
HAL Id: hal-01374814
https://hal.science/hal-01374814v1

Submitted on 1 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An overview of the modelling of fracture by gradient
damage models

Jean-Jacques Marigo, Corrado Maurini, Kim Pham

To cite this version:
Jean-Jacques Marigo, Corrado Maurini, Kim Pham. An overview of the modelling of fracture by
gradient damage models. Meccanica, 2016, 51 (12), pp.3107-3128. �10.1007/s11012-016-0538-4�. �hal-
01374814�

https://hal.science/hal-01374814v1
https://hal.archives-ouvertes.fr


An overview of the modelling of fracture by gradient damage models

Jean-Jacques Marigoa,∗, Corrado Maurinib, Kim Phamc
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Abstract

The paper is devoted to gradient damage models which allow us to describe all the process of
degradation of a body including the nucleation of cracks and their propagation. The construction
of such model follows the variational approach to fracture and proceeds into two stages: (i)
definition of the energy; (ii) formulation of the damage evolution problem. The total energy
of the body is defined in terms of the state variables which are the displacement field and the
damage field in the case of quasi-brittle materials. That energy contains in particular gradient
damage terms in order to avoid too strong damage localizations. The formulation of the damage
evolution problem is then based on the concepts of irreversibility, stability and energy balance.
That allows us to construct homogeneous as well as localized damage solutions in a closed form
and to illustrate the concepts of loss of stability, of scale effects, of damage localization, and of
structural failure. Moreover, the variational formulation leads to a natural numerical method
based on an alternate minimization algorithm. Several numerical examples illustrate the ability
of this approach to account for all the process of fracture including a 3D thermal shock problem
where the crack evolution is very complex.
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1. Introduction

Failure in brittle material often manifests in the form of cracks where the material “breaks”
and the stiffness drops. In discrete approaches of failure, the cracks are modeled as surface
of discontinuity of the displacement fields where possible jumps of the displacement field can
occur. They are opposed to continuum approaches in which the crack is viewed as a damaged
zone where a loss of stiffness continuously occurs along localized bands of non-zero thickness.
The most widely accepted discrete crack model is the Griffith model, which assumes that the
creation of the crack is done at expenses of a energy dissipation proportional to the crack surface,
and that the crack propagation is not possible if this energy is larger than the elastic energy
rewarded during a virtual crack propagation. In the end of the nineties, this energetic theory
has been put in a precise mathematical setting by [19], allowing for the generalisation to the
case of cracks of arbitrary shapes and with complex evolution in time. The key advantage of
the Griffith model with respect to the damage model is its simplicity when the crack path is
postulated in advance.

In damage models, the failure is described by means of an internal variable, the so-called
damage variable, which allows to modulate the stiffness of the material. In local damage models,
the material failure is controlled purely locally i.e. at a material point, by a critical stress which
defines an elastic domain and a damage criterion as in plasticity. For standard damage models,
it is shown that the quasi-static evolution of a damaging body can be recast into a variational
formulation [31, 38] which consists in minimizing locally the total energy of the system under
an irreversibility condition on the damage variable while enforcing an energy balance condition.
For standard damage models, the total energy can be read as the sum of an elastic energy
and a dissipated energy. For stress-hardening local damage models, the evolution problem of a
damaging body is well-posed and the response is unique. On the other hand, for stress-softening
local damage models which aim to capture complete failure, the evolution problem becomes
ill-posed [8] and damage tends to concentrate into band of zero thickness, hence leading to the
failure of the body without any dissipated energy. From the numerical point of view, such
stress-softening models gives spurious mesh dependency of the results.

To overcome such drawbacks, a regularization of the stress-softening damage model is re-
quired. A possible choice is to regularize the model through the introduction of gradient terms
of the damage variable [35, 36, 15, 30, 9, 39]. In the variational approach of damage mechanics,
such regularization can be achieved in an elegant way by adding to the local part of the total
energy, a non-local counterpart depending on the gradient of the damage variable [39]. This
results in the necessary emergence of a internal length in such regularized damage model. The
consequences are of different kinds : the damage criterion becomes non-local and damage local-
izations has a finite thickness related to the internal length of the model, hence leading to size
effects in the model response. Moreover, when the internal length is “small” compared to the
characteristic size of the body, the gradient damage model behaves asymptotically as a Griffith
fracture model with damage localizations viewed as sharp cracks [14, 46]. However, compared
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to Griffith fracture model, such gradient damage models or alternatively called smeared crack
models are much more practical when considering cracks of unknown and possibly complex
shapes, because they do not require the explicit description of the crack geometry: the cracks
are identified a posteriori as the regions where the elastic stiffness vanishes over localized bands.
Another fundamental advantage of gradient damage models is related to the existence an in-
trinsic elastic limit stress compared to Griffith model and therefore the ability to retrieve crack
nucleation, i.e. the creation of a crack from an intact material with smooth boundaries.

The fundamental link between gradient damage models and Griffith model of fracture me-
chanics relies strongly on the variational structure of both models, hence justifying the necessity
to work with standard damage models. Indeed, gradient damage models appear as an ellip-
tic approximation of the variational fracture mechanics problem. The variational approach of
brittle fracture recast the evolution problem for the cracked state of a body as a minimality
principle for an energy functional sum of the elastic energy and the energy dissipated to create
the crack [19]. On the basis of the results of the mathematical theory of image segmentation
and free-discontinuity problems [34, 3], [12] approximate the minima of this energy functional
through the minimization of a regularized elliptic functional that may be mechanically inter-
preted as the energy of a gradient damage model with an internal length. Mathematical results
based on Gamma-Convergence theory show that when the internal length of a large class of
gradient damage models tends to zero, the global minima of the damage energy functional tend
towards the global minima of the energy functional of Griffith brittle fracture [14]. The same
is true for the corresponding quasi-static evolutions ruled by a global minimality principle [22].
Similar variational approximations of brittle fracture have emerged in the community of physi-
cists adopting Ginzburg-Landau theories to study phase transitions [25, 23], producing relevant
results [43]. Nowadays the so-called phase-field models of fracture are extensively adopted in
computational mechanics to study fracture phenomena [27, 20, 44, 26, 33, 10, 28].

This text focusses on the fundamental variational principles which govern the construction
and the main properties of gradient damage models. It constitutes essentially a summary of
the works devoted to the variational approach to fracture, starting from [19] and followed by
several other papers like [12] where the first numerical tests using Ambrosio-Tortorelli’s model
are presented, [38, 39] where a general method for the construction of gradient damage models is
proposed, [42] where a method for the experimental identification of a gradient damage model is
proposed, [9] or [40, 41] where some general qualitative properties of such models are discussed,
[4] where the delicate issue of the asymmetric behavior between tension and compression is
addressed, [46] where a fundamental link with Griffith’s fracture theory is proved, [47] and [13]
where a complete theoretical and numerical analysis of the thermal shock problem is made and
compared to experimental results.

The paper is organized as follows. Section 2 is devoted to the formulation of gradient damage
models in a general context. In Section 3, we consider the evolution problem for the 1D traction
of a bar. We first construct the homogeneous solution before to study its stability. Then we
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construct solutions with damage localization. Finally we compare several models on the basis of
two fundamental global properties: the force-displacement curve and the stability diagram for
homogenous solutions. This analysis provides useful criteria for the selection of the constitutive
laws and the identification of the internal length. Section 4 describes the numerical strategy that
may be adopted to solve the damage evolution problem in a general setting. In particular, the
numerical results obtained for the 2D version of the traction test are compared to the analytical
ones derived in the 1D setting. We finally consider the thermal shock problem to illustrate all
the power of the variational approach to fracture by gradient damage models. In particular, it
is shown that one can account for all stages of the fracture evolution, from the nucleation of
an array of periodic cracks to the phenomenon of period doubling, in perfect agreement both
qualitatively and quantitatively with experimental results.

The summation convention on repeated indices is implicitly adopted in the sequel. The vec-
tors and second order tensors are indicated by boldface letters, like u and σ for the displacement
field and the stress field. Their components are denoted by italic letters, like ui and σij . The
third or fourth order tensors as well as their components are indicated by a sans serif letter, like
A or Aijkl for the stiffness tensor. Such tensors are considered as linear maps applying on vectors
or second order tensors and the application is denoted without dots, like Aε whose ij-component
is Aijklεkl. The inner product between two vectors or two tensors of the same order is indicated
by a dot, like a ·b which stands for aibi or σ · ε for σijεij . We use the notation A > 0 to denote
positive definite tensor.

2. Variational formulation of isotropic damage models

2.1. Setting of the gradient damage model

We simply recall here the main steps of the construction of a gradient damage model by a
variational approach, the reader interested by more details should refer to [38] and [39]. Let us
consider a homogeneous n-dimensional body whose reference configuration is the open connected
bounded set Ω ⊂ Rn of characteristic size L. This body is made of a strongly brittle damaging
material whose behavior is defined as follows:

1. The damage parameter is a scalar which can only grow from 0 to 1, α = 0 denoting the
undamaged state and α = 1 the completely damaged state.

2. The state of the volume element is characterized by the triplet (ε, α,g) where ε, α and g
denote respectively the strain tensor, the damage parameter and the gradient of damage
vector (g = ∇α).

3. The bulk energy density of the material is the state function W : (ε, α,g) 7→ W (ε, α,g).
Therefore, the material behavior is non local in the sense that it depends on the gradient
of damage. To simplify the presentation, we will only consider behaviors such that the
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bulk energy density is the sum of three terms: the stored elastic energy ψ(ε, α), the local
part of the dissipated energy by damage w(α) and its non local part 1

2
w1`

2g · g,

W (ε, α,g) = ψ(ε, α) + w(α) + 1
2
w1`

2g · g, (1)

each of these terms enjoying the following properties:

(a) The elastic energy reads as

ψ(ε, α) = 1
2
A(α)(ε− ε0) · (ε− ε0), (2)

where ε0 is a given pre-strain1 and A(α) is the stiffness tensor of the material in its
damaged state α. The stiffness function α 7→ A(α) decreases from A0 to 0 when α
grows from 0 to 1.

(b) The local dissipated energy density is a positive increasing function of α, increasing
from 0 when α = 0 to a finite positive value w1 when α = 1. Therefore w1 represents
the energy dissipated during a complete, homogeneous damage process of a volume
element: w1 = w(1).

(c) The non local dissipated energy density is assumed to be a quadratic function of the
gradient of damage. Since the damage parameter is dimensionless and by virtue of
the above definition of w1, ` has the dimension of a length. Accordingly, ` can be
considered as an internal length characteristic of the material while having always
in mind that the definition of ` depends on the normalizations associated with the
choices of the critical value 1 for α and w(1) for the multiplicative factor.

4. The dual quantities associated with the state variables are respectively the stress tensor
σ, the energy release rate density Y and the damage flux vector q:

σ =
∂W

∂ε
(ε, α,g), Y = −∂W

∂α
(ε, α,g), q =

∂W

∂g
(ε, α,g). (3)

Accordingly, these dual quantities are given by the following functions of state:

σ = A(α)(ε− ε0), Y = − 1
2
A′(α)(ε− ε0) · (ε− ε0)− w′(α), q = w1`

2g, (4)

where the prime denotes the derivative with respect to α.

The underlying local behavior is characterized by the function W0 defined by W0(ε, α) =
W (ε, α,0). We assume that it corresponds to a strongly brittle material, see [40, Hypothesis 1].
That means specifically that the material has a softening behavior but also that the energy
dissipated during a process where the damage parameter grows from 0 to 1 is finite. The latter
property is ensured by the fact that w(1) < +∞. The former one requires that the elastic

1In the thermal shock problem treated in the last section, the pre-strain is the thermal strain induced by the
given temperature field which depends on time. Therefore, we will assume that ε0 is a given time-dependent field.
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domain in the strain space R(α) is an increasing function of α (strain hardening) while the
elastic domain in the stress space R∗(α) is a decreasing function of α (stress softening). Those
elastic domains are defined by

R(α) =

{
ε ∈Ms :

∂W0

∂α
(ε, α) ≥ 0

}
, R∗(α) =

{
σ ∈Ms :

∂W ∗0
∂α

(σ, α) ≤ 0

}
(5)

where W ∗0 (σ, α) = supε∈Ms

{
σ · ε−W0(ε, α)

}
and Ms denotes the space of symmetric tensors.

In the present context, one gets

W0(ε, α) = 1
2
A(α)(ε− ε0) · (ε− ε0) + w(α) (6)

and hence
W ∗0 (σ, α) = σ · ε0 + 1

2
S(α)σ · σ − w(α), (7)

where the compliance tensor S(α) = A(α)−1 increases from S0 to infinity when α grows from 0
to 1. Accordingly, the elastic domains R(α) and R∗(α) read

R(α) = {ε ∈Ms : − 1
2
A′(α)(ε− ε0) · (ε− ε0) ≤ w′(α)},

R∗(α) = {σ ∈Ms : 1
2
S′(α)σ · σ ≤ w′(α)}.

Therefore, the material is said to be

– strain hardening when α 7→ (−A′(α)/w′(α)) is decreasing with respect to α, i.e.:

w′(α)A′′(α)− w′′(α)A′(α) > 0. (8)

This means that the domain of admissible strains in the elastic regime is increasing for
increasing damage.

– stress hardening (resp. softening) when α 7→ (S′(α)/w′(α)) is decreasing (resp. increasing)
with respect to α, i.e.:

w′(α)S′′(α)− w′′(α)S′(α) < (resp. >)0, (9)

then the domain of admissible stress in the elastic regime is increasing (resp. decreasing)
for increasing damage.

The critical stress σc in a uniaxial tensile test such that σ = σce1 ⊗ e1 is then given by

σc =

√
2w′(0)

S′1111(0)
. (10)

Remark 1. The present model is a brittle damage model without any plasticity-like effects.
Including plastic behaviors in our formulation is not a major difficulty. It would require to
change the form of the strain energy by introducing plastic strains and by adding a plastic
dissipated energy (possibly damage dependent), see [1, 2].
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2.2. The evolution problem

The body is submitted to a time dependent loading which consists of a density of volume
forces ft, a density of surface forces Ft prescribed on the part ∂NΩ of the boundary and pre-
scribed displacements Ut on the complementary part ∂DΩ of the boundary, t denoting the time
parameter. The potential of the given external forces at time t can read as the following linear
form We

t defined on the set Ct of kinematically admissible displacement fields

We
t (v) :=

∫
Ω

ft · v dx+

∫
∂NΩ

Ft · v ds

with
Ct :=

{
v : v = Ut on ∂DΩ

}
.

The law of evolution of the damage in the body is written in a variational form and based on
the definition of the total energy of the body associated with admissible states. Specifically, if
(v, β) denotes a pair of admissible displacement and damage fields at time t, i.e. if v ∈ Ct and
β ∈ D with

D := {β : 0 ≤ β ≤ 1 in Ω},
then the total energy of the body at time t in this state is given by

Pt(v, β) :=

∫
Ω
W (ε(v), β,∇β) dx−We

t (v) (11)

where ε(v) denotes the symmetrized gradient of v.

The damage evolution law. Following the variational approach presented in [38, 39], the
evolution of the damage in the body is governed by the three principles of irreversibility, stability
and energy balance. Specifically these conditions read as follows:

1. Irreversibility: t 7→ αt must be non decreasing and, at each time t ≥ 0, αt ∈ D.
2. Stability: At each time t > 0, the real state (ut, αt) must be stable in the sense that for

all v ∈ Ct and all β ∈ D such that β ≥ αt, there exists h̄ > 0 such that for all h ∈ [0, h̄]

Pt(ut + h(v − ut), αt + h(β − αt) ≥ Pt(ut, αt). (12)

3. Energy balance: At each time t > 0, assuming that the pre-strain does not evolve, the
following energy balance must hold:

Pt(ut, αt) = P0(u0, α0) +

∫ t

0

(∫
Ω
σs ·

(
ε(U̇s)− ε̇0

s

)
dx−We

s (U̇s)− Ẇe
s (us)

)
ds. (13)

In (13), α0 denotes the given damage state at the beginning of the loading process whereas
u0 is the associated displacement field obtained by solving the elastostatic problem at time 0:
u0 = argminv∈C0 P0(v, α0); σs denotes the real stress field at time s and is given by (3), U̇s

is the rate of a given (but arbitrarily chosen) admissible displacement field at time s, ε̇0
s is the

given rate of the prescribed pre-strain at time s and Ẇe
s denotes the linear form associated with

the rate of the prescribed volume or surface forces at time s.
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2.3. Kuhn-Tucker necessary conditions

Throughout the paper we will assume that the fields are sufficiently smooth so that all
the calculations make sense. A precise statement of the functional spaces which are needed to
justify all steps is a very difficult task and remains far from the scope of the present paper.
A natural requirement is that the total energy remains finite at each time. Accordingly, the
damage field cannot be discontinuous across any surface. The question is more delicate for
the displacement field because of the loss of stiffness at the points where α is equal to 1. To
simplify the presentation, we only consider in the present subsection the first stage of the damage
evolution, before the nucleation of a crack. In other words, we assume that αt < 1 everywhere in
the body. The reader interested by the case where a crack has nucleated and propagates should
refer to [46] where a complete analysis is made.

One immediately deduces that the stability condition (12) is satisfied only if, at each time,
the body is at equilibrium and the damage criterion is satisfied. Specifically, these two conditions
respectively read in a variational form as∫

Ω
σt · ε(v − ut) dx =We

t (v − ut), ∀v ∈ Ct, (14)

∫
Ω

(−Yt · (β − αt) + qt · ∇(β − αt)) dx ≥ 0, ∀β ∈ D : β ≥ αt, (15)

where σt, Yt and qt denote respectively the stress tensor, the energy release rate density and
damage flux vector which are given in terms of the current state by the constitutive relations
(3). These two conditions can be seen as the first order stability conditions. They are necessary
but not always sufficient in order for (12) to hold. We will introduce second order stability
conditions in the next section to study the stability of the homogeneous response of a bar under
traction.

By standard arguments of the Calculus of Variations, one obtains that (14) is equivalent for
the stress σt = A(α)ε(ut) to satisfy the local equilibrium equation and the natural boundary
conditions on the part of the boundary where they are prescribed:

divσt + ft = 0 in Ω, (16)

σt · n = Ft on ∂FΩ. (17)

By the same procedure, one obtains that (15) is equivalent to the inequalities Yt + div qt ≤ 0 in
Ω and qt · n ≥ 0 on ∂Ω. Using the definitions of the different terms, that leads to the following
inequalities:

0 ≤ − 1
2
S′(αt)σt · σt + w′(αt)− w1`

2∆αt in Ω, (18)

0 ≤ ∂αt
∂n

on ∂Ω. (19)
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The inequality (18) is nothing but the non local damage criterion which involves the laplacian of
the damage field because of the presence of the gradient damage term in the energy. However,
one can see that it gives the usual local criterion in the part of the body which is still undamaged
at time t. Indeed, in the interior of the domain where αt = 0, (18) reads as 1

2
S′(0)σt ·σt ≤ w′(0),

which requires that the stress field is bounded.

Let us use now the energy balance (13). Assuming that the evolution is smooth in time and
space, one can take the derivative of (13) with respect to t which leads to

0 =
d

dt
Pt(ut, αt)−

∫
Ω
σt ·

(
ε(U̇t)− ε̇0

t

)
dx+We

t (U̇t) + Ẇe
t (ut)

=
d

dt

(∫
Ω
Wt dx

)
−
∫

Ω
σt ·

(
ε(U̇t)− ε̇0

t

)
dx−We

t (u̇t − U̇t), (20)

where Wt = W (ε(ut), αt,∇αt). Let us evaluate the derivative with respect to t of the bulk
energy. By virtue of the regularity assumption, one gets

d

dt

(∫
Ω
Wt dx

)
=

∫
Ω

(
σt ·

(
ε(u̇t)− ε̇0

t

)
− Yt · α̇t + qt · ∇α̇t

)
dx. (21)

Inserting (21) into (20) leads to

0 =

∫
Ω

(
σt · ε(u̇t − U̇t)− ft · (u̇t − U̇t)− Yt · α̇t + qt · ∇α̇t

)
dx−

∫
∂NΩ

Ft · (u̇t − U̇t) ds. (22)

Integrating by parts the gradient terms in the integrals over Ω in (22) and using the equilibrium
equations (16)-(17) allow to simplify the energy balance which can read now

0 = −
∫

Ω
(Yt + divqt) · α̇t dx+

∫
∂Ω

qt · n α̇t ds. (23)

Since the irreversibility condition requires that α̇t ≥ 0 everywhere, since the damage criterion
(18) gives Yt + div qt ≤ 0 everywhere and since (19) gives qt · n ≥ 0 on the boundary, the right
hand side of (23) is the sum of non negative terms. Therefore, each term must vanish and we
obtain the following consistency condition which can be seen as the local form of the energy
balance:

α̇t

(
− 1

2
S′(αt)σt · σt + w′(αt)− w1`

2∆αt

)
= 0 in Ω, (24)

α̇t
∂αt
∂n

= 0 on ∂Ω. (25)

Let us remark that (24) states that, at each point, the damage level can increase only if the
damage yield criterion is attained, i.e. only if (18) is an equality. We have thus proved that
the variational formulation of the evolution problem based on the stability criterion, the energy
balance and the irreversibility condition implies the equilibrium and the usual Kuhn-Tucker
conditions. Note however that the equilibrium equations (16)-(17), the damage criterion (18)-
(19) and the local energy balances (24)-(25) are only necessary conditions. An evolution which
satisfies those conditions has also to satisfy second order stability conditions to be really a
solution. We will show that in the next sections.
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3. Application to the 1D tension test

3.1. The 1D problem

This section is devoted to the evolution problem for the traction of a one-dimensional bar of
length L, made of a homogeneous material with stress softening and without pre-strain (ε0 = 0).
The end x = 0 is fixed while the end x = L has a displacement Ut = t L imposed by a hard device
(see Figure 1). This fundamental problem will allow us to illustrate some general properties of
the variational approach to fracture by gradient damage models like

1. The role of a critical stress on the onset of damage;

2. Size effects due to the presence of a material characteristic length, the evolution of the
damage being strongly dependent on the length of the bar;

3. The process of nucleation of a crack in long bars due to the stress softening which induces
a damage localization;

4. The role of the gradient damage terms which prohibit any spatial jump of the damage
field and lead to a finite value of the energy dissipated in the nucleation of a crack.

Ut = t L

Figure 1: 1D traction problem with imposed end-displacement.

An admissible displacement field u must satisfy the boundary conditions

u(x = 0) = 0, u(x = L) = Ut, U0 = 0. (26)

Since no force is prescribed, the total energy (11), which does not depend explicitly on time,
reads now as

P(u, α) =

∫ L

0

(
1

2
E(α)u′2 dx+ w(α) +

1

2
w1`

2α′2
)
dx, (27)

where E(α) is the one-dimensional axial stiffness and (·)′ = ∂(·)/∂x. Consequently, the equilib-
rium equation (16) becomes:

σ′t(x) = 0, σt(x) = E(αt(x))u′t(x), ∀x ∈ (0, L). (28)

10



Thus, the stress σt along the bar is necessarily constant. Using the boundary conditions (26),
we get

σt =
Ut∫ L

0 S(αt(x))dx
, (29)

with S(α) = 1/E(α). Moreover the set of necessary Kuhn-Tucker conditions read as

Irreversibility : α̇t ≥ 0, α0 = 0, (30a)

Damage criterion : − w1`
2α′′t +

1

2
E′(αt)u

′
t
2

+ w′(αt) ≥ 0, (30b)

Energy balance : α̇t

(
−w1`

2α′′t +
1

2
E′(αt)u

′
t
2

+ w′(αt)

)
= 0, (30c)

Boundary conditions : α′t(0) ≤ 0, α′t(L) ≥ 0. (30d)

As we will see below, depending on the ratio L/` between the length of the bar and the internal
length, this set of relations admit either a unique homogeneous solution or an infinite number of
solutions. In any case, one has to use the full stability criterion (12) to keep only the physically
admissible solutions.

3.2. The homogeneous evolution and its stability

We consider only the case of strain hardening materials and hence assume that α 7→ w′(α)/E′(α)
is decreasing. We focus here on the study of the homogeneous evolution (tx, αt) in which the
damage and the strain fields are uniform all along the bar. By virtue of the boundary conditions,
the solution of the elastic problem (28) takes the form:

u′t(x) = t, ut(x) = t x, σt = t E(αt). (31)

Since the damage is also uniform in the bar, the damage criterion (30b) and the local energy
balance (30c) become

t2

2
E′(αt) + w′(αt) ≥ 0, α̇t

(
t2

2
E′(αt) + w′(αt)

)
= 0. (32)

Since the bar is undamaged at the beginning of the loading (α0 = 0), the solution of the evolution
problem is characterized by an elastic phase and a damaging phase, as detailed below.

3.2.1. Elastic phase

For t increasing from 0, the damage criterion (30b) is a strict inequality if the end displace-
ment Ut is smaller than the elastic limit

Ue = L

√
−2w′(0)

E′(0)
, with σe = L

√
2w′(0)

S′(0)
. (33)
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The stress value σe can be interpreted as the elastic limit stress. If w′(0) > 0, then Ue > 0 and
the material has a genuine elastic phase: as long as Ut lies in the interval [0, Ue], the material
remains sound (αt = 0) with a stiffness E0 = E(0) and the stress is given by σt = E0Ut/L. On
the other hand, if w′(0) = 0, then the damage criterion becomes an equality at the onset of the
loading and we cannot observe an elastic phase.

3.2.2. Damaging phase

For Ut ≥ Ue the damage criterion (32) becomes an equality and the damage can grow.
Hence, (32) gives the following implicit relation between the prescribed displacement Ut and the
associated homogeneous damage αt:

Ut
L

=

√
−2w′(αt)

E′(αt)
. (34)

Owing to the strain hardening assumption, (−w′/E′) is a monotonic increasing function.
Thus, there is a unique solution αt for a given Ut. In other words, the strain hardening hypothesis
rules out snap-back phenomena during the evolution in time of homogeneous solutions. The
corresponding stress is

σt = E(αt)t =

√
2w′(αt)

S′(αt)
. (35)

Equation (35) clearly shows that the stress decreases (resp. grows) with the displacement if the
material is stress softening (resp. stress hardening) at the damage level αt.

Remark 2 (Peak Stress). Since, by hypothesis, w′ and S′ are positive continuous functions on
α ∈ [0, 1), we can define the peak stress in the homogeneous response as

σM = sup
α∈[0,1)

√
2w′(α)

S′(α)
. (36)

When σM < +∞, then σM is the maximal stress that the material can sustain. In particular,
in the case of stress softening laws, the peak stress (36) is attained for α = 0 and is equal to the
elastic limit stress σe.

3.2.3. Stability of the homogeneous response and size effects

Although the homogeneous strain-damage evolution (tx, αt)t≥0 verifies the equilibrium equa-
tions and the Kuhn-Tucker conditions, it could be not observable during a tensile test because
it does not satisfy the full stability condition (12). Indeed, (30d) comes only from the first order
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stability condition (30b). To see whether the homogeneous evolution satisfies the full stability
condition, let us consider a small admissible perturbation (tx + hv(x), αt + hβ(x)) where h is
a small positive real number, v is the direction of perturbation of the displacement field which
satisfies v(0) = v(L) and β ≥ 0 is the direction of perturbation of the damage field. Then, after
expanding the total energy P(tx+hv, αt +hβ) of the perturbed state up to the second order in
h, the stability condition (12) requires that the following inequality holds

0 ≤ hP ′(tx, αt)(v, β) +
h2

2
P ′′(tx, αt)(v, β) + o(h2) (37)

where P ′(tx, αt)(v, β) and P ′′(tx, αt)(v, β) denote the first and second derivative of P at (tx, αt)
in the direction (v, β). Specifically these derivatives read as:

P ′(tx, αt)(v, β) =

∫ L

0

(
1

2
E′(αt)t

2 + w′(αt)

)
βdx (38a)

P ′′(tx, αt)(v, β) =

∫ L

0

(
w1`

2β′2 + 2E′(αt)tv
′β +

(
E′(αt)

2
v′2 + w′′(αt)

)
β2

)
dx. (38b)

Let us first remark that the states of the elastic phase are stable. Indeed, the inequality is
strict in (32-a) and since the first derivative of the energy is positive in each direction β 6= 0,
the inequality (37) is satisfied. Beyond the elastic phase, i.e. for Ut ≥ Ue, the damage criterion
(32-a) becomes an equality and the first derivative of the energy vanishes. It remains to study
the sign of the second derivates which can also be written

P ′′(tx, αt)(v, β) =∫ L

0
w1`

2β′2 dx+

∫ L

0
E(αt)

(
v′ +

E′(αt)

E(αt)
tβ

)2

dx−
∫ L

0

(
1

2
S′′(αt)σ

2
t − w′′(α)

)
β2 dx.

(39)

The first two terms are positive. The last term of (39) is positive if and only if the behavior is
with stress hardening (see (9)). Indeed, combining (35) with (9) and using S′(αt) > 0 lead to

0 < w′′(αt)S
′(αt)− w′(αt)S′′(αt) = −S′(αt)

(
1

2
S′′(αt)σ

2
t − w′′(αt)

)
. (40)

In this case, we deduce that the state is necessarily stable. On the other hand, if the material
is stress softening, the last term of (39) is negative and may induce an instability. In this case,
the sign of the second derivative may be assessed through the study of the following Rayleigh
ratio

Rt(v, β) =

∫ L
0 w1`

2β′2 dx+
∫ L

0 E(αt)
(
v′ + E′(αt)

E(αt)
tβ
)2

dx∫ L
0

(
1
2S
′′(αt)σ2

t − w′′(αt)
)
β2 dx

. (41)

Specifically, a sufficient (resp. necessary) condition for stability is that

ρ = min
(v,β)∈C0×D

Rt(v, β) > (resp. ≥)1. (42)
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After some calculations which are not reproduced here (see [9] or [42]), the infimum of the
Rayleigh ratio (41) is given by

ρ =

min

{
E(αt)S

′(αt)
2σ2
t ;
(
π2w1

`2

L2E(αt)
2S′(αt)

4σ4
t

)1/3
}

1
2S
′′(αt)σ2

t − w′′(αt)
. (43)

We may finally summarize the results on the stability of homogeneous states in the following
proposition.

Property 1 (Stability of homogeneous states). In the elastic phase, Ut < Ue, the homogeneous
state of strain-damage (Utx/L, 0) is stable. For Ut ≥ Ue, if the material has a stress hardening
behavior (9), then the state is stable. In the case of stress softening behavior (9), the state
(Utx/L, αt) with αt given by (34) is stable if and only if the length of the bar L satisfies the
inequality

L2

`2
≤ π2w1E(αt)

2S′(αt)
4σ4
t(

1
2S
′′(αt)σ2

t − w′′(αt)
)3 , (44)

where σt = E(αt)Ut/L is the stress at the equilibrium.

Remark 3. The Property 1 points out a size effect in the stability result due to the presence of the
internal length. Indeed, the value αt of the homogeneous damage given by (34) does not depend
on the length of the bar. Accordingly, small or large bars give the same stress-strain diagram for
homogeneous responses. However, according to (44), for large ratio L/`, the homogeneous state
will be unstable and will not be observable during an experiment. On the contrary, small bars
allow homogeneous stable states.

3.2.4. Examples

To illustrate the previous stability analysis, we consider four examples of damage laws.

Example 1 (A model with an elastic phase). We consider the following damage law

E(α) = E0(1− α)2, w(α) = w1α. (45)

This law satisfies both the strain hardening (8) and stress softening (9) conditions for any α.
Therefore the evolution problem admits a unique homogeneous strain-damage solution. Since
w′(0) > 0, there exists an elastic phase in the evolution problem (Section 3.2.1). Hence, using
(33) and (36), the displacement and the stress at the elastic limit read

σe = σM =
√
w1E0, Ue =

√
w1

E0
L =

σM
E0

L. (46)

Using (34) with (45) we deduce the value of the damage at each time

αt = max

(
0, 1−

(
Ue
Ut

)2
)
. (47)
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The associated stress-strain relation reads

σt =


σM

Ut
Ue

if Ut ≤ Ue,

σM

(
Ue
Ut

)3

otherwise.
(48)

We notice that the peak stress σM and the elastic limit stress σe given by (33) are identical for
this law. Figure 2(a) reports the stress in the bar versus the normalized end displacement Ut/Ue,
which is proportional to the homogeneous strain t = Ut/L. After the elastic phase, the stress
decreases asymptotically to 0, a distinctive feature of stress softening.

0 1 2
0

1

Ut�Ue

Σ
t�

Σ
M

(a) Stress vs strain response

0 1 2 3
0

Λc

Ut�Ue

L
�{

Stable

Unstable

(b) Stability diagram

Figure 2: Properties of the homogeneous solutions for example 1.

Let us now discuss the stability of the homogeneous solutions. For Ut < Ue the state (tx, 0)
is stable. For Ut ≥ Ue, inserting (47)–(48) into (44), we deduce that the homogeneous state
(tx, αt) is stable if and only if the length of the bar L satisfies the following condition:

L

`
≤ λc

Ue
Ut
, with λc =

4π

3
√

3
. (49)

Figure 2(b) resumes these conditions on a stability diagram in the Ut/Ue−L/` plane. Depending
on the length of the bar, two different behaviors occur:

• For L > λc`, the homogeneous state is unstable for any Ut ≥ Ue and a damage localization
necessarily arises at the end of the elastic phase;

• For L < λc`, after the elastic phase (Ut > Ue), there exists a finite interval [Ue, λcUe`/L)
of the prescribed displacement for which the homogeneous state is still stable. However,
the homogeneous state becomes unstable for Ut ≥ λcUe`/L.
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Example 2 (Ambrosio-Tortorelli model : a model without an elastic phase). We
consider the following damage law

E(α) = E0(1− α)2, w(α) = w1α
2, (50)

This law satisfies the strain hardening condition (8) for any α. However the stress softening
condition (9) is ensured only for α ≥ 1/4. Moreover since w′(0) = 0, this damage law does not
have an elastic phase (σe = 0). Hence, using (36), the peak stress is

σM =
3
√

3

8
√

2

√
w1E0. (51)

From (34), we deduce that the evolution of the homogeneous damage level is given by

αt =
U2
t

U2
t + 3U2

M

with UM =
16σM
9E0

L. (52)

Therefore the relation between the stress of the homogeneous solution and the prescribed dis-
placement at x = L is given by

σt = E0
9U4

M

(U2
t + 3U2

M )2

Ut
L
. (53)

The material becomes stress softening for Ut ≥ UM . The peak stress is σM and is reached for
Ut = UM . Figure 3(a) shows the stress in the bar versus the homogeneous strain.

0 1 2 3
0

1

Ut�UM

Σ
t�

Σ
M

(a) Stress vs strain response

0 1 2 3
0

10

Ut�UM

L
�{

Stable Unstable

(b) Stability diagram

Figure 3: Properties of the homogeneous solutions for example 2.

In this case, the stability of the state is ruled by the second derivative of the energy. Indeed,
there is not an elastic phase, and the first derivative of the potential energy is always zero. During
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the stress hardening phase (Ut < UM ), the homogeneous state is stable no matter the length of
the bar. Beyond UM , the bar is in a stress softening regime and we can apply Property 1: the
state is stable if the length of the bar verifies the following condition

L

`
≤ π
√

3

4

U2
t /U

2
M

(U2
t /U

2
M − 1)3/2

. (54)

The stability diagram is plotted on Figure 3(b). Beyond the stress hardening regime (Ut ≥ UM ),
whatever the choice of the length ratio L/`, size effects rule the stability of the solution. For
sufficient large displacements (the critical value depending on the bar length), the homogeneous
state becomes unstable and a localization arises somewhere in the bar.

Example 3 ( A family of models with the same homogeneous strain-stress response).
We consider the following family of damage models indexed by the parameter p > 0:

E(α) = E0(1− α)p, w(α) = w1

(
1− (1− α)p/2

)
. (55)

This case is a generalization of the law (45) which is recovered for p = 2. It satisfies both the
strain hardening (8) and stress softening (9) conditions for any α ∈ [0, 1) and any p > 0. Since
w′(0) > 0, the damage evolution contains an elastic phase (Section 3.2.1) and there exists a
unique homogeneous strain-damage solution. Hence, using (33) and (36), the displacement and
the stress at the elastic limit read

σe = σM =
√
w1E0, Ue =

√
w1

E0
L =

σM
E0

L. (56)

Using (34) with (55) we deduce the value of the damage at each time

αt = max

(
0, 1−

(
Ue
Ut

)4/p
)
. (57)

The corresponding stress is

σt =


σM

Ut
Ue

if Ut ≤ Ue,

σM

(
Ue
Ut

)3

otherwise.
(58)

Therefore, this family of damage laws, indexed by p, leads to the same strain-stress diagram
whatever the value of p.

This example points out that a force-displacement diagram obtained from a tensile test is not
sufficient to identify the damage model. Indeed, the force-displacement response only involves one
combination of the two state functions (E(α) and w(α)). At least another experimental curve
is necessary. We claim that the stability analysis provides the missing information. Indeed,
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p = 2
p = 4
p = 8

0 1 2 3
0

Λc
H8L

Λc
H4L

Λc
H2L

Ut�Ue

L
�{

Figure 4: Stability diagram for Example 3 with p = 2, 4, 8.

even if the homogeneous (elastic) states are stable for U < Ue, for U ≥ Ue the stability of an
homogeneous state depends both on the length of the bar and on p. Specifically, the homogeneous
state (tx, αt) is stable when Ut ≥ Ue if and only if

L

`
≤ λ(p)

c

(
Ue
Ut

)4/p−1

, with λ(p)
c =

8π

3
√

3p
. (59)

Therefore the stability diagram depends on p, cf Figure 4:

• When p < 4, for sufficient large displacements (the critical value depending on the bar
length) the homogeneous state becomes unstable.

• When p > 4, if L > λpc`, all homogeneous states (Utx/L, αt) with Ut in the interval

[Ue, U
(p)
c ) being

U (p)
c =

(
λ

(p)
c `

L

) p

4− p
Ue.

are unstable. However, the homogeneous states are stable again for Ut ≥ U (p)
c .

This example underlines the relevance of the stability properties in the identification the damage
laws E(α) and w(α).

Example 4 (A model where ultimate fracture occurs at finite strain). With all the
previous models, the ultimate fracture occur at infinite strain in a homogeneous path. We now
consider a model which breaks at a finite strain (see [1]). It is defined by the following material
functions parametrized by a scalar parameter k > 1

E(α) =
1− α

1 + (k − 1)α
E0, w(α) = w1α, k > 1. (60)
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For such model, a direct calculation using (33) and (60) gives

σe = σM =

√
2w1E0

k
, Ue =

√
2w1

kE0
L =

σM
E0

L. (61)

Using (34) with (60) we deduce the value of the damage at each time

αt = max

(
0,

1

k − 1

(
Ut
Ue
− 1

))
. (62)

We deduce that for such model, the ultimate damage value is reached for a finite displacement
Ut = kUe. The corresponding stress is piecewise linear and reads

σt =


σM

Ut
Ue

if Ut ≤ Ue,
σM
k − 1

(
k − Ut

Ue

)
if Ue ≤ Ut ≤ kUe.

(63)

Let us now focus on the stability properties of this model. For Ut < Ue the state (tx, 0) is stable.
For Ut ≥ Ue, inserting (62) into (44), we deduce that the homogeneous state (tx, αt) is stable if
and only if the length of the bar L satisfies the following condition:

L

`
≤ λ(k)

c g(k)

(
Ue
Ut

)
, with λ(k)

c =
πk√

2
and g(k) : x 7→

√
1

(k − 1)x

(
k

x
− 1

)
. (64)

As in previous examples, two different behaviors occur depending on the bar length:

• For L > λ
(k)
c `, the homogeneous state is unstable for any Ut ≥ Ue and a damage localization

necessarily arises at the end of the elastic phase;

• For L < λ
(k)
c `, after the elastic phase (Ut > Ue), there exists a finite interval

[
Ue, Uef

(k)(λ
(k)
c `
L )

)
of the prescribed displacement with f (k) = 1

[1/g(k)]−1 for which the homogeneous state is still

stable. However, the homogeneous state becomes unstable for Ut ≥ Uef (k)(λ
(k)
c `
L ).

3.3. Non homogeneous evolution with damage localization

When a homogeneous state looses its stability, a localization of the damage field arises over
a finite length controlled by the internal length ` of the model. We study here the properties
of solutions with damage localization by focusing on the class of stress-softening material with
an elastic phase. We only indicate the main lines of the construction of the localized solutions.
The interested reader should refer to [40] for the proofs and the details of the calculations.
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Figure 5: Properties of the homogeneous solutions for example 4.

3.3.1. Optimal damage profile

Let σ ∈ (0, σM ) be the equilibrium stress of the bar and S = (x0−D,x0+D) be a localization
zone, where the thickness D has to be determined and x0 is an arbitrary point of the bar. To
construct the damage profile in the localization zone, we suppose that the damage criterion
(30b) is an equality only on S and that the damage is zero on the remaining part of the bar.
Accordingly, the damage field α satisfies

− σ2S′(α) + 2w′(α)− 2w1`
2α′′ = 0 on S, α = 0 on (0, L)/S. (65)

Since α and α′ must be continuous2 at x0 ±D, we have

α(x0 ±D) = α′(x0 ±D) = 0. (66)

Multiplying (65) by α′ and integrating with respect to x, we obtain the first integral

− σ2S(α) + 2w(α)− w1`
2α′2 = C in S, (67)

where C is a constant. Evaluating (67) at x0 ±D, the conditions (66) and Hypothesis 2.2 give
C = −σ2/E0. Hence the first integral may be written in the form

`2α′(x)2 = H(σ, α(x)) in S, (68)

where

H(σ, β) :=
2w(β)

w1
− σ2

w1E0
(E0 S(β)− 1) , with β ∈ [0, 1). (69)

2The continuity of α′ at x0 ±D is obtained as a first order optimality condition on P(u, α).
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Figure 6: (Left) The damage profile α(x) centered at x0 for σ = 0 when considering the damage law (45),
see equation (77). (Right) Evolution of the damage profile when σ goes from σM to 0 for the damage model
considered in [1]. For such choice, the size of the damage localization is 2` and remains constant during the
localization process.

The localized damage profile is the cusp-shaped curve reported in Figure 6. We define ᾱ(σ)
as the maximal value of the damage along the bar at the given stress value σ, which is attained
at x0, the center of the localization zone. This maximal value depends only on σ. When σ
decreases from σM to 0, ᾱ(σ) increases from 0 to 1.

The size D0 of the localization zone is deduced from (68) by integration. It is a function of
the stress σ:

D(σ) = `

∫ ᾱ(σ)

0

dβ√
H(σ, β)

. (70)

For the assumed constitutive behavior, the integral above is well defined and always exists.
The position x0 of the center of the localized solution can be chosen arbitrarily in the interval
[D(σ), L −D(σ)]. We finally deduce from (68) that, in the localization zone, the damage field
is given by the following implicit relation between x and α:

|x− x0| = `

∫ ᾱ(σ)

α

dβ√
H(σ, β)

. (71)

It is easy to see that the damage field is symmetric with respect to the center of the localization
zone, decreasing continuously from ᾱ(σ) at the center to 0 at the boundary (see Figure 6).

3.3.2. Energetic interpretation of a damage localization and link with fracture toughness

We give in this section an energetic view of a localization process to allow for a consistent
definition of fracture toughness. The total energy of a bar with a single damage localization at
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centered around x0 with a width 2D(σ). Rewriting the total energy of the system in terms of
the stress state, we find that

P(u, α) =

∫ L

0

(
1

2
w1`

2α′2 +
1

2
S(α)σ2 + w(α)

)
dx. (72)

Making use of the first integral (68) and the fact that α = 0 (elastic unloading) outside the
localized zone, we have

P(u, α) =
1

2

σ2

E0
L+

∫ x0+D(σ)

x0−D(σ)
2w(α(x)) dx. (73)

Recalling the symmetry of the profile α over [x0 −D(σ), x0 +D(σ)] and performing the change
of variable y = α(x), we obtain

P(u, α) =
1

2

σ2

E0
L+ 4`

∫ ᾱ(σ)

0

w(β)dβ√
H(σ, β)

. (74)

The link with the fracture toughness is made by passing to the limit σ = 0 which corresponds
to the nucleation of a macroscopic crack. In this limit, the damage localization profile is given
by the following equations after taking the limit in the first integral (68) and localization width
(70)

ᾱ(0) = 1, `2α′(x)2 =
2w(α)

w1
, D1 := D(0) = `

∫ 1

0

√
w1

2w(β)
dβ. (75)

Now passing to the limit in the total energy (74), the first term vanishes while the second term
tends to

Gc = 2 `

∫ 1

0

√
2w1w(β) dβ = cw

`w1√
2

with cw = 4

∫ 1

0

√
w

w1
dβ. (76)

As a result of a full localization process, Gc is the energy dissipated in the creation of a single
crack and therefore is identified as the fracture toughness of the material involved in Griffith
theory of brittle fracture. Such fundamental feature allows for a use of gradient damage model
to approximate brittle fracture as it will be seen in Section 4.

Remark The expression (76) for Gc is valid for any gradient damage model presented in Sec-
tion 2. Therefore the fracture energy Gc is finite (neither zero nor infinite) provided that the
internal length ` is not zero and the specific damage energy w1 is finite (even if the strain at
failure in the homogeneous response is infinite). Accordingly, Gc is finite for all the four models
presented in Section 3.2.4.

3.3.3. Application to concrete

To illustrate the link between fracture toughness and damage models for a specific material
such as concrete, we consider a damage model for which the dissipated material function is a
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linear function of α i.e. w(α) = w1α. Such choice applies to the models (45) of Example 1 and
(60) of Example 4. In this case, the profile of a damage localization when σ = 0 is given by
solving the differential equation (75)

α(x) =


(

1− |x− x0|√
2`

)2

if x ∈ [x0 −D1, x0 +D1],

0 elsewhere.

(77)

α being zero elsewhere (see Figure 6). The fracture toughness, the damage localization half-
width when fracture occurs and the elastic limit stress are computed from (75)-(76) and read

Gc =
4
√

2

3
w1 `, cw =

8

3
, D1 =

√
2`, σM =

√
w1E0. (78)

Therefore, given a set of constitutive functions, the internal length of a gradient damage model
is determined from the knowledge of the fracture toughness Gc, the elastic limit stress σM and
the Young modulus E0. For a brittle material such as concrete, typical values for material
parameters are (see e.g. [16]):

E0 = 29 GPa, σM = 4.5 MPa, Gc = 70 N/m. (79)

Using relations (78), we find

2D1 = 106 mm, ` = 38 mm, w1 = 698 N/m3. (80)

Such values are consistent with the order of magnitude of the aggregates size in concrete which
range from 10mm to 40mm.

4. Application to the numerical simulation of brittle fracture problems

4.1. Approximation of variational brittle fracture

In this Section we illustrate how the damage models presented in this paper allow to capture a
wide variety of phenomena in damage and fracture mechanics including diffuse damage, multiple
cracks branching as well as complex crack topologies through a series of examples. To show how
such gradient damage models are suitable for the simulation of brittle fracture mechanics, let us
first rewrite the total energy of the system (11) for a body Ω, assuming no external body and
surface forces for brevity, by introducing the fracture toughness energy Gc defined in (76):

P(u, α) =

∫
Ω

1

2
A(α)(ε(u)− ε0) · (ε(u)− ε0)dΩ +

Gc
cw

∫
Ω

(
1
˜̀
w(α)

w1
+ ˜̀∇α · ∇α

)
dΩ (81)

where we used the relation (78) between the energy dissipated in a full localization Gc and the
specific damage energy w1 and where we set ˜̀ = `/

√
2 to maintain the equivalence with the
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notation used in other works. Such energy functional can be viewed as a regularization of the
Griffith model. Indeed, in fracture mechanics approaches, material failure is modeled by the
nucleation and propagation of surfaces of discontinuity of the displacement field. Considering a
similar solid Ω where the network of cracks3 is denoted by Γ, the quasi-static evolution problem
of fracture mechanics consists in finding the displacement field u and the crack set Γ as a
function of the loading. In the variational approach to brittle fracture, such evolution problem
is formulated as a global minimization problem of the following Griffith energy functional, under
an irreversibility condition for the crack set Γ [19]:

F(u,Γ) =

∫
Ω\Γ

1

2
A0(ε(u)− ε0) · (ε(u)− ε0)dΩ + GcH(Γ) (82)

where the material constants of the Griffith model reduce to A0 and Gc, the sound stiffness tensor
and the fracture toughness of the brittle material, respectively. In (82), the total energy of the
system is the sum of the elastic energy stored in the cracked body Ω \ Γ and the surface energy
required to create the crack, H being the measure of Γ, i.e. the total crack length for n = 2
or the total crack surface for n = 3. A fundamental mathematical result [14] shows that the
minimizers of the total energy of the gradient damage models rewritten as (81) converge when ˜̀

tends to 0 towards the minimizers of the Griffith functional energy (82). Such property justifies
rigorously the use of the gradient damage model as a consistent approximation of Griffith model
of brittle fracture and will be illustrated numerically in this section through different numerical
simulations.

All the simulations presented here will use the quadratic damage model of Example 1 in
Section 3.2.4 defined as

A(α) = (1− α)2A0, w(α) = w1α. (83)

with the sound stiffness A0 associated to a Young’s modulus E and a Poisson ratio ν. There
are two main reasons to select this model: (i) the model has a non-vanishing elastic phase; (ii)
the associated functional P(u, α) turns out to be quadratic in the damage variable, a valuable
feature for its numerical minimization.

4.2. Time-discrete evolution and solution algorithm

The numerical solution considers a discretized version of the evolution problem. Given the
displacement and the damage field (ui−1, αi−1) at time step ti−1, the solution at time step ti is
obtained by solving the following bound-constrained minimization problem

inf{Pti(u, α) : u ∈ Cti , α ∈ Dti}, (84)

where Dti = {α ∈ H1(Ω) : α(x) ≥ αi−1 a.e.}. The unilateral constraint α(x) ≥ αi−1 is the
time-discrete version of the irreversibility of damage. Here we assume a uniform time step ∆t.

3cracks being surfaces in dimension 3 and lines in dimension 2
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Algorithm 1: Alternate minimization

Result: A stationary point of P.
Given (ui−1, αi−1), the state at the previous loading step.
Set (u(0), α(0)) := (ui−1, αi−1).
while not converged do

Find u(p) := arg min
u∈Cti

Pti(u, α(p−1))

Find α(p) := arg min
α∈Dti

Pti(u(p), α)

end

Set (ui, αi) = (u(p), α(p)).

The solution of this minimization problem has been discussed in a series of papers. We
use the standard alternate minimization algorithm reported in Algorithm 1. It exploits that the
functional to be minimized is quadratic in each of the two variables once the other is fixed. Hence
it reduces the problem to the iterative solution of quadratic minimization problems, each with
a unique solution. The damage problem includes a unilateral constraint and requires the use of
variational inequalities solvers, which are available in the open-source library PETSc [7]. We refer
to [11] and [17] for further details and extensions of the algorithm. The problem is discretized
in space with standard triangular finite elements with piecewise linear approximation for u
and α. Attractive anisotropic remeshing strategies specific for this minimization problem have
been proposed in [5]. However, the simulations presented below are obtained on fixed meshes.
The mesh size is selected to have a sufficient number of elements in the localization bands (we
typically use 5-10 elements in a localization band). Open-source finite element implementations
based on the FEniCS library [29] are available at [32] and [18].

4.3. Traction of a bar

We solve numerically the time-discrete evolution problem for the 2D version of the uniaxial
traction test studied analytically in the previous section. We consider a bar in a plane-stress
state with an aspect ratio L = 1.0, H = 0.1, ` = 0.1.

As shown in Figure 7, the numerical solution is purely elastic for t < tc =
√

3Gc/8E` ' 1.94
and with a single transverse localisation band (a crack) represented for t > tc. The cracked
solution has a vanishing elastic energy and a surface energy given by GcH = 0.1. The numerical
results illustrate and confirm the result of the analytical study. We are in the case of long bars
where the homogeneously damaged solution is unstable (see Figure 2(b)). Further numerical
examples for short bars with the discussion of the associated size effects are reported in [37].
The test may be easily extended to a 3D geometry. The critical load tc is the same in 1D under
a uniaxial stress condition, in 2D plane stress, or in 3D. Note the energy balance is not verified
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Figure 7: Uniaxial traction of bar. Left: boundary conditions and damage field for t > tc. Right: evolution of
the energy at the solution given by the alternate minimization algorithm as the applied end-displacement t is
increased. Reproduced from [17].

across t = tc. Indeed, the time-discrete evolution based on the unilateral minimization of the
energy, does not enforce energy conservation.

4.4. Crack propagation

The study of the propagation of a straight crack illustrates the equivalence with the Griffith
propagation criterion for a pre-existing crack. We consider the surfing experiment proposed in
[24]. A rectangular slab Ω = [0, L]× [−H/2, H/2] with a preexisting crack of length Lc is loaded
by applying the following Dirichlet boundary condition on the whole external boundary

U(x1, x2, t) = Ū(x1 − Lc − v t, x2) on ∂Ω (85)

where Ū is the asymptotic Mode-I crack displacement of linear elastic fracture mechanics.4 The
intensity of the loading is controlled by the stress intensity factor KI . From the theory we expect
that the crack propagates at the constant speed v along the line x2 = 0 for KI = Kc

I =
√
GcE.

In the numerical experiments we set KI/K
c
I = 1.0, v = 1, L = 2, H = 1 and Lc = 0.05.

Figure 8 reports the results of the corresponding numerical simulations. This test is particularly
useful to verify that the dissipated energy does not depend on ` and is equal to the product
of the crack length and the fracture toughness Gc. Obviously, in order for this condition to

4 Denoting by (r, θ) the polar coordinates and (e1, e2) the Cartesian unit vectors,

Ū =
KI

2µ

√
r

2π

(
3− ν
1 + ν

− cos θ

)
(cos (θ/2)e1 + sin(θ/2)e2) , (86)

where µ is the shear modulus, and Lc is the length of the preexisting crack.
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hold, the discretisation should be changed with the internal length, as ` controls the width of
the localization band. We typically set the mesh size to h = `/5. For convenience we use
a non-uniform mesh respecting this condition only in the band where we expect the crack to
propagate, as shown in Figure 8.
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Figure 8: Smooth crack propagation test on a rectangular slab of dimensions 2 × 1 with the surfing loading
(86) applied on the boundary. Left: snapshot of the damage field and mesh for ` = 0.05 and h = 0.01. Right:
Dissipation energy versus time for v = 1 and KI = 1 comparing the results obtained through the damage model
when varying the internal length ` and the mesh size h; the continuous line is the expected surface energy according
to the Griffith model, corresponding to a constant crack speed v = 1. Reproduced from [17].

4.5. Thermal shock

The shrinkage of materials, induced by cooling or drying, may lead to arrays of regularly
spaced cracks. Similar phenomena appearing at very different length-scales have always intrigued
researchers and common people: drying of concrete, the exposure of glass or ceramics to a
thermal shock, the drying of soils, or the cooling of lava fronts with the formation of columnar
joints. The understanding and the predictive simulation of the morphogenesis and propagation
of similar complex crack patterns is a major issue for classical fracture mechanics, which usually
studies the propagation of a single preexisting crack. Yet similar problems may be naturally
tackled, theoretically and numerically, using the gradient damage models presented in this paper.

We resume here the results reported in [13, 47] on the thermal shock of a brittle slab. For this
problem a number of experimental work are available in the literature [6, 45, 21]. The specimen
is a thin slab, free at the boundary, composed of a homogeneous material without prestress in
its initial configuration. In experiments, several slabs are stacked together, uniformly heated at
temperature T0 and then quenched in a cold bath inducing a temperature drop ∆T on the lateral
surfaces. The resulting inhomogeneous temperature field induces an inhomogeneous stress field
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inside the slab, causing the emergence of a complex crack pattern, with an almost periodic array
of cracks nucleating at the boundary and propagating inside the slab with a period doubling
phenomenon.

Figure 9 consider a rectangular portion of the slab including the surface of the thermal shock.
The material shrinkage induced by the thermal effects is modelled through time-dependent
inelastic deformations in the form

ε0
t = β Tt I, Tt = −∆T Erfc

(
x2

2
√
kct

)
, (87)

where β is the thermal expansion coefficient, Tt is the temperature field in the slab, and Erfc
denotes the complementary error function. As a first approximation, Tt is taken as the analytical
solution of a thermal diffusion problem with a Dirichlet boundary condition on the temperature
for a semi-infinite homogeneous slab of thermal diffusivity kc, neglecting the influence of the
cracks on the thermal diffusivity.

Figure 9: Geometry and boundary conditions for the thermal shock problem (left), where u1 and u2 denotes the
two components of the displacement field. The loading is given by the thermal stress induced by the temperature
field T (x2, τ) of (87), whose dependence in x2 is sketched on the right for different times τ .

The dimensional analysis of the energy functional highlights three characteristic lengths: the
size of the domain L, the internal length `, and the Griffith length `0 = Gc/

(
Eβ2∆T 2

)
. Using

the material’s internal length as the reference unit, the problem can be reformulated in terms
of two dimensionless parameters, the size of the structure L/` (a geometric parameter) and the
intensity of the thermal shock `/`0 (a loading parameter). To put into evidence the role of the
temperature drop ∆T , the latter loading parameter can be replaced by

∆T

∆Tc
=

√
8 `

3 `0
, where ∆Tc =

1

β

√
3Gc
8E`

(88)

As shown in [47], for ∆T < ∆Tc the solution is purely elastic with no damage (α = 0 everywhere).
For ∆T > ∆Tc the solution evolves qualitatively as in Figure 10, with (i) the immediate creation
of an x-homogeneous damage band parallel to the exposed surface, (ii) the bifurcation of this
solution toward an x-periodic one, which (iii) further develops in a periodic array of crack

28



bands orthogonal to the exposed surface. These bands further propagate with a period doubling
phenomenon (iv). A detailed analytical study of the bifurcation phenomenon observed in the
phase (ii) is reported in [47]. The three columns in Figure 10 show the phases (ii)-(iv) of the
evolution for ∆T/∆Tc equal to 2, 4 and 8. The wavelength of the oscillations and the spacing
of the cracks increase with ∆T . In particular [13] shows that for ∆T � ∆Tc the initial crack
spacing is proportional to

√
`0`. Figure 11 reports the evolution of the dissipated energy versus

time for the three cases of Figure 10. We note in particular that, while the evolution is smooth
for intense thermal shocks (see the curve ∆T = 8∆Tc), for mild shocks there are jumps in the
energy dissipation and hence in the crack length (see the curve ∆T = 2∆Tc). These jumps
correspond to snap-backs in the evolution problem, where the minimization algorithm is obliged
to search for a new solution, potentially far from the one at the previous time step.

t = 1.61

t = 1.71

t = 5.0

t = 0.76

t = 1.61

t = 0.66

t = 0.81

t = 5.0

Intensity = 2 Intensity = 4 Intensity = 8

t = 5.0

Figure 10: Evolution of the damage variable α during the evolution (blue: α = 0; red: α = 1) showing the initial
solution independent of the x1 variable, the emergence of a periodic crack pattern and its selective propagation
with period doubling. Each column corresponds to the result obtained for a specific intensity, increasing from left
(2) to right (8). Here ` = 1 and the slab dimensions are 40× 10 with a mesh size h = 0.2. Reproduced from [17].

Figure 11: Evolution of the dissipated energy with time during the thermal shock for different values ∆T/∆Tc of
the intensity of the shock. The time variable is put in a non-dimensional rescaled form proportional to

√
t.
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The three dimensional version of the thermal shock problem leads to complex crack patterns
in the form of hexagonal cells of increasing diameters, which are recovered by adopted gradient
damage modelling (see Figure 12). We refer the reader to [13] for further details on this problem
and on the related numerical work.

Figure 12: Complex fracture pattern for the thermal shock of brittle slab. The problem is the 3D analogue of the
thermal shock problem of Figure 9. The numerical results are for `0 = 0.05 ` in a domain of size 150`×150`×20`.
Only zones with damage close to 1 are represented (cracks). To help the visualization, the colors mark the distance
from the bottom surface where the thermal shock is applied. The simulation is performed using 4.4× 107 linear
finite elements in space and 100 time steps, using 1536 cores of the NSF-XSEDE cluster Stampede at Texas
Advanced Computing Center (wall-time: 10 hours). Reproduced from [13].

5. Concluding remarks

We have shown in this paper that gradient damage models are good candidates to approxi-
mate the fracture of materials. Inserting them in a variational setting allows to formulate the non
local damage evolution problem in a very elegant and concise manner. Moreover, the concept
of stability of states rises immediately from this variational approach. Thanks to the presence
a characteristic material length, we can account both for size effects and for the stability of the
homogeneous states for sufficiently small bodies. The determination of the size beyond which
an homogeneous state is no more stable is one of the main step in the analysis of the proper-
ties of a given model. That gives an additional information to the stress-strain curve which is
fundamental to identify the state functions entering in the model. All these concepts have been
developed in a full three-dimensional setting and, from a numerical viewpoint, computations of
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very complex geometry are already available.
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