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This work addresses the issues of actuator fault detection and isolation for diesel engines. We are particularly interested in faults
affecting the exhaust gas recirculation (EGR) and the variable geometry turbocharger (VGT) actuator valves. A bank of observer-
based residuals is designed using a nonlinear mean value model of diesel engines. Each residual on the proposed scheme is based
on a nonlinear unknown input observer and designed to be insensitive to only one fault. By using this scheme, each actuator fault
can be easily isolated since only one residual goes to zero while the others do not. A decision algorithm based on multi-CUSUM is
used. The performances of the proposed approach are shown through a real application to a Caterpillar 3126b engine.

1. Introduction

On-board diagnosis of automotive engines has become
increasingly important because of environmentally based leg-
islative regulations such as OBDII (On-Board Diagnostics-
II) [1]. On-board diagnosis is also needed to guarantee high-
performance engine behavior. Today, due to the legislation,
the majority of the code in modern engine management
systems is dedicated to diagnosis.

Model-based diagnosis of automotive engines has been
considered in earlier papers (see, e.g., [2, 3]), to name only
a few. However, the engines investigated in these previous
works were all gasoline-fuelled and did not include exhaust
gas recirculation (EGR) and variable geometry turbocharger
(VGT). Both of these components make the diagnosis prob-
lem significantly more difficult since the air flows through
the EGR valve, and also the exhaust side of the engine has
to be taken into account. An interesting approach to model-
based air-path faults detection for an engine which includes
EGR and VGT can be found in [4, 5]. By using several

models in parallel, where each one is sensitive to one kind
of fault, predicted outputs are compared and a diagnosis is
provided. The hypothesis test methodology proposed in [4]
deals with the multifault detection in air-path system. In [5]
the authors propose an extended adaptive Kalman filter to
find which faulty model best matches with measured data;
then a structured hypothesis allows going back to the faults.
A structural analysis for air path of an automotive diesel
engine was developed in order to study the monitorability
of the system [6–8]. Other approaches to detect intake
leakages in diesel engines based on adaptive observers are
proposed in [9, 10] and recently in [11]. Note that, in all these
approaches, the leakage size is assumed to be constant. To
overcome this limitation, an approach based on a nonlinear
unknown input observer (NIUO), for intake leakage detec-
tion, is proposed in [12]. No a priori assumption about the
leakage size is made. In [13, 14], an interesting method for
bias compensation in model-based estimation using model
augmentation is proposed.The extended Kalman filter (EKF)
is used for estimating the states of the augmentedmodel. Also,
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Figure 1: Caterpillar testbed 3126, Sussex University.

the observability of the augmented model is well discussed.
Recently, an automated model-based and data-driven design
methodology for automotive engine fault detection and
isolation (FDI) is proposed in [15]. This methodology, which
combines model-based sequential residual generation and
data-driven statistical residual evaluation, is used to create a
complete FDI system for an automotive diesel engine.

The problem of designing unknown input observers
(UIO) has received great attention in literature.This problem
is motivated by certain applications such as fault diagnosis
and control system design. If this issue in linear case is well
solved, it remains an open problem in the nonlinear case.The
first unknown input observers dedicated to linear systems
were proposed in [16, 17]. Necessary and sufficient conditions
of the existence of the UIO have been well established. New
sufficient conditions formulated in terms of linear matrix
inequality (LMI) were given by [18].This result is extended in
[12] to cover a wide class of nonlinear systems that cannot be
treated by the previous approach as well as nonlinear systems
with a large Lipschitz constant.

Our aim is to address the issue of actuator fault detection
and isolation for diesel engines. Indeed, actuators (EGR and
VGT) fault diagnosis is necessary and crucial to guarantee
its healthy operation. In this work, a fault detection and
isolation (FDI) system is developed. The proposed FDI
system is composed of two parts: residual generation and
decision system. Amultiobserver strategy is used for residual
generation. A mean model of diesel engine is exploited for
the design of a set of nonlinear unknown input observers.
These observers are designed in order to estimate the states
behavior without any knowledge of the unknown inputs.The
sufficient conditions of the existence of the NUIO are given
in terms of linear matrix inequalities (LMIs). The advantage
of thismethod is that no a priori assumption on the unknown
input is required and also can be employed for a wider class
of nonlinear systems. To achieve fault detection and isolation,

a decision system based on a statistical approach, multi-
CUSUM (cumulative sum), is used to process the resulting
set of residuals.

This paper is organized as follows. The experimental
setup is described in Section 2. The diesel engine model
and its validation are described in Section 3. A nonlinear
unknown input observer is presented in Section 4. Section 5
describes the residual generation system while the decision
system is presented in Section 6.The experimental results and
discussion are presented in Section 7. Finally, conclusion and
future works are given in the last section.

The notations used in this paper are quite standard. LetR
denote the set of real numbers.The set of 𝑝 by 𝑞 real matrices
is denoted as R𝑝×𝑞. 𝐴𝑇 and 𝐴−1 represent the transpose of
𝐴 and its left inverse (assuming 𝐴 has full column rank),
respectively. 𝐼𝑟 represents the identity matrix of dimension 𝑟.
(∗) is used for the blocks induced by symmetry. ‖⋅‖ represents
the usual Euclidean norm.L𝑟

2
denotes the Lebesgue space.𝑓𝑎,𝑖

denotes the 𝑖th component of the vector 𝑓𝑎.

2. Experimental Installation

The testbed is built with a Caterpillar 3126b truck engine
coupled to a SCHORCH dynamometer controlled by CP
Cadet Software. The Caterpillar engine is presented in
Figure 1. The front and back view of the testbed are shown
by the pictures numbered (1) and (2), respectively. Engine’s
components are inlet manifold (3), encoder for measuring of
the engine speed (4), intake air flowmeter (5), exhaust mani-
fold (6), GT3782VA variable geometry turbocharger, (7) and
exhaust gas valve (8). In order to enable a transient control
of the EGR and VGT, a dSPACE MicroAutoBox 1401/1501
real-time controller is connected (see Figure 2). Apart from
the standard OEM electronic sensors built in for ECU and
dynamometer control, additional sensors and actuators have
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Figure 2: Experimental installation schematic, Sussex University.

Table 1: Sensors and actuators list.

Sensors Actuators
Inlet temperature sensor EGR valve drive actuator

Inlet air flow meter VGT vanes drive
actuator

Inlet pressure sensor
Pre-turbo exhaust pressure sensor
Acceleration pedal position sensor
Engine speed sensor
Inlet manifold oxygen sensor
Exhaust manifold oxygen sensor
Exhaust opacity sensor (AVL
Opacimeter 439)
Exhaust emission sensor (Testo 350
Engine test kit)
EGR position feedback sensor
VGT position feedback sensor

been wired in specifically for the MicroAutoBox. These
sensors and actuators are listed in Table 1.

Thedata and control signal flow are illustrated in Figure 2.
The engine is connected with two control platforms, which
are CP Cadet and dSPACE Control Desk. The engine tests
are conducted and monitored by CP Cadet Platform while
the EGR and VGT valve positions can be adjusted through
dSPACE Control Desk in real time. Testing data can be
collected from both platforms and used for data analysis
purpose.
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Air flow 
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AFR 
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VGT

Inlet 
manifold

Pressure 
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Cylinders
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EGR gas 
cooler

EGR
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Figure 3: Turbocharged air-intake system schematic.

The specification of the Caterpillar 3126b midrange truck
engine is given in Table 3.

3. Engine Model and Validation

The considered diesel engine is a six-cylinder engine with a
high-pressure EGR and VGT. A principle illustration scheme
of the air-path system is shown in Figure 3. It consists of
two parts: the turbocharger and exhaust gas recirculation.
The turbocharger is a turbine driven by the exhaust gas and
connected via a common shaft to the compressor, which
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compresses the air in the intake.The exhaust gas recirculation
(EGR) allows for recirculating gas from the exhaust manifold
to the intake manifold. First, the mixture of air coming
from the compressor and exhaust gas coming through the
EGR valve enters the intake manifold before injecting it
into the cylinders. Then, the fuel is injected directly in the
cylinders and burned, producing the torque on the crank
shaft. Exhaust gases are expelled into the exhaust manifold.
As shown in Figure 3, part of exhaust gas comes out from
the exhaust manifold through the turbine and the other
part is recirculated through EGR valve. We noted that the
temperature of gases (compressed air and EGR gas) entering
the intake manifold is reduced using the intercooler and the
EGR cooler.

The mean value engine modeling approach is one of
the most considered approaches in the literature [19]. It
uses temporal and spatial averages of relevant temperatures,
pressures, and mass flow rates. The engine model is derived
based on the laws of conservation ofmass and energy and also
on the ideal gas law (see, for instance, [5, 20]). As an example,
the pressure dynamics in the inlet manifold is obtained by
differentiating the ideal gas law equation 𝑃𝑉 = 𝑚𝑅𝑇.
The complete considered mean value model is expressed as
follows [5]:

𝑃̇Inlet

=
1

𝑉Inlet
(
𝑅Air𝑐𝑝,Air

𝑐V,Air
𝑊HFM𝑇CAC +

𝑅Exh𝑐𝑝,Exh

𝑐V,Exh
𝑊EGR𝑇EGR

−
𝑅Inlet𝑐𝑝,Inlet

𝑐V,Inlet
𝑊Inlet𝑇Inlet) ,

𝑚̇Air = 𝑊HFM −
𝑚Air

𝑚Air + 𝑚EGR
𝑊Inlet,

𝑚̇EGR = 𝑊EGR −
𝑚EGR

𝑚Air + 𝑚EGR
𝑊Inlet,

𝑚̇Exh = 𝑊Exh −𝑊Turb −𝑊EGR

(1)

with

Ψ(
𝑝1

𝑝0
) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

√
2𝜅

𝜅 − 1
{((

𝑝1

𝑝0
)

2/𝜅

− (
𝑝1

𝑝0
)

(𝜅+1)/𝜅

)}

if(
𝑝1

𝑝0
) ≥ (

2

𝜅 + 1
)

𝜅/(𝜅−1)

√𝜅(
2

𝜅 + 1
)

(𝜅+1)/(𝜅−1)

otherwise,

𝑊EGR =
𝐴EGR𝑃Exh

√𝑅Exh𝑇Exh
Ψ𝜅Exh

(
𝑃Inlet
𝑃Exh

) ,

𝑊Inlet = 𝑓vol (𝑁Eng,
𝑃Inlet

𝑇Inlet𝑅Inlet
)
𝑁Eng𝑃Inlet

𝑇Inlet𝑅Inlet

𝑉Eng

120
,

𝑇Inlet =
𝑃Inlet𝑉Inlet

(𝑚Air + 𝑚EGR) 𝑅Inlet
,

𝑇EGR = (
𝑃Inlet
𝑃Exh

)

(𝜅Exh−1)/𝜅Exh

𝑇Exh,

𝑊Exh = 𝑊Inlet +𝑊Fuel,

𝑇Exh = 𝑇Inlet +
𝑄LHVℎ (𝑊Fuel, 𝑁Eng)

𝑐𝑝,Exh (𝑊Inlet +𝑊Fuel)
,

𝑃Exh =
𝑚Exh𝑅Exh𝑇Exh

𝑉Exh
,

𝑊Turb =
𝑃Exh

√𝑇Exh
𝜏 (

𝑃Exh
𝑃Atm

, 𝑢XVNT) ,

𝑅Inlet =
𝑅Air𝑚Air + 𝑅Exh𝑚EGR

𝑚Air + 𝑚EGR
,

𝑐V,Inlet =
𝑐V,Air𝑚Air + 𝑐V,Exh𝑚EGR

𝑚Air + 𝑚EGR
,

𝑐𝑝,Inlet = 𝑐V,Inlet + 𝑅Inlet,

𝐴EGR = 𝐴EGRmax𝑓EGR (𝑢EGR) ,

(2)

where 𝑃Inlet is the pressure in intake manifold. 𝑚Air and
𝑚EGR are, respectively, the mass of air and EGR-gas in intake
manifold.𝑚Exh represents the mass of exhaust gas in exhaust
manifold.The othermodel variables and constant parameters
with their value are listed in Table 4. The temperatures 𝑇EGR
and 𝑇Exh are assumed to be constant and equal to 329.436K
and 837K, respectively. 𝐴EGRmax is the maximum opening
area for the EGR. The EGR valve (VGT) is closed when
𝑢EGR = 0% (𝑢XVGT = 0%) and open when 𝑢EGR =

100% (𝑢XVGT = 100%). The static functions, 𝑓vol, 𝑓EGR, ℎ,
and 𝜏, are represented as interpolation in lookup tables. All
these parameters are estimated using weighted least squares
optimization approach. It is worth noting that the compressor
and the CAC are not considered in the model as in [3] since
the mass flow and the temperature after the charge-air cooler
(CAC) are known variables because they are measured by
the production sensors.The considered control inputs are the
VGT vane position 𝑢XVGT and the EGR valve position 𝑢EGR.
Notice that the following variables: 𝑇CAC,𝑊HFM,𝑁Eng,𝑊Fuel,
and 𝑇Exh are considered as measurable signals.Themeasured
outputs are the inlet and exhaust pressures.

We draw the reader’s attention that another more general
mean value model composed of eight states is developed,
parameterized, and validated in [21]. The obtained model
describes the gas flow dynamics including the dynamics in
the manifold pressures, EGR, turbocharger, and actuators.

The mean value model described in the previous sec-
tion was simulated and compared with real measurements
obtained from theCaterpillar testbed.The results are depicted
in Figures 4–7. The input variables used for the valida-
tion purpose are illustrated in Figure 4. The measured and
modeled outputs (𝑃Inlet and 𝑃Exh) are presented in Figure 5.
The absolute value of the difference between the real and
estimated variables is shown in Figure 6. One can conclude
that the used model can reproduce engine dynamic behavior
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Figure 4: Input variables: (a) EGR position [%], (b) VGT position [%], and (c) engine speed [min−1].
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Figure 6: Absolute value of the difference between the measured and modeled pressures: (a) inlet pressure error and (b) exhaust pressure
error.
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Figure 7: Air and EGR mass flows (𝑚Air and𝑚EGR).

with good accuracy since the obtained average error is below
3%. Besides, the output measurements are very noisy as
shown in Figure 5. Furthermore, the air and exhaust gas mass
flows (𝑚Air and𝑚Exh) are also presented in Figure 7.

4. Nonlinear Unknown Input Observer Design

In this section, we will present briefly a nonlinear unknown
input observer developed in [12]. It was proposed for a
class of Lipschitz nonlinear systems with large Lipschitz
constant.The sufficient existence conditions for this observer
are formulated in terms of LMIs.

Obviously, engine model (1) can be put into the form (3a)
and (3b). One can see that this form contains three parts:
one linear parameter varying part, a nonlinear term with
known variables, and a nonlinear state-dependent part. By

considering the form (3a) and (3b), this will allow us to tackle
our synthesis problem based on Lyapunov theory for LPV
systems. Thus, let us consider the general class of nonlinear
systems described by the following equations:

𝑥̇ =

𝑛𝜌

∑

𝑗=1

𝜌𝑗𝐴𝑗𝑥 + 𝐵𝑔𝑔 (𝜐, 𝑦, 𝑢) + 𝑓 (𝑥, 𝑢) + 𝐵𝑓𝑓𝑎 + 𝐵𝑤𝑤,

(3a)

𝑦 = 𝐶𝑥 + 𝐷𝑤𝑤, (3b)

where 𝑥 ∈ R𝑛𝑥 is the state vector, 𝑢 ∈ R𝑛𝑢 is the control input
vector, 𝑓𝑎 ∈ R𝑛𝑓𝑎 represents the actuator faults assimilated
as unknown inputs, 𝑦 ∈ R𝑛𝑦 is the output vector, 𝑤 ∈ R𝑛𝑤

is the vector of disturbances/noises, and 𝜐 ∈ R𝑛𝜐 is the
vector of measurable signals. Notice that 𝜐 contains any other
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measured signals which have no link with the system output
(𝑦) (e.g., temperature measurement, air mass flow (𝑊HFM),
etc.). 𝐴𝑗, for 𝑗 = 1, . . . , 𝑛𝜌, 𝐵𝑔, 𝐵𝑓, 𝐵𝑤, 𝐶, and 𝐷𝑤 are
constant matrices with appropriate dimensions. Without loss
of generality, the matrix 𝐵𝑓 is assumed to be of full column
rank. The functions 𝑔(𝜐, 𝑦, 𝑢) and 𝑓(𝑥, 𝑢) are nonlinear. No
assumption is made about the function 𝑔(𝜐, 𝑦, 𝑢). However,
the function 𝑓(𝑥, 𝑢) is assumed to be once differentiable
with large Lipschitz constant. The weighting functions 𝜌𝑗 are
assumed to be known and depend on measurable variables.
They verify the convex sum property:

𝑛𝜌

∑

𝑗=1

𝜌𝑗 = 1, 𝜌𝑗 ≥ 0, ∀𝑗 ∈ {1, . . . , 𝑛𝜌} . (4)

Let us first rewrite 𝐵𝑓𝑓𝑎 as follows:

𝐵𝑓𝑓𝑎 =

𝑛𝑓𝑎

∑

𝑖=1

𝐵𝑓,𝑖𝑓𝑎,𝑖, (5)

where 𝐵𝑓,𝑖 is the distribution matrix of the fault 𝑓𝑎,𝑖.
The aim is to construct anNUIO-based residual generator

which is insensitive to only one actuator fault (e.g., 𝐵𝑓,𝑖𝑓𝑎,𝑖).
By choosing the unknown input (scalar) 𝑑 = 𝑓𝑎,𝑖, the system
(3a) and (3b) can be rewritten as

𝑥̇ =

𝑛𝜌

∑

𝑗=1

𝜌𝑗𝐴𝑗𝑥 + 𝐵𝑔𝑔 (𝜐, 𝑦, 𝑢) + 𝑓 (𝑥, 𝑢) + 𝐵𝑑𝑑 + 𝐵𝑤𝑤, (6a)

𝑦 = 𝐶𝑥 + 𝐷𝑤𝑤, (6b)

where 𝐵𝑑 = 𝐵𝑓,𝑖, 𝐵𝑤 = [𝐵𝑤 𝐵𝑓], 𝐷𝑤 = [𝐷𝑤 0], and
𝑤 = [

𝑤

𝑓
𝑎

] with 𝑓
𝑎
the actuator fault vector 𝑓𝑎 without the

𝑖th component. 𝐵𝑓 is the matrix 𝐵𝑓 without the 𝑖th column.
It is worth noting that the necessary condition for the

existence of a solution to the unknown input observer
design is the following ([18, 22] for a more explanation):
Rank(𝐶𝐵𝑑) = Rank(𝐵𝑑), where 𝐵𝑑 is a matrix of full column
rank as is a column of the matrix 𝐵𝑓 which is assumed before
to be full column rank.

The considered residual generator for the system (6a) and
(6b) is given by

𝑧̇ = 𝑁 (𝜌) 𝑧 + 𝐺𝑔 (𝜐, 𝑦, 𝑢) + 𝑀𝑓 (𝑥, 𝑢) + 𝐿 (𝜌) 𝑦, (7a)

𝑥 = 𝑧 − 𝐸𝑦, (7b)

𝑟 = Π𝑟 (𝑦 − 𝐶𝑥) (7c)

with𝑁(𝜌) = ∑𝑛𝜌

𝑗=1
𝜌𝑗𝑁𝑗 and 𝐿(𝜌) = ∑

𝑛𝜌

𝑗=1
𝜌𝑗𝐿𝑗. Π𝑟 is a known

matrix. 𝑥 represents the state estimation vector. Matrices 𝑁,
𝐺, 𝑀, 𝐿, and 𝐸 are the observer gains and matrices which
must be determined such that 𝑥 converges asymptotically to
𝑥. Notice that the index 𝜌 is omitted where it is not necessary
to simplify the notations.

By defining the state estimation error as 𝑒(𝑡) = 𝑥(𝑡)−𝑥(𝑡),
the error dynamics can be expressed as

̇𝑒 = 𝑁𝑒 + (𝐺 −𝑀𝐵𝑔) 𝑔 (𝜐, 𝑦, 𝑢) + (𝑁𝑀 + 𝐿𝐶 −𝑀𝐴) 𝑥

−𝑀𝐵𝑑𝑑 +𝑀𝑓 + (𝐾𝐷𝑤 −𝑀𝐵𝑤) 𝑤 − 𝐸𝐷𝑤𝑤̇

(8)

with 𝑓 = 𝑓(𝑥, 𝑢) − 𝑓(𝑥, 𝑢) and 𝐾 = 𝐿 + 𝑁𝐸. Now, if the
following matrix equations are satisfied:

𝑁(𝜌) = 𝑀𝐴(𝜌) − 𝐾 (𝜌)𝐶, with each 𝑁𝑗 stable, (9a)

𝐿 (𝜌) = 𝐾 (𝜌) × (𝐼 + 𝐶𝐸) −𝑀𝐴(𝜌) 𝐸, (9b)

𝐺 = 𝑀𝐵𝑔, (9c)

𝑀 = 𝐼 + 𝐸𝐶, (9d)

𝑀𝐵𝑑 = 0, (9e)

𝑒(𝑡) goes to zero asymptotically if 𝑤 = 0 and is invariant with
respect to the unknown input 𝑑(𝑡). The notation 𝐼 stands for
the identity matrix.

Conditions (9d) and (9e) are equivalent to 𝐸𝐶𝐵𝑑 = −𝐵𝑑.
One necessary condition to have for 𝐸𝐶𝐵𝑑 = −𝐵𝑑 is that 𝐶𝐵𝑑
is of full column rank since 𝐵𝑑 is of full column rank. If 𝐶𝐵𝑑
is of full column rank, then all possible solutions of 𝐸𝐶𝐵𝑑 =
−𝐵𝑑 can be expressed as follows [18]:

𝐸 = 𝑈 + 𝑌𝑉 (10)

with 𝑈 = −𝐵𝑑(𝐶𝐵𝑑)
† and 𝑉 = (𝐼 − 𝐶𝐵𝑑(𝐶𝐵𝑑)

†
) where 𝑌 can

be any compatible matrix and𝑋†
= (𝑋

𝑇
𝑋)

−1
𝑋
𝑇.

Then, the error dynamics becomes

̇𝑒 = (𝑀𝐴 − 𝐾𝐶) 𝑒 +𝑀𝑓 + (𝐾𝐷𝑤 −𝑀𝐵𝑤) 𝑤 − 𝐸𝐷𝑤𝑤̇. (11)

In order to minimize the effect of disturbances on the
observer error, the 𝐻∞ performance criterion can be used.
However, the presence of the term 𝑤̇makes the task difficult
because it should be discarded from the derivative of the
Lyapunov function as we will see later. Another solution is
to add a negative term depending on 𝑤̇𝑇

𝑤̇ as proposed in
[23].This solution needs tomodify the classical𝐻∞ criterion.
In this work, the modified 𝐻∞ criterion presented in [23] is
used.

The modified 𝐻∞ estimation problem consists in com-
puting the matrices𝑁 and 𝐿 such that

lim
𝑡→∞

𝑒 (𝑡) = 0 for 𝑤 (𝑡) = 0, (12a)

‖𝑒‖L𝑛𝑥
2

≤ 𝛾 ‖𝑤‖
𝑟

1,2
for 𝑤 (𝑡) ̸= 0; 𝑒 (0) = 0, (12b)

where ‖ ⋅ ‖𝑟
𝑘,𝑝

represents the Sobolev norm (see [23]).
Then to satisfy (12a)-(12b), it is sufficient to find a

Lyapunov function Υ such that

Γ = Υ̇ + 𝑒
𝑇
𝑒 − 𝛾

2
𝑤
𝑇
𝑤 − 𝛾

2
𝑤̇
𝑇
𝑤̇ < 0, (13)
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where Υ = 𝑒𝑇𝑃𝑒 with 𝑃 a positive definite symmetric matrix.
From (11), Γ is given by

Γ = 𝑒
𝑇
((𝑀𝐴 − 𝐾𝐶)

𝑇
𝑃 + 𝑃 (𝑀𝐴 − 𝐾𝐶)) 𝑒

+ 𝑒
𝑇
𝑃𝑀𝑓 + (𝑀𝑓)

𝑇

𝑃𝑒

+ 𝑒
𝑇
𝑃 (𝐾𝐷𝑤 −𝑀𝐵𝑤) 𝑤 + 𝑤

𝑇
(𝐾𝐷𝑤 −𝑀𝐵𝑤)

𝑇
𝑃𝑒

− 𝑒
𝑇
𝑃𝐸𝐷𝑤𝑤̇

− 𝑤̇
𝑇
(𝐸𝐷𝑤)

𝑇
𝑃𝑒 + 𝑒

𝑇
𝑒 − 𝛾

2
𝑤
𝑇
𝑤 − 𝛾

2
𝑤̇
𝑇
𝑤̇.

(14)

Before introducing our main result, let us present the
modified mean value theorem [24] for a vector function.

Theorem 1 (see [24]). Let the canonical basis of the vectorial
spaceR𝑠 for all 𝑠 ≥ 1 be defined by

𝐸𝑠

=
{

{

{

𝑒𝑠 (𝑖) | 𝑒𝑠 (𝑖) = (0, . . . , 0,

𝑖𝑡ℎ
⏞⏞⏞⏞⏞⏞⏞
1 , 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

)

𝑇

, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑠
}

}

}

.

(15)

Let 𝑓(𝑥) : R𝑛
→ R𝑛 be a vector function continuous on

[𝑎, 𝑏] ∈ R𝑛 and differentiable on convex hull of the set (𝑎, 𝑏).
For 𝑠1, 𝑠2 ∈ [𝑎, 𝑏], there exist 𝛿max

𝑖𝑗
and 𝛿min

𝑖𝑗
for 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛 and

𝑗 = 1 ⋅ ⋅ ⋅ 𝑛 such that

𝑓 (𝑠2) − 𝑓 (𝑠1)

= [

[

(

𝑛,𝑛

∑

𝑖,𝑗=1

𝐻
max
𝑖𝑗

𝛿
max
𝑖𝑗
) + (

𝑛,𝑛

∑

𝑖,𝑗=1

𝐻
min
𝑖𝑗
𝛿
min
𝑖𝑗
)]

]

(𝑠2 − 𝑠1)

𝛿
max
𝑖𝑗
, 𝛿

min
𝑖𝑗

≥ 0, 𝛿
max
𝑖𝑗

+ 𝛿
min
𝑖𝑗

= 1,

(16)

where

(i) ℎmax
𝑖𝑗

≥ max(𝜕𝑓𝑖/𝜕𝑥𝑗) and ℎmin
𝑖𝑗

≤ min(𝜕𝑓𝑖/𝜕𝑥𝑗),

(ii) 𝐻max
𝑖𝑗

= 𝑒𝑛(𝑖)𝑒
𝑇

𝑛
(𝑗)ℎ

max
𝑖𝑗

and𝐻min
𝑖𝑗

= 𝑒𝑛(𝑖)𝑒
𝑇

𝑛
(𝑗)ℎ

min
𝑖𝑗

.

The proof of this theorem is given in [24].
In our case, the nonlinear function 𝑓 depends on the

state vector 𝑥 and also on the known input 𝑢. Although the
previous theorem is applicable in our case, 𝑢 is bounded.

Now, we can give a sufficient condition under which the
observer given by (7a), (7b), and (7c) is a NUIO. Thus, the
negativity of Γ is ensured by the following theorem.

Theorem 2 (see [25]). The observer error 𝑒(𝑡) converges
asymptotically towards zero if there exist matrices 𝐾𝑘, 𝑌,

a positive definite symmetric matrix 𝑃, and a positive scalar
𝜇 such that the following LMIs are satisfied:

𝑃 > 0, (17a)

[
[
[

[

Ξ
max
𝑖𝑗𝑘

Φ𝑘 −𝑃𝑌𝐷𝑤 − 𝑌𝑉𝐷𝑤

(∗) −𝜇𝐼 0

(∗) (∗) −𝜇𝐼

]
]
]

]

< 0, (17b)

[
[
[

[

Ξ
min
𝑖𝑗𝑘

Φ𝑘 −𝑃𝑌𝐷𝑤 − 𝑌𝑉𝐷𝑤

(∗) −𝜇𝐼 0

(∗) (∗) −𝜇𝐼

]
]
]

]

< 0 (17c)

∀𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛 and 𝑘 = 1, . . . , 𝑛𝜌, where

Φ𝑘 = −𝐾𝑘𝐷𝑤 + 𝑃 (𝐼 + 𝑈𝐶) 𝐵𝑤 + 𝑌𝑉𝐶𝐵𝑤, 𝜇 = 𝛾
2
,

Ξ
max
𝑖𝑗𝑘

= [(𝐼 + 𝑈𝐶) (𝐴 + 𝐻
max
𝑖𝑗
)]
𝑇

𝑃

+ 𝑃 (𝐼 + 𝑈𝐶) (𝐴 + 𝐻
max
𝑖𝑗
) − 𝐶

𝑇
𝐾
𝑇

𝑘

− 𝐾𝑘𝐶 + (𝐴 + 𝐻
max
𝑖𝑗
)
𝑇

𝐶
𝑇
𝑉
𝑇
𝑌
𝑇

+ 𝑌𝑉𝐶 (𝐴 + 𝐻
max
𝑖𝑗
) + 𝐼,

Ξ
min
𝑖𝑗𝑘

= [(𝐼 + 𝑈𝐶) (𝐴 + 𝐻
min
𝑖𝑗
)]

𝑇

𝑃

+ 𝑃 (𝐼 + 𝑈𝐶) (𝐴 + 𝐻
min
𝑖𝑗
) − 𝐶

𝑇
𝐾
𝑇

𝑘

− 𝐾𝑘𝐶 + (𝐴 + 𝐻
min
𝑖𝑗
)
𝑇

𝐶
𝑇
𝑉
𝑇
𝑌
𝑇

+ 𝑌𝑉𝐶(𝐴 + 𝐻
min
𝑖𝑗
) + 𝐼,

𝐻
max
𝑖𝑗

= 𝑍𝐻𝐻
max
𝑖𝑗

, 𝐻
min
𝑖𝑗

= 𝑍𝐻𝐻
min
𝑖𝑗

(18)

with 𝑍𝐻 = 𝑛 × 𝑛. Solving LMIs (17a)–(17c) leads to determine
matrices 𝑃, 𝑌, and𝐾𝑘. The matrices𝐾𝑘 and 𝑌 can be obtained
from 𝐾𝑘 = 𝑃

−1
𝐾𝑘 and 𝑌 = 𝑃−1𝑌. The other matrices𝑁 and 𝐿

can then be deduced easily from (9a) and (9b), respectively.

Proof. Theproof is omitted.A sketch of this proof is presented
in [25].

Notice that if there exist terms such that 𝜕𝑓𝑖/𝜕𝑥𝑗 = 0,
then the scaling factor ∑𝑛,𝑛

𝑖,𝑗=1
(𝛿

max
𝑖𝑗

+ 𝛿
min
𝑖𝑗
) is less than 1.

Consequently, the scaling factor 𝑍𝐻 must be redefined as
follows:

𝑍𝐻 =

𝑛,𝑛

∑

𝑖,𝑗=1

(𝛿
max
𝑖𝑗

+ 𝛿
min
𝑖𝑗
) = 𝑛 × 𝑛 − 𝑛0,

∑
𝑛,𝑛

𝑖,𝑗=1
(𝛿

max
𝑖𝑗

+ 𝛿
min
𝑖𝑗
)

𝑍𝐻

= 1,

(19)

where 𝑛0 is the number of terms in 𝜕𝑓𝑖/𝜕𝑥𝑗 that equal zero.
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Figure 8: FDI system.

The procedure to design theNUIO parameters is summa-
rized by the following algorithm.

Algorithm 3. NUIO design is as follows:

(1) compute 𝑈 and 𝑉 from (10),
(2) determinematrices𝑌 and𝐾𝑘, with 𝑘 = 1, . . . , 𝑛𝜌 from

the LMI sets (17a)–(17c),
(3) compute the observer matrices 𝐸, 𝑀, 𝐺, 𝑁, and 𝐿

from (10), (9d), (9c), (9b), and (9a), respectively.

5. Residual Generation

This section addresses the problem of actuator faults isolation
based on a bank of residual generators (see Figure 8). Each
residual on the proposed scheme is an NUIO based on
model (6a) and (6b). Notice that the system (1) can be
easily rewritten in a state space form as (3a) and (3b) (see
Appendix C). Furthermore, each residual is designed to be
insensitive to only one fault. Thus, the actuator faults can be
easily isolated since only one residual goes to zero while the
others do not.Therefore, for our application, the combination
of two observers is sufficient to detect and isolate any faulty
actuator. It is also assumed that only a single actuator fault
can occur at one time.

To construct the bank of residual generators we have to

(i) design an NUIO which generates the residual 𝑟1
insensitive to 𝑓𝑎,1 by taking

𝐵𝑑 = [
𝑅Exh𝑇EGR𝐴EGRmax𝑐𝑝,Exh

𝑉Inlet𝑐V,Exh
0 𝐴EGRmax −𝐴EGRmax]

𝑇

,

(20)

(ii) design an NUIO which generates the residual 𝑟2
insensitive to 𝑓𝑎,2 by taking

𝐵𝑑 = [0 0 0 1]
𝑇
. (21)

Table 2: Effect of the faults on the residuals.

𝑟 𝑓1 𝑓2

𝑟1 0 ×

𝑟2 × 0

To obtain𝐵𝑑 as in (20), it suffices to replace in the original
system the input vector 𝑢 by 𝑢 + 𝑓𝑎, where 𝑓𝑎 represents
the actuator fault vector. Thus, 𝐵𝑑 can be obtained easily by
gathering the terms multiplying the vector 𝑓𝑎 in one matrix.

Each residual, 𝑟𝑖(𝑡) (𝑖 = 1, 2), computed from (7a), (7b),
and (7c), is a 1-dimensional vector associated with one of the
actuators 𝑢EGR and 𝑢XVGT. By stacking the two vectors, one
defines 𝑟(𝑡) = [𝑟

󸀠

1
(𝑡), 𝑟

󸀠

2
(𝑡)]

󸀠. In the absence of faults, this
vector of residuals has zero mean, while, upon occurrence of
a single step-like fault, the effect on each of its components
is indicated in Table 2. A “×” is placed when the fault located
in the corresponding column affects the mean of the residual
component on the corresponding row, and a “0” when the
residual component presents very low sensitivity to the fault.
The sampled vector 𝑟(𝑘) can be rewritten as

𝑟 (𝑘) = 𝑟0 (𝑘) +

2

∑

ℓ=1

]ℓΓℓ (𝑘) 1{𝑘≥𝑘0}𝛿ℓ, (22)

where the sample number 𝑘 corresponds to the time instant
𝑡 = 𝑘𝑇𝑠 with 𝑇𝑠 denoting the sampling period, 𝑟0(𝑘) is the
fault-free residual, Γℓ(𝑘) is the dynamic profile of the change
on 𝑟(𝑘) due to a unit step-like fault𝑓ℓ, and ]ℓ is themagnitude
of fault ℓ. Model (22) will be used as the basis for the decision
system design in the next section.

One can see that residuals are designed in a deterministic
framework. However, due to measurement noise and system
disturbances, parameters uncertainties, and variations, the
computed residuals are stochastic signals. As a consequence,
a multi-CUSUM method will be used for the decision step.
Another way would have been to consider the noise and
stochastic disturbances characteristics to design robust resid-
uals, analyze the stochastic characteristics of the residuals,
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Table 3: Caterpillar 3126B engine characteristics.

Description
Model Caterpillar 3126B
Type of engine Inline, 4-stroke
Number of cylinders 6
Number of inlet valves 2
Number of exhaust valves 1
Firing order 1-5-3-6-2-4
Type of combustion Direct injection
Maximum torque 1166Nm @ 1440 rpm
Maximum power 224 kw @ 2200 rpm
Idle speed 700 rpm
Maximum speed 2640 rpm

Geometrical characteristics
Bore 110mm
Stroke 127mm
Compression ratio 16
Total displacement 7.25 liter
Connecting rod length 199.9mm
Crank throw radius 63.5mm

Injection system
Type HEUI
Injection pressure 200–145 bar
Injection orifices number 6
Type of combustion Direct injection

Geometrical characteristics of manifolds and pipes
Intake manifold 5 L
Exhaust manifold 0.945 L

and design the decision algorithm with respect to these
characteristics. However, this would be too complex to do for
our application and would lie anyway on given assumptions
on the stochastic disturbances.

6. Decision System

In this section, we will present a decision system based on a
statistical approach proposed in [26]. This approach, named
multi-CUSUM, was developed in [27] and refined in [28].
Indeed, in model (22), it is seen that an actuator fault induces
a change in the mean of the residual vector 𝑟(𝑘). Thus,
the problem amounts to detecting and isolating a step-like
signal within a white Gaussian noise sequence. Therefore,
the change detection/isolation problem can be stated as the
following hypothesis testing:

H0 :L (𝑟 (𝑖)) =N (𝜇
0
, Σ) , 𝑖 = 1, . . . , 𝑘,

Hℓ :L (𝑟 (𝑖)) =N (𝜇
0
, Σ) , 𝑖 = 1, . . . , 𝑘0 − 1,

L (𝑟 (𝑖)) =N (𝜇
ℓ
, Σ) , 𝑖 = 𝑘0, . . . , 𝑘,

(23)

where 𝑘0 ∈ [1, 𝑘], and 𝜇ℓ = 𝜇0 + ]ℓΓℓ is the mean value of
the residual sequence when the ℓth fault has occurred, for
ℓ ∈ {1, 2}. The decision system is based on a combination of
CUSUM decision functions [27], each of them involving the
log-likelihood ratio between hypothesesHℓ andH0, namely,

𝑠𝑘 (ℓ, 0) = ln
𝑝ℓ (𝑟 (𝑘))

𝑝0 (𝑟 (𝑘))
, (24)

where 𝑝ℓ is the probability density function of 𝑟(𝑘) under
the hypothesis Hℓ. Under the Gaussian hypothesis, the log-
likelihood ratio can be rewritten as

𝑠𝑘 (ℓ, 0) = (𝜇ℓ − 𝜇0)
𝑇
Σ
−1
(𝑟 (𝑘) −

1

2
(𝜇

ℓ
+ 𝜇

0
)) . (25)

The CUSUM decision function is defined recursively as

𝑔𝑘 (ℓ, 0) = max (0, 𝑔𝑘−1 (ℓ, 0) + 𝑠𝑘 (ℓ, 0)) . (26)

In order to estimate the fault occurrence time, the number
of successive observations for which the decision function
remains strictly positive is computed as 𝑁ℓ(𝑘) = 𝑁ℓ(𝑘 −

1)1{𝑔𝑘−1(ℓ,0)>0}
+ 1. To decide whether fault ℓ has occurred,

one has to check that, on average, all the likelihood ratios
𝑠𝑘(ℓ, 𝑗), for 1 ≤ 𝑗 ̸= ℓ ≤ 2, are significantly larger than
zero. Noticing that 𝑠𝑘(ℓ, 𝑗) = 𝑠𝑘(ℓ, 0) − 𝑠𝑘(𝑗, 0), one can build
a CUSUM algorithm to decide between hypotheses Hℓ and
H𝑗 by taking into account the difference between𝑔𝑘(ℓ, 0) and
𝑔𝑘(𝑗, 0). Hence a decision thatHℓ holds can be issued when
the following decision function becomes positive:

𝑔
ℓ
= min

0≤𝑗 ̸=ℓ≤2
(𝑔𝑘 (ℓ, 0) − 𝑔𝑘 (𝑗, 0) − ℎℓ,𝑗) (27)

for ℓ = 1, 2 and 𝑔𝑘(0, 0) = 0.
Like in [26, 27], it is advisable to consider only two values

for the thresholds ℎℓ,𝑗, for each ℓ = 1, . . . , 𝑛𝑓, namely,

ℎℓ,𝑗 =
{

{

{

ℎℓ𝑑, for 𝑗 = 0,

ℎℓ𝑖, for 1 ≤ 𝑗 ̸= ℓ ≤ 𝑛𝑓,
(28)

where ℎℓ𝑑 is the detection threshold and ℎℓ𝑖 is the isolation
threshold. Notice that the mean detection delay, the mean
time before false alarm, and the probability of a false isola-
tion depend on the choice of these thresholds. Indeed, the
thresholds ℎℓ𝑑 and ℎℓ𝑖 can be linked to the mean detection
delay (𝜏) for the fault ℓ thanks to the following expression
[27] assuming that ℎℓ𝑑 = 𝛾ℎℓ𝑖 where 𝛾 ≥ 1 is a constant:

𝜏 = max(
ℎℓ𝑑

𝜅ℓ,0
,

ℎℓ𝑖

min𝑗 ̸=0,ℓ (𝜅ℓ,𝑗)
) as ℎℓ𝑖 󳨀→ ∞, (29)

where 𝜅ℓ,𝑗 is the Kullback-Leibler information defined as

𝜅ℓ,𝑗 =
1

2
(𝜇

ℓ
− 𝜇

𝑗
)
𝑇

Σ
−1
(𝜇

ℓ
− 𝜇

𝑗
) . (30)
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Table 4: The variables used in the engine model.

Symb. Quantity Value/unit
𝑃Inlet Pressure in intake manifold Pa
𝑝Atm Atmospheric pressure Pa
𝑊Turb Exhaust mass flow past the turbine kg⋅s−1

𝑢XVNT Position of VNT vanes %
𝑁Eng Engine speed min−1

𝑊Fuel Mass flow of injected fuel kg⋅s−1

𝑄LHV Lower heating value J⋅kg−1

𝐴EGR Effective area of EGR valve m2

𝑅Inlet Gas constant in intake manifold J⋅(kg⋅K)
𝑊Inlet Mass flow into engine inlet ports kg⋅s−1

𝑇Inlet Temperature in the intake manifold K
𝑚Air Mass of air in intake manifold kg
𝑚EGR Mass of EGR gas in intake manifold kg
𝑊Exh Exhaust mass flow into the exhaust manifold kg⋅s−1

𝑚Exh Mass of exhaust gas in exhaust manifold kg
𝑃Exh Pressure in exhaust manifold Pa
𝑐𝑝,Inlet Specific heat at const. pres. in intake manifold J⋅(kg⋅K)
𝑐V,Inlet Specific heat at const. vol. in intake manifold J⋅(kg⋅K)
𝜅 Ratio of specific heats 𝑐𝑝/𝑐V

𝑊HFM Air mass flow past the air mass flow sensor kg⋅s−1

𝑊EGR EGR mass flow into intake manifold kg⋅s−1

𝑉Inlet Volume of intake manifold 1.8 × 10
−3m3

𝑅Air Gas constant of air 288.2979 J⋅(kg⋅K)
𝑐𝑝,Air Specific heat at const. pres. of air 1067.4 J⋅(kg⋅K)
𝑐V,Air Specific heat at const. vol. of air 779.1021 J⋅(kg⋅K)
𝑅Exh Gas constant of exhaust gas of exhaust gas 290.155 J⋅(kg⋅K)
𝑐𝑝,Exh Specific heat at const. pres. of exhaust gas 1288.08 J⋅(kg⋅K)
𝑐V,Exh Specific heat at const. vol. of exhaust gas 997.9250 J⋅(kg⋅K)
𝑇CAC Temperature of the air after the charge-air cooler 322.5 K
𝑇EGR Temperature of EGR gas flow into the i.m. 322K
𝑇Exh Temperature in exhaust manifold 837K
𝑉Eng Engine displacement 7.239 × 10

−3m3

𝑉Exh Volume of exhaust manifold 9.4552 × 10
−3m3

When considering ℎℓ,𝑑 = ℎℓ,𝑖 = ℎℓ, (31) is used instead of
(27):

𝑔
∗

ℓ
= min

0≤𝑗 ̸=ℓ≤2
(𝑔𝑘 (ℓ, 0) − 𝑔𝑘 (𝑗, 0)) (31)

and an alarm is generated when a 𝑔∗
ℓ
≥ ℎℓ.

The reader can refer to [26, 27] for more detailed infor-
mation.

7. Experimental Results and Discussion

The proposed fault detection and isolation approach has
been tested on the caterpillar 3126 engine located at Sussex
University, UK. The aim is to detect and isolate any additive
actuator fault. The detection delay 𝜏 should be lower than
0.01 s in average. This delay is defined as the difference
between the alarm time and the actual fault occurrence time.

7.1. Design Parameters. For the design of the residual gen-
erators, the gain matrices given by (9a)–(9e) should be
determined. Unfortunately, we cannot present their values
due to pages limitation. Notice that the LMIs (17a)–(17c) are
solved by using the software YALMIP toolbox, which is a
toolbox for modeling and optimization in Matlab. Matrix Π𝑟

for the two residual generators is chosen as Π𝑟 = [0, 1]. The
sampling period 𝑇𝑠 is set as 10

−3 s.

Remark 4. It is worth noting that no feasible solution is
obtained with the approach presented in [18] due to the
Lipschitz constant value of the nonlinear function 𝑓 (see
(C.7)). In fact, the Lipschitz constant value is bigger than
10

10 in our case. Other methods can be used, or extended
to our case, as that proposed in [23] for estimating the state
and unknown input vectors. Unfortunately, these methods
are computationally demanding since the number of LMIs,
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Figure 9: Experimental results: (a) EGR and VGT actuators, (b) residuals (𝑟𝑖), and (c) multi-CUSUM decision functions.

in each residual generator, that should be solved is equal to
𝑁LMI = 2

𝑛×𝑛𝑓 , where 𝑛𝑓 is the number of nonlinearities in the
system. So, in our case 𝑁LMI = 2

4×4
= 65536. In addition, it

is only proposed for the standard systems with a linear time-
invariant part (𝐴𝑥). We know that the number of LMIs will
be strongly increased if this method is extended to our LPV
case.

The covariance matrix Σ and the mean 𝜇
0
used for

designing the multi-CUSUM algorithm are estimates of the
variance and the mean of 𝑟 obtained from a set of simulation
data generated in healthy operating conditions. Assuming
that all considered faults should be detected and isolated with
a mean detection delay 𝜏 ≤ 0.1 s, the threshold is selected as
ℎℓ = 1000.

7.2. Validation Step. For illustrating the performance of
this approach, the following scenario is considered. First, a
positive step-like change in the EGR actuator appears when
𝑡 ∈ [6.5, 8] s. Next, a single negative step-like fault in the VGT
actuator is introduced in the time interval [8.9, 11.5] s.

The experiment is performed with engine average speed
𝑁Eng = 1800 rpm, where the minimum and maximum

value of 𝑁Eng (𝑁Eng and 𝑁Eng) are 1700 rpm and 1900 rpm,
respectively. The initial conditions for the two observers are
randomly chosen as follows:

𝑧10 = [12 0 2 × 10
−7

10
−10
]
𝑇

,

𝑧20 = [12 0 2 × 10
−7

10
−10
]
𝑇

.

(32)

The experimental results are shown in Figure 9. First,
the actuators (𝑢EGR and 𝑢XVGT) behavior is illustrated in
Figure 9(a). Then, the normalized residuals 𝑟1 and 𝑟2 are
shown in Figure 9(b). Finally, the decision functions result-
ing from the multi-CUSUM algorithm are presented in
Figure 9(c). It is clear from the last figures (Figure 9(c)) that
only the exact decision function 𝑔

∗

2
, corresponding to an

occurred fault in 𝑢XVGT, crosses the threshold. It means that
this fault is correctly detected and isolated. The obtained
mean detection delay 𝜏, given by (29), is equal to 0.0890 s.
As expected, this fault is detected and isolated with a mean
detection delay 𝜏 ≤ 0.1 s.
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8. Conclusion

The problem of actuator fault detection and isolation for
diesel engines is treated in this paper. The faults affecting the
EGR system and VGT actuator valves are considered. A bank
ofNUIOhas been used. Each residual is designed to be insen-
sitive to only one fault. By using this kind of scheme and by
assuming that only a single fault can occur at one time, each
actuator fault can be easily isolated since only one residual
goes to zero while the others do not. A multi-CUSUM algo-
rithm for statistical change detection and isolation is used as a
decision system. Fault detection/isolation is achieved within
the imposed timeslot. Experimental results are presented to
demonstrate the effectiveness of the proposed approach.

Appendices

A. Engine Characteristics

See Table 3.

B. Nomenclature

See Table 4.

C. Diesel Engine Model

The system (1) can be easily rewritten in state space form
as (3a) and (3b). Indeed, it suffices to extract the linear part
by doing product development and to separate the nonlinear
part with known or measurable variables (𝜐, 𝑦, 𝑢). The rest
is gathered in the general nonlinear part (𝑓(𝑥, 𝑢)). The state,
known input and output vectors, and the variables 𝜌 and 𝜐 are
defined as

𝑥 = [𝑃Inlet 𝑚Air 𝑚EGR 𝑚Exh]
𝑇
,

𝑢 = [𝑢EGR 𝑢XVNT]
𝑇
,

𝑦 = [𝑃Inlet 𝑃Exh]
𝑇
,

𝜌 = 𝑁Eng,

𝜐 = [𝑇CAC 𝑊HFM 𝑊Fuel]
𝑇
.

(C.1)

The matrices 𝐴1 and 𝐴2 are given by

𝐴1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0 0 0

0 −
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0 0

0 0 −
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0

0
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet

𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐴2

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0 0 0

0 −
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0 0

0 0 −
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0

0
𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet

𝑓vol𝑁Eng𝑉Eng

120𝑉Inlet
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(C.2)

where 𝑁Eng and 𝑁Eng are, respectively, the minimum and
maximum value of the measurable variable 𝑁Eng. 𝜌1 and 𝜌2
are defined as

𝜌1 =
𝑁Eng − 𝑁Eng

𝑁Eng − 𝑁Eng
, 𝜌2 =

𝑁Eng − 𝑁Eng

𝑁Eng − 𝑁Eng
. (C.3)

The matrices 𝐵𝑔, 𝐶, and 𝐵𝑤 are expressed as

𝐵𝑔 =

[
[
[
[
[

[

𝑅Air𝑐𝑝,Air

𝑐V,Air𝑉Inlet
0 0

0 1 0

0 0 0

0 0 1

]
]
]
]
]

]

, 𝐶 =
[
[

[

1 0 0 0

0 0 0
𝑅Exh𝑇

moy
Exh

𝑉Exh

]
]

]

,

𝐵𝑤 = [0 0 0 0]
𝑇
,

(C.4)

where 𝑇moy
Exh is the mean value of measurable variable 𝑇Exh.

The matrix 𝐵𝑓 and the vector 𝑓𝑎 are chosen as follows:

𝐵𝑓 =

[
[
[
[
[
[

[

𝑅Exh𝑇EGR𝐴EGRmax𝑐𝑝,Exh

𝑉Inlet𝑐V,Exh
0

0 0

𝐴EGRmax 0

−𝐴EGRmax 1

]
]
]
]
]
]

]

,

𝑓𝑎 =

[
[
[
[

[

𝑃Exh

√𝑅Exh𝑇Exh
Ψ𝜅Exh

(
𝑃Inlet
𝑃Exh

)𝑓EGR (𝑢EGR)

𝑃Exh

√𝑇Exh
𝜏 (

𝑃Exh
𝑃Atm

, 𝑢XVNT)

]
]
]
]

]

.

(C.5)

Finally, the functions 𝑔 and 𝑓 are given by

𝑔 = [𝑊HFM𝑇CAC 𝑊HFM 𝑊Fuel]
𝑇
, (C.6)

𝑓 =

[
[
[
[
[
[
[
[
[
[
[

[

𝑅Inlet𝑃Inlet
𝑐V,Inlet
0

𝐴EGR𝑚ExhΨ𝜅Exh𝑇Exh

√𝑅Exh𝑇Exh

−
𝑅Exh𝑇Exh𝑚Exh𝜏 (𝑃Exh/𝑃Atm, 𝑢XVNT)

𝑉Exh√𝑇Exh

]
]
]
]
]
]
]
]
]
]
]

]

. (C.7)
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As mentioned in Section 3, the parameters 𝑓vol, 𝑓EGR,
𝜏, and ℎ are computed by interpolation in lookup tables.
However, in this work, we are interested in the diagnosis in
the steady state. So, we choose these parameters constant at
each operating point to validate our approach. Furthermore,
the proposed approach can take easily the parameter varia-
tion into account. For example, if we choose 𝑓vol as variable
parameter, the variable 𝜌 can be chosen as 𝜌 = 𝑓vol𝑁Eng
instead of 𝜌 = 𝑁Eng. By doing this, there is no need to change
the design approach since the engine model has always the
form (3a) and (3b).
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