
9 ju ju deploy EmployMan ;

10 ju ju add r e l a t i on EmployMan MyCRM,
11 ju ju add−r e l a t i o n MySQL MyVCS;
12 ju ju expose projectMan ;

Listing 7: The generated deployment script for the
”project management” scenario

Redeployment can occur if the user does not val-

idate the resulted business application after the tests

have occurred. In this case, the allocated resources for

the previous deployment are released and another com-

position is deployed.

MADONA - a Method for AutomateD prOvisioning of cloud-based component-oriented busiNess Applications 9

3.4.9 Tests and validation phase

The validation is done by the user after testing the

deployed business application. Two types of tests are

considered: performance and conformity. The former

is done automatically using a testing tool such as

Gatling [33]. The latter is done by the user who com-

pares her requirements to the resulted business appli-

cation. After tests, the user submits to the system her

validation (satisfaction or dissatisfaction) regarding the

deployed application. If the user is unsatisfied, another

composition is deployed, other tests are performed, and

the user has to notify her validation. This cycle is re-

peated until the user satisfaction is achieved or no other

composition is possible.

4 Implementation

To validate and evaluate our approach, we im-

plemented a system for MADONA as a Web

application. A video of the system is available

at liris.cnrs.fr/hind.benfenatki/demo.mp4. We chose

Grails [34] as a framework that allows the develop-

ment of applications following the Model, View, Con-

troller (MVC) pattern. MADONA is based on an or-

chestration tool for managing the deployment of ap-

plication components of a composition plan. We chose

Juju as an orchestration tool; it allows component de-

ployment, configuration, and composition using high-

level scripts which is more suitable for automating the

deployment phase. Furthermore, Juju store offers com-

ponents that have the necessary support for our imple-

mentation. We use respectively Jena API and Jena-arq

API to model and query .rival and .usdl files.

The system is deployed on top of a Dell machine,

1.80 GHz with 16 GB memory, running Windows 8.1.

We used VirtualBox to install two guest Ubuntu VMs

which get 4 GB of memory and 80 GB of disk in dy-

namic allocation. We installed MADONA system on

one VM and Juju environment on the second. Juju VM

hosts the Web application generated by MADONA. In

fact, Juju environment simulates a cloud environment

upon which several Linux containers are instantiated.

Necessary components are deployed on these Linux con-

tainers. The two VMs communicate using Open-SSH.

Fig. 5 illustrates the architecture of MADONA sys-

tem. It is composed of three levels. The interface

level is responsible for communicating with the user.

A controller routes data inputs (introduced by the user

via Web interfaces) between various Java classes. Five

views have been created. ”NewProject” view to intro-

duce requirements for a new project. ”Config” view to

introduce configuration parameters. ”AddCharm” view

to upload new charms. ”AddDescription” view to de-

scribe new added components. And ”Home” view to

display the status of deployed components.

The application level allows to generate and

deploy composition plans. First, user’s requirements

are translated into .rival file (”RivalGen” class). A

SPARQL query is generated and launched on the .usdl

descriptions of services, and composition plans are gen-

erated (”DiscoCompo” class). The latter are ranked,

and ordered using a bubble sort and their identification

is stored in a text file (”RankingCalcul” class). The

user introduces her configuration parameters (”Con-

fig” view) for the composition plan with the highest

rank. Configuration and deployment scripts are gener-

ated (”DeployConfigScriptGen” class) and sent to Juju

server using SSH for execution (respectively ”AutoCon-

fig” and ”AutoDeploy” classes). The user is then sent

back to the ”Home” page where the matched appli-

cation is made available with the status ”is being de-

ployed”. An auto refresh of the Web page insures that

a script is sent and executed every thirty seconds to

obtain the status of Juju (”IPFind” class). The lat-

ter is analyzed using java String tools and when the

IP address appears a link is provided to that appli-

cation. To allow integrating new components to Juju

store three other classes have been implemented. ”Up-

loadCharm” which allows to transfer charms archive of

a new component to Juju VM. ”USDLGen” class gen-

erates .usdl descriptions in turtle format, from a given

description introduced via the ”AddDescription” view.

For each new component, ”QoSToXML” class gener-

ates randomly QoS values within a predefined interval

for each QoS parameter, and stores them in an XML

file. The QoS XML files are used in the composition

plans ranking phase.

The service level consists of USDL descriptions,

QoS XML files, and distributed components packages.

5 Comparing our system to Bitnami and Juju

We evaluate MADONA system by comparing the pro-

visioning of MediaWiki, WordPress, and the running

scenario using: (i) Bitnami IaaS [35], (ii) orchestration

tool Juju, (iii) MADONA system, and (iv) local deploy-

ment in Ubuntu machine.

Bitnami allows to deploy ready and static cloud ap-

plications in a simple and automated manner. The user

has to select the appropriate application, deployment

provider and location, operating system, server type,

disk size, application options such as login and pass-

word of the application, development options to include

the installation of Web servers, and application proper-

ties such as language and nickname. These inputs have

10 Hind Benfenatki et al.

Fig. 5: Architecture of MADONA system

default values to allow the user to deploy her applica-

tion easily.

Fig. 6 shows the set up time of the Juju environment

according to the different phases: installation, configu-

ration and bootstrap. Bitnami, MADONA and local de-

ployment do not require any environment installation.

Fig. 6: Juju environment set up time

Fig. 7 shows the provisioning time of MediaWiki

and WordPress scenarios. Each scenario is composed

of three components. The choice to evaluate provision-

ing time using MediaWiki and WordPress scenarios is

guided by the fact that the components involved are

available in Bitnami and Juju. The discovery and de-

ployment times are hard to evaluate for Juju and local

deployment due to the limited control over any man-

ual work. In fact, the discovery process varies depend-

ing on how it is done, what selection criteria are, and

so on. And the deployment time varies depending on

how familiar the user is with this kind of installation.

The provisioning of MediaWiki and WordPress using

MADONA consumes more time than Bitnami. In fact,

an increase of 13 seconds (+3%) is observed while pro-

visioning MediaWiki. The purpose of evaluating pro-

visioning time with Bitnami and MADONA is to show

that MADONA provisions applications in a satisfactory

time in comparison to an industrial solution. The provi-

sioning of MediaWiki and WordPress using MADONA

consumes more time than Juju (an increase of 3 sec-

onds (+1%) is observed while provisioning MediaWiki).

However, MADONA automates the phases before the

deployment and is based on Juju.

We choose to evaluate the provisioning time instead

of resource consumption to analyze efficiency through

computational cost for the following reasons:

- Bitnami is an industrial platform so it is hard to

compare MADONA with Bitnami because we do

not have any information related to resource allo-

cation and consumption for the provisioning using

Bitnami.

- Optimizing the computational cost through provi-

sioning time and resource consumption is out of the

scope of this work.

Despite a larger provisioning time using MADONA,

it allows to compose components on the fly and au-

tomatically meeting user’s requirements. MADONA

reduces the technical knowledge needed to provision

any cloud-based component-oriented business applica-

tions (Fig.9 and 10). In fact, each phase of MADONA

is fully automated, and the user’s requirements are ex-

pressed in a high-level regarding the technical details (in

terms of functionalities, QoS requirements, and cost

MADONA - a Method for AutomateD prOvisioning of cloud-based component-oriented busiNess Applications 11

Table 1: Bitnami versus Juju versus MADONA

Phase Bitnami Juju MADONA
Requirement
elicitation

The user chooses explicitly the
application to deploy. The user
has to choose from a set of exist-
ing applications

The user chooses explicitly compo-
nents to deploy and compose. The
user has to choose from a set of ex-
isting components

Needed components are described in
terms of functionalities or by their name

Application
components
discovery

No discovery since the user
chooses the needed application

No discovery since the user chooses
the needed components

Components are chosen based on re-
quired functionalities or required com-
ponents. Discovery concerns needed
components and their composition con-
straints and possibilities

Integration of
new compo-
nents

Is possible only by the provider.
The user has however the possi-
bility to import her VMs from
Amazon. Without the descrip-
tion of the newly integrated com-
ponents, the latter cannot be au-
tomatically connected to other
components in future composi-
tions

The user has the ability to integrate
new components to the Juju charms
store by integrating scripts for de-
ployment, configuration and compo-
sition with other components

The user has the ability to integrate
new components to the service repos-
itory through the integration of com-
ponents descriptions. She also integrate
to the Juju charms store scripts for de-
ployment, configuration and composi-
tion with other components. The newly
integrated components are automati-
cally taken into account in future com-
positions thanks to their description

Composition
plans genera-
tion

Does not exist. Composition pos-
sibilities are not taken into ac-
count. The user selects the ap-
plication to deploy

Does not exist. Composition con-
straints are known but not taken
into account automatically. The user
selects the components to deploy
and to compose

Composition constraints and possibili-
ties are known (from component’s de-
scription) and taken into account auto-
matically to generate composition plans.
The user does not have to check if com-
ponents work well together

IaaS discovery Does not exist. The user must
choose an IaaS for the deploy-
ment. The user has to know (or
inquire about) prices of a given
VM in a given IaaS

Does not exist. The user must choose
an IaaS for the deployment. The user
has to know (or inquire about) prices
of a given VM in a given IaaS

An IaaS is selected automatically ac-
cording to user preferences if she pro-
vides them (preferred location and
provider), QoS requirements, and de-
ployment cost to not exceed

Composition
plans ranking
and selection

Not taken into account Not taken into account Composition plans are ranked to select
the best one (in terms of QoS)

Business
application
configuration

Through a Web interface and
specific to each application

Through configuration scripts and
specific to each application compo-
nent

Through a Web interface and specific to
each application component

Business
application
deployment

A type of VM should be selected
for the deployment of the ap-
plication. A default value exists
to reduce the required knowledge
⇒ The user has to know the min-
imal configuration allowing the
good functioning of the applica-
tion

A type of VM should be selected
for the deployment of components.
A default value exists to reduce the
required knowledge ⇒ The user has
to know the minimal configuration
allowing the good functioning of the
component. The user creates the de-
ployment script

Minimal required resources (CPU and
memory) are known (from component
description as illustrated in Listing 1)
allowing to deploy the component in a
VM having sufficient resources. This is
taken into account automatically. De-
ployment script is automatically gener-
ated and executed

and deployment preferences). Conversely, Bitnami de-

ploys only ready applications, and Juju requires user’s

intervention in the selection of the required components

and in the deployment script generation.

Fig. 8 illustrates the execution time of MADONA’s

phases following three scenarios varying the number

of (i) desired functionalities, (ii) generated composi-

tion plans, and (iii) components and relations in each

composition plan. The phases consuming more time are

those manipulating files. We observe a remarkable in-

crease in composition plans ranking time as the size

of the obtained results increases (in terms of number

of generated composition plans, relations, and compo-

Fig. 7: Provisioning time of MediaWiki and WordPress

nents involved). This is due to the fact that the rank-

12 Hind Benfenatki et al.

Fig. 8: Execution time of MADONA’s phases using three sce-
narios

ing phase queries one QoS XML file per component

involved in the generated composition plans.

Out of Fig. 9 we observe that the user has to de-

ploy the application components using scripts for or-

chestration tool Juju and local deployment in ubuntu

machine, while in Bitnami IaaS and MADONA system

the scripts are generated automatically. The deploy-

ment on an IaaS (like Bitnami) is easy to complete,

but this is done in a preconfigured VM upon which the

primary component and its composition constraints are

deployed on a same machine. The composition is not

done dynamically but rather the several compositions

have to be known and scripted in a static way.

Fig. 9: Quantity of script lines needed to deploy MediaWiki
and Wordpress

Fig. 10 illustrates the components that a user has

to be aware of to provision an application with two de-

sired functionalities and three composition constraints

(such as the first composition plan generated for the

running scenario). For both local deployment, Juju, and

TOSCA the user has to know all the components in-

volved in the desired application. Using Bitnami, the

user has not to worry about the composition con-

straints. However, Bitnami does not take into account

composition possibilities when deploying applications.

So, the two components meeting the two functionalities

are not composed. Using MADONA, the user does not

have to know any component of the desired application.

Fig. 10: Components the user has to know to provision our
running scenario following different approaches

Fig. 11: MADONA Versus Bitnami when existing compo-
nents do not meet user’s requirements

Fig.11 compares Bitnami and MADONA when

available components do not meet user’s functional

and non-functional requirements. While MADONA al-

lows the user to enrich the repository of services by

adding external components, Bitnami just allows users

to import their EC2 instances. Using MADONA, new

components are automatically integrated into the ser-

vice repository and used (discovered, composed and de-

ployed) in future provisionings.

As a first conclusion, MADONA system ”is close”

to Bitnami in the fact that the user does not need to

MADONA - a Method for AutomateD prOvisioning of cloud-based component-oriented busiNess Applications 13

Table 2: Local deployment versus using Juju versus using Bitnami versus using MADONA

System Local deployment Using Juju Using Bitnami Using MADONA
Prerequisite -Web server Juju server Web browser Web browser

-Data Base Server
-Components’ packages

write any script to deploy the needed application, and

does not require any pre-installation. However, these

two systems differ essentially in the necessary techni-

cal knowledge when provisioning of the desired appli-

cation (Fig. 10, and Table 1), and in the provisioning

lifecycle as illustrated in Table 1. Differences between

MADONA and Bitnami are explained in the next Sec-

tion.

6 Discussion

We have cited various cloud application development

and deployment approaches. Each covers SaaS, PaaS

and/or IaaS levels.

Tables 1 and 2 highlight the common and varied

properties between Bitnami, Juju, local deployment,

and MADONA. Even if the deployment of the desired

application is automated for Bitnami and MADONA

systems, the application construction is different. In

fact, with Bitnami, the user chooses the application to

deploy, the IaaS upon which it will be deployed, and

the necessary VM type. The composition constraints

are automatically taken into account in a static way,

i.e., Bitnami does not compose application components

on the fly following users’ requirements. Furthermore,

Bitnami does not take into account composition pos-

sibilities in application deployment. Using MADONA,

composition constraints and possibilities management

is done automatically and dynamically making the pro-

cess generic and enrichable. Furthermore, the discov-

ery process using MADONA reduces technical knowl-

edge because users are asked to supply the information

about the needed functionality instead of the applica-

tion name, and they do not have to select IaaS provider

and VM types.

Table 3 illustrates the comparison between the re-

lated work and our approach according to the follow-

ing criteria: cloud level covered and used approaches. It

appears that the related work are focusing on a special

issue such as deployment of cloud applications [4], [5],

or development environment [13]. MADONA provides a

requirement vocabulary for cloud applications; extends

Linked USDL to describe the composition constraints

and composition possibilities in order to make the com-

position plan generation automatic and dynamic; auto-

mates the deployment process; uses orchestration tools

Table 3: MADONA versus the related work

Work Approach Cloud
level

Comments

SOSDC
[13]

Service-
Oriented

SaaS,
PaaS,
IaaS

Platform specific

TOSCA
[4]

Package ori-
ented

SaaS,
IaaS

Topology for the de-
ployment of a cloud
application describ-
ing the structural
description of the
application

Juju [5] Orchestration
tool

IaaS Allows to deploy com-
ponents using charms

Bitnami
[35]

Application
hosting
platform

SaaS Allows to deploy sup-
plied applications

MADONA Component-
Oriented

SaaS,
IaaS

Complete method for
automatic and dy-
namic cloud applica-
tion provisioning

to deploy and manage constraints and possibilities be-

tween components in a dynamic way.

7 Conclusion

In this paper, we presented MADONA - a Method for

AutomateD prOvisioning of cloud-based component-

oriented busiNess Applications - that reduces the tech-

nical burden on users of knowing cloud application

provisioning. MADONA covers application provision-

ing lifecycle from requirement elicitation to validation

phases. It is iterative and adaptive to user needs allow-

ing to deploy several applications until user’s require-

ments are met. We also defined RIVAL - a RequIre-

ments VocAbuLary - for describing users requirements

in order to provision a cloud business application. To

automate the discovery of components, we extended

Linked USDL to track the relations that a component

can and must have with peers such as composition con-

straints and possibilities. We use ”Juju”, a cloud orches-

tration tool, which facilitates the deployment and man-

agement of dependencies of components. Component

dependency management is done dynamically making

the process generic and the repository of services enrich-

able. MADONA system has been developed and tested

following a running scenario.

14 Hind Benfenatki et al.

As part of our ongoing work, we intend to integrate a

discovery approach allowing to query distributed repos-

itories of services. We also plan to integrate semantic

matching in the components discovery phase. Also, a

negotiator module will be added to allow the system to

negotiate user preferences while composition plans are

generated.

Acknowledgements The authors would like to thank Pro-
fessor Jorge Cardoso for commenting earlier versions of the
manuscript. They would also like to thank the anonymous
reviewers for their constructive feedback.

References

1. Tsai WT, Sun X, Balasooriya J (2010) Service-oriented
cloud computing architecture. Seventh International Con-
ference on Information Technology: New Generations
(ITNG), (pp. 684-689). IEEE.

2. Amazon CloudFormation (2016) Available:
https://aws.amazon.com/fr/cloudformation/.

3. Heat (2016) Available: https://Wiki.openstack.org/Wiki/Heat.
4. Binz T, Breitenbcher U, Kopp O, Leymann F (2014)

TOSCA: portable automated deployment and manage-
ment of cloud applications. Advanced Web Services,
(pp. 527-549). Springer.

5. Juju (2016) Available: https://juju.ubuntu.com/.
6. Linked USDL (2013) Available: http://www.linked-

usdl.org/.
7. Cardoso J (2013) A Unified Language For Ser-

vice Description: A Brief Overview. Available:
http://www.issip.org/2013/04/26/a-unified-language-
for-service-description-a-brief-overview/.

8. Pedrinaci C, Cardoso J, Leidig T (2014) Linked USDL:
a vocabulary for web-scale service trading. The Semantic
Web: Trends and Challenges, (pp. 68-82). Springer.

9. Thoma M, Antonescu AF, Mintsi T, Braun T (2013)
Linked Services for Enabling Interoperability in the Sens-
ing Enterprise. Enterprise Interoperability, (pp. 131-144).
Springer.

10. Barros A, Oberle D (2012) Handbook of service descrip-
tion: USDL and its methods. Springer.

11. Gu Q, Lago P (2009) Exploring service-oriented system
engineering challenges: a systematic literature review. Ser-
vice Oriented Computing and Applications, (pp. 171-188).
Springer.

12. Ardagna D, Di Nitto E, Casale G, Petcu D, Mo-
hagheghi P, Mosser S, Matthews P, Gericke A, Ballagny C,
D’Andria F, Nechifor CS, Sheridan C (2012) Modaclouds:
A model-driven approach for the design and execution of
applications on multiple clouds. 4th International Work-
shop on Modeling in Software Engineering, (pp. 50-56).
IEEE.

13. Sun H, Wang X, Zhou C, Huang Z, Liu X (2010) Early
experience of building a cloud platform for service oriented
software development. IEEE International Conference on
Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS), (pp. 1-4). IEEE.

14. Zhou J, Athukorala K, Gilman E, Riekki J, Ylianttila M
(2012) Cloud architecture for dynamic service composi-
tion. International Journal of Grid and High Performance
Computing (IJGHPC), (pp. 17-31). IGI Global.

15. OpenStack Open Source Cloud Computing Software
(2014) Available: https://www.openstack.org/.

16. OASIS-Advanced open standards for the information so-
ciety (2014) Available: https://www.oasis-open.org/.

17. TOSCA Language (2014) Available: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-
os.html# Toc356403635.

18. Amazon Elastic Compute Cloud (2014) Available:
http://aws.amazon.com/fr/ec2/.

19. HP Cloud (2014) Available: http://www.hpcloud.com/.
20. Windows Azure (2014) Aavailable:

http://azure.microsoft.com/fr-fr/.
21. Linked Data - Connect Distributed Data across the Web

(2013) Available: http://www.linkeddata.org/.
22. Cardoso J, Binz T, Breitenbücher U, Kopp O, Leymann F

(2013) Cloud Computing Automation: Integrating USDL
and TOSCA. Conference on Advanced Information Sys-
tems Engineering, (pp. 1-16). Springer.

23. Nguyen DK, Lelli F, Papazoglou MP, Van den Heuvel WJ
(2012) Issue in automatic combination of cloud services.
IEEE 10th International Symposium on Parallel and Dis-
tributed Processing with Applications (ISPA), (pp. 487-
493). IEEE.

24. Juju charms store (2016) Available:
https://jujucharms.com/store.

25. Linked USDL modules (2013) Available:
https://github.com/linked-usdl.

26. Egyed A, Grnbacher P (2004) Identifying requirements
conflicts and cooperation: How quality attributes and au-
tomated traceability can help. IEEE Software, (pp. 50-58).
IEEE.

27. Hausmann JH, Heckel R, Taentzer G (2002) Detection
of conflicting functional requirements in a use case-driven
approach: a static analysis technique based on graph trans-
formation. 24th international conference on software engi-
neering, (pp. 105-115). ACM.

28. Easterbrook S (1994) Resolving requirements conflicts
with computer-supported negotiation. Requirements en-
gineering: social and technical issues, (pp. 41-65). ACM.

29. Vu LH, Hauswirth M, Aberer K (2005) Towards P2P-
based semantic web service discovery with QoS support.
International Conference on Business Process Manage-
ment, (pp. 18-31). Springer.

30. Nayak R, Lee B (2007) Web service discovery with addi-
tional semantics and clustering. International Conference
on Web Intelligence, (pp. 555 - 558). IEEE.

31. Cloud Armor (2016) Available:
http://cs.adelaide.edu.au/ cloudarmor/ds.html.

32. Cloudorado (2016) Available:
https://www.cloudorado.com/.

33. Gatling: Load Testing tool (2014) Available:
http://gatling-tool.org/.

34. Grails framework (2015) Available: https://grails.org/.
35. Bitnami: Cloud hosting (2014) Available:

https://bitnami.com/.

