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A COMPARATIVE STUDY OF SPARSE ASSOCIATIVE
MEMORIES

VINCENT GRIPON, JUDITH HEUSEL, MATTHIAS LÖWE, AND FRANCK VERMET

Abstract. We study various models of associative memories with sparse in-

formation, i.e. a pattern to be stored is a random string of 0s and 1s with about

logN 1s, only. We compare different synaptic weights, architectures and re-

trieval mechanisms to shed light on the influence of the various parameters on

the storage capacity.

1. Introduction

Starting with the seminal paper [7], Gripon, Berrou and coauthors revived the

interest in associative memory models, see e.g. [1], [12], [11], [14]. Their approach

is motivated by both biological considerations and ideas from information theory

and leads to a neural network that is organized in clusters of interacting neurons.

They state that their model (which we will refer to as the GB model) is more

efficient (see [7]) and has by far a larger storage capacity than the benchmark

model for associative memories, the Hopfield model introduced in [9]. Indeed,

their considerations lead to a storage capacity of the order N2/(logN)2 messages

(or patterns or images; these words will be used synonymously) for their model

with N neurons, while the standard Hopfield model with N neurons only has a

capacity of N/(2 logN) (see [20], [4]).

However, the standing assumption of the GB model is that for N neurons there

are c clusters of neurons with 1 ≤ c ≤ logN , and each message to be stored has

only exactly one active neuron per cluster. This not only leads to a restriction

on the number of storable messages, but also to them being very sparse (where

sparsity is defined by a small number of active neurons). As a matter of fact,

for sparse messages other models of associative memories have been proposed

by Willshaw [25], Amari [10], Okada [21], or [2], [17], and [8]. All these models

have in common that their storage capacity is conjectured to be much larger than

that of the Hopfield model. The Willshaw model has also been discussed in a

number of papers by Palm, Sommer, and coauthors ([22], [24], [23] e.g.), with the

difference that there the focus is rather on information capacity than on exact
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retrieval (and that many of the techniques are not rigorous). In [17] it has been

rigorously proven for a sparse three-state network, the so called Blume-Emery-

Griffiths model, that the capacity is indeed of the predicted order (even though

there, strictly speaking the degree of sparsity is not allowed to depend on the

number of neurons).

A natural question is thus to separate the various factors that can influence

the storage capacity of a model: the sparseness of the messages, the storage

mechanism, and the algorithm to retrieve the stored patterns. The objective

of the present article is to analyze this question. To this end we will try to give

bounds on the storage capacity of the Willshaw model, Amari’s version of a sparse

0-1 Hopfield model, and the GB model. In particular, we will see that all these

models achieve a storage capacity of the order of N2/(logN)2 when the number of

active neurons c satisfies c = a logN for some positive a. Also we will discuss the

influence of model specificities to the absolute constants in the storage capacities.

More precisely, we organize our article in the following way. In the next section,

we describe the three models we aim at studying and formally define what is

meant by “storing a message”. In Section 3 we give some insight why an order

of N2/(logN)2 for the number of stored messages is to be expected in a model

with N neurons, of which about only logN are active. To this end we consider

a certain event in the GB model that implies that a message cannot be retrieved

correctly. In the fourth section we state our main results. These are proved in

Section 5. Section 6 takes up ideas from Section 3 to show, that if the number of

messages is too large, an erased message cannot be completed correctly in the GB

model. Finally, Section 7 discusses some dynamical properties of the considered

models and contains some simulations, in particular on the probability to correct

an error in several steps. These probabilities are notoriously difficult to access

analytically (see e.g. [5], [18], or [19]). The simulations give an impression of the

advantages and drawbacks of the several models.

Acknowledgement: We are very grateful to two anonymous referees for a very

careful reading of a first version of the manuscript and valuable remarks that

helped to improve its readability significantly.

2. The models

We will now present the models that are in the center of our interest in the present

paper. The reference model is always the Hopfield model on the complete graph

(i.e. all neurons are interconnected), with M patterns (ξµ)µ=1,...M = (ξµi )µ=1,...M
i=1,...N ∈

{−1,+1}N×M . Here the so called synaptic efficacy Jij is given by

Jij =
∑
µ

ξµi ξ
µ
j 1 ≤ i 6= j ≤ N
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and an input σ ∈ {−1,+1}N is transformed by the dynamics

Ti(σ) = sgn(
∑
j 6=i

Jijσj)

where sgn is the sign function (and the sign of 0 is chosen at random). This update

can happen either synchronously or asynchronously in i. In [20] it was shown that

for unbiased and i.i.d. random variables ((ξµi )i=1,...N)µ=1,...M and M = c N
logN

with

c < 1
2
, an arbitrary message is stable under the dynamics with a probability

converging to one. Of course, this model can be generalized to i.i.d. biased

patterns with expectation a. In [16] the author suggests to replace the synaptic

efficacy by Jij =
∑

µ(ξµi − a)(ξµj − a) and shows that the storage capacity (in the

sense that an arbitrary pattern is a fixed point of the above dynamics) decreases

for a strong bias. More precisely, he gives a lower bound on the storage capacity of

the Hopfield model with biased patterns of the form Cp2(1− p)2N/ logN , where

C is an explicit constant that depends on the notion of storage capacity used and

p is the probability that ξ11 equals +1. Note that this behaviour is amazingly

similar to the behaviour of Hopfield models with correlated patterns, cf. [15].

Another model for biased ±1-patterns was proposed by Okada [21].

However, if we think of the bias as a certain sparsity of the patterns, it may be

more natural to consider patterns (ξµ)µ=1,...M where the (ξµi ) still are i.i.d. but

take values 0 and 1 where P(ξµi = 1) = p is small. We will henceforth consider

such patterns and three such models.

2.1. Amari’s model. The model Amari proposed in [10] is closest in spirit to

the Hopfield model. Here we take Jij =
∑

µ ξ
µ
i ξ

µ
j and with this new setting, we

consider input spin configurations σ ∈ {0, 1}N and map their spins to either 0 or

1 with the help of a dynamics. Of course, one should only map an input spin σi
to 1, if the so called local field

∑
j 6=i Jijσj is large enough, say larger than a given

threshold. To compare Amari’s results to the other models we choose

P(ξµi = 1) = p =
logN

N
.

As a matter of fact, this is the case of extremely diluted patterns, since if p is even

smaller, say p = c/N for some c, with positive probability some of the patterns

will entirely consist of 0’s and will thus be indistinguishable.

We propose the following dynamics, where a spin σi will be 1, if the so called

local field

Si(σ) =
∑
j 6=i

Jijσj

is large enough, say larger than a given threshold.

Ti(σ) = Θ(Si(σ)− h)

where Θ(x) = 1{x≥0} and we choose h = γ logN for some γ > 0. Note that this

seems a reasonable choice if we want the (ξµ) to be fixed points of the dynamics.
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Consider for example the case ξ1i = 1 we have that∑
j 6=i

Jijξ
1
j =

∑
j 6=i

ξ1j +
∑
µ6=1

∑
j 6=i

ξµi ξ
µ
j ξ

1
j

and the first term on the right hand side is of order logN . Also note that Amari

just considers the case of a fixed number logN of active neurons per message

(which is similar), and states that the above model would perform much worse

in the case we consider. We will see that this is not the case.

2.2. The Willshaw model. The following model was proposed in a celebrated

paper by Willshaw [25]. It corresponds to Amari’s model with the restriction

that the efficacy Jij does not depend on the number of messages that use neurons

i and j but just on whether there is any µ with ξµi ξ
µ
j = 1. In the case of the

Hopfield model this procedure is known as “clipped” synapses.

Formally, we will now either assume that the (ξµi ) are i.i.d 0 − 1 random vari-

ables with success probability p = logN
N

or we take the M messages to be realized

uniformly at random from all sets of M messages with exactly c = logN active

neurons. Both cases are similar, but the first one is mathematically more conve-

nient, because in this case the images as well as all their spins are independent.

Moreover, in the Willshaw model we choose

Jij = Θ(
∑
µ

ξµi ξ
µ
j − 1) =

{
1 if ∃µ : ξµi ξ

µ
j = 1

0 otherwise,

for all i, j ∈ {1, . . . , N}. There are two different (yet similar) types of dynamics to

be considered. The first one is the threshold dynamics also considered in Amari’s

model. So again for an input σ ∈ {0, 1}N we set

Ti(σ) = Θ(S̄i(σ)− h)

with S̄i(σ) =
∑

j Jijσj and h = γlogN , for some γ > 0. This dynamics is

applicable to both types of patterns (i.i.d. random variables (ξµi ) or randomly

chosen messages amongst all sets of M messages with exactly c active neurons).

For the Willshaw model, we consider S̄i instead of Si(σ) =
∑

j 6=i Jijσj, since

simulations support that it improves performance to modify Si in order to account

for self influence of neurons. This modification is well known and will be referred

as “memory effect”.

In the latter case of exactly c active neurons per message and the messages being

randomly chosen messages amongst all sets of M messages with exactly c active

neurons there is another retrieval dynamics that requires the knowledge of all the

S̄i(σ) for 1 ≤ i ≤ N . In this setting, for a given input σ ∈ {0, 1}N we compute

all the S̄i(σ) and order them: they will be denoted by h(1) ≥ h(2) ≥ . . . ≥ h(c) ≥
. . . ≥ h(N). Then we set all neurons i with S̄i(σ) ≥ h(c) to 1 and the others

to 0. Note that in case of a tie we may obtain more than c 1’s after a step of

the dynamics. This procedure was called “Winner takes all”-algorithm (WTA
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algorithm, for short) in [13] in a model that is closely related to the following

cluster model.

Similarly, we may as well imagine that c is fixed but we do not know it. In

this case we could just take the most active neurons, i.e. set all neurons with a

value S̄i(σ) lower than h(1) to 0. Interestingly, if we consider as input a partially

erased version ξ̃µ of a stored message ξµ, for the one step retrieval we consider

theoretically in Sections 4 and 5, this does not change anything as long as we

consider the memory effect described above, since in this case h(1) = h(c). This is

because h(1) cannot be larger than the number of initial 1’s in the dynamics input

and this upper bound is reached for at least all the neurons that are active in the

message ξµ we are looking for. Considering the performance of the model with

several steps of the retrieval dynamics numerically, however, shows that the above

threshold h(c) is superior to a threshold h(1). As a matter of fact, the dynamics

using h(1) as threshold does not benefit from performing more than one iteration

(see Theorem 7.4).

On the other hand using h(c) allows for improvement over the time. Also note

that the WTA algorithm with h(1) as threshold can be applied in the case where

the (ξµi ) are i.i.d 0−1 random variables with success probability p = logN
N

, as will

be proven in Section 4.

2.3. The GB model. Here we assume that N = l log l =: l · c for some l. One

tries to store M messages ξ1, . . . , ξM in a network with a block structure. The

messages are sparse in the sense that each message ξµ has c active neurons, only,

one in each block of l neurons. To take into account the block structure, we will

denote by (a, k) the k-th neuron of the a-th block.

For a 6= a′, an edge e = ((a, k), (a′, k′)) is said to be active for the message ξµ if

ξµ(a,k)ξ
µ
(a′,k′) = 1. Let

E((ξµ)µ=1,...,M) := {e : e is an active edge of one of the ξµ}.

We can also define the graph associated with or spanned by an arbitrary message

ξ0. This will be the (necessarily complete) graph with all vertices (a, k) such

that ξ0(a,k) = 1 and edges e = ((a, k), (a′, k′)) for all a, a′, k, k′, a 6= a′ such that

ξ0(a,k)ξ
0
(a′,k′) = 1. Then a message ξ0 is considered to be stored in the model if

all edges of this complete graph spanned by ξ0 are present in the set of edges

E((ξµ)µ=1,...,M).

Similar to the Willshaw model, we define the synaptic efficacy by

W(a,k),(a′,k′) = Θ(
M∑
µ=1

ξµ(a,k)ξ
µ
(a′,k′) − 1).

Thus for a 6= a′ W(a,k),(a′,k′) = 1 if and only if (a, k) and (a′, k′) are activated

simultaneously in one of the messages (both in the same message). On the other

hand, for a = a′ we have W(a,k),(a,k′) = 1 if and only if k = k′ and there exists µ
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such that the k’th neuron in block a is 1. As a matter of fact, this description

shows that the major difference to the Willshaw model is that in the GB model

one has a restriction of the location of the 1’s.

With this synaptic efficacy one can associate a dynamics T on ({0, 1}l)c : instead

of the local field Si(σ) of the preceding models, we define

S(a,k)(σ) =
c∑
b=1

l∑
r=1

Θ(W(a,k),(b,r)σ(b,r) − 1)

for σ ∈ ({0, 1}l)c, and the dynamics

T(a,k)(σ) = Θ(S(a,k)(σ)− h).

Here again h is a threshold that needs to be adapted to the tasks we want the

network to perform. E.g., choosing h = c one readily verifies that all stored

messages ξ ∈ M = {ξ1, . . . , ξM} are stable, i.e. we have T (ξ) = ξ. Obviously,

this can only go to the expense of error tolerance of the network.

The dynamics described above is the equivalent of the threshold dynamics in the

Willshaw model. As in the latter model, we can also define a WTA algorithm.

This will respect the local nature of the GB model. To describe it, assume we

want to update the values of the neurons in the a’th cluster σ(a,k), k = 1, . . . , l.

For each k = 1, . . . , l we then build

(1) s(a,k)(σ) =
c∑
b=1

Θ(
l∑

r=1

W(a,k),(b,r)σ(b,r) − 1).

(This is called the SUM-OF-MAX rule in [26]; it accounts for the fact that in

each message there only can be one active connection between two clusters). We

then order the s(a, k), k = 1, . . . , l and set the neuron(s) with the largest value

to 1 and all others to 0.

3. Wrong messages and a first bound on the storage capacity

In this section we will approach the question: what could be the right order for

the storage capacity of the above networks?

At first glance, storage capacity may refer to different properties of the network.

E.g. from Section 4 we will ask ourselves: how many messages can we store

such that they are fixed points of the network dynamics or how many messages

can we register in our network such that even a certain number of errors can be

corrected? On the other hand, in the previous section we already learned that in

the GB model with a threshold dynamics, an arbitrary number of input messages

is stable if we choose the threshold equal to c, the number of active neurons. It

is intuitively clear that this can only have a negative effect on the error retrieval

abilities of the network, if we store too many messages in the network.

An extreme case of such a lack of error tolerance is if we recognize an input as

a stored message even if it is not. This property will be discussed in greater
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detail for the GB model and partially for the Willshaw model in this section.

The insight we gain will provide us with an idea of how many messages we can

store in the models.

We will prove the following theorem.

Theorem 3.1. Consider the GB model with the threshold retrieval dynamics and

threshold h = c. Take

M = α(log c)l2 = αl2 log log l.

If α > 2, a random message (independent of the stored patterns) will be recognized

as a stored message with probability converging to 1 as l→∞.

If α = 2 and as l → ∞, with strictly positive probability a random message will

be recognized as a stored message.

On the other hand, if α < 2 the probability that a random message will be recog-

nized as stored goes to zero as l→∞.

We will use positive association of random variables (see e.g. [6]) to prove this

theorem. Recall that a set of real valued random variables X = (X1, X2, . . . , Xn)

is positively associated, if for any non-decreasing functions f and g from Rn to

R for which the corresponding expectations exist we have

Cov(f(X), g(X)) ≥ 0.

Also recall that independent random variables are positively associated and that

non-decreasing functions of positively associated random variables remain posi-

tively associated.

For positively associated random variables we will repeatedly apply the following

inequality.

Lemma 3.2. (see [3], Theorem 1) Let X1, X2, . . . , Xn be positively associated

integer valued random variables. Then

0 ≤ P[Xi = 0, i = 1, . . . , n]−
n∏
i=1

P[Xi = 0] ≤
∑

1≤i<j≤n

Cov(Xi, Xj).

Proof of Theorem 3.1. Let ξ0 be a random message. Without loss of generality

we may (after relabelling) assume that ξ0(a,1) = 1, for all a = 1, . . . , c. Let G(ξ0)

be the event that ξ0 is stored in the GB model. Its probability P(G(ξ0)) is given

by

P(G(ξ0)) = P(∀a, b ∈ {1, . . . , c}, a 6= b,∃µ ∈ {1, . . . ,M} : ξµ(a,1)ξ
µ
(b,1) = 1).

Note that the latter can be rewritten as

P(∀a, b ∈ {1, . . . , c}, a 6= b : max
µ

ξµ(a,1)ξ
µ
(b,1) = 1).
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Now the (ξµ(a,1)) are independent 0− 1-valued random variables, and taking their

product and the maximum of these products are increasing functions of them.

Thus {maxµ ξ
µ
(a,1)ξ

µ
(b,1), a 6= b} are positively associated (see e.g. [6]), which implies

P(∀a, b ∈ {1, . . . , c}, a 6= b : max
µ

ξµ(a,1)ξ
µ
(b,1) = 1) ≥ P(max

µ
ξµ(a,1)ξ

µ
(b,1) = 1)c(c−1)/2

= (1− (1− 1/l2)M)c(c−1)/2

where on the right hand side of the above inequality a and b is an arbitrary pair

of distinct variables.

Choosing M = α log cl2 we see that the right hand side is approximately given

by

(1− (1− 1/l2)M)c(c−1)/2 ≈ exp

(
−c

2

2
e−α log c

)
which converges to 1 if α > 2, and to e−1/2 if α = 2.

On the other hand, we can also use positive association for an upper bound. We

put Xe = max{ξµ(a,1)ξ
µ
(b,1), µ = 1, . . . ,M} for e = ((a, 1), (b, 1)) and

Z =
∑
e∈V

Xe with V = {((a, 1), (b, 1)), a, b ∈ {1, . . . , c}, a 6= b}.

Trivially,

P[G(ξ0)] = P[Z = c(c− 1)/2].

On the other hand, the random variables Ye = 1−Xe are also positively associated

integer valued, and we may use the above lemma to arrive at

P[Z = L] ≤
∏
e

P[Ye = 0] +
∑
e,e′∈V

Cov(Ye, Ye′)

i.e.

P[Z = L] ≤ dL +
∑
e,e′∈V

Cov(Xe, Xe′)(2)

where we set d := (1−(1−1/l2)M) and we are left with computing the covariances.

To this end notice that Cov(Xe, Xe′) = 0, if e and e′ are disjoint. So assume that

e = ((a, 1), (b, 1)) and e′ = ((a, 1), (b′, 1)) and put M(a, 1) := {µ : ξµ(a,1) = 1} .

Then

E(XeXe′) = P(∃µ, ν ∈M(a, 1) : ξµ(b,1) = 1, ξν(b′,1) = 1)

=
M∑
r=0

P(∃µ, ν ∈M(a, 1) : ξµ(b,1)ξ
ν
(b′,1) = 1| |M(a, 1)| = r)P(|M(a, 1)| = r)

=
M∑
r=0

P(∃µ ∈M(a, 1) : ξµ(b,1) = 1| |M(a, 1)| = r)2P(|M(a, 1)| = r)

=
M∑
r=0

(1− (1− 1/l)r)2
(
M

r

)
(1/l)r(1− 1/l)M−r,
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as on M(a, 1) the events

{∃µ ∈M(a, 1) : ξµ(b,1) = 1} and {∃ν ∈M(a, 1) : ξν(b′,1) = 1}

are independent and have equal probabilities. The expression on the right hand

side can be simplified to give

E(XeXe′) = 1− 2
M∑
r=0

(
M

r

)
(1/l)r(1− 1/l)M +

M∑
r=0

(
M

r

)
(1/l)r(1− 1/l)M+r

= 1− 2(1− 1/l)M(1 + 1/l)M + (1− 1/l)M(1 +
1

l
(1− 1/l))M

= 1− 2(1− 1/l2)M +
(
1− 2/l2 + 1/l3

)M
.

On the other hand,

(E(Xe))
2 = (P(Xe = 1))2 = d2 = (1− (1− 1

l2
)M)2.

This yields

Cov(Xe, Xe′) = 1− 2
(
1− 1/l2

)M
+
(
1− 2/l2 + 1/l3

)M − (1−
(
1− 1/l2

)M)2
=

(
1− 2/l2 + 1/l3

)M − (1− 2/l2 + 1/l4
)M

= exp
(
M log

(
1− 2/l2 + 1/l3

))
− exp

(
M log

(
1− 2/l2 + 1/l4

))
= exp

(
−2M/l2

) (
M/l3 +O

(
M/l4

))
,

after expanding the logarithm and the exponential and taking into account that

M(1
l
)3 converges to 0 for our choice of the parameters. Thus for

M = α(log logN)N2/(logN)2

we obtain because of c = log l ≈ logN .∑
e,e′∈V

Cov(Xe, Xe′) ≤ α(log logN)c4 exp(−2α log logN)/N

≈ 1

N
α(log logN)(logN)4 exp(−2α log logN)

Inserting this into (2), we obtain

P[G(ξ0)] = P[Z = c(c− 1)/2]

≤ dL +
∑
e,e′∈V

Cov(Xe, Xe′)

≤ dL +
1

N
α(log logN)(logN)4 exp(−2α log logN)

≤ dL +
1

N
α(logN)(4−2α) log logN

The second summand on the right hand side clearly vanishes. But also dL con-

verges to 0 for α < 2 (which can be seen as in the first part of the proof). Thus
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P[G(ξ0)] converges to 0, and we can remark that P[G(ξ0)] is exactly of order dL

for α ∈]1, 2[. �

Remark 3.3. The above computation also justifies a choice of c that is not

of constant order. Indeed, for c being a constant independent of N the same

approximation of P[G(ξ0)] by dL is true. However dL converges to a constant

larger than 0, even if M = l2.

A very similar theorem holds true, for the Willshaw model with an intensity of

1s given by P(ξµi = 1) = logN
N

.

Theorem 3.4. Consider the Willshaw model with i.i.d. messages and coordinates

such that P(ξµi = 1) = logN
N

. Consider the threshold retrieval dynamics with

threshold h = c. Take M = α N2

(logN)2
log logN .

If α > 2 a random message with c active neurons (independent of the stored

patterns) will be recognized as a stored message with probability converging to 1

as l→∞.

If α = 2 and as l → ∞, with strictly positive probability a random message will

be recognized as a stored message.

On the other hand, if α < 2 the probability that a random message will be recog-

nized as stored goes to zero as l→∞.

The proof is almost identical to the proof of the previous theorem. We therefore

omit it.

4. Stability and error correction

In this section we will try to give lower and sometimes also upper bounds on

the number of patterns we can store in the various models, such that the given

messages are stable under the dynamics of the network and errors in the input

can be corrected.

We saw that in the GB model and the Willshaw model, slightly more than

N2/(logN)2 already suffice to supersaturate the networks. We will therefore

always assume that M = αN2/(logN)2.

We start with Amari’s model.

Theorem 4.1. Suppose that in Amari’s model with threshold h = γ logN (γ < 1

to be chosen appropriately), we have that M = αN2/(logN)2. Then, if α < e−2

for any fixed µ, we have

P(∀i : Ti(ξ
µ) = ξµi )→ 1

as N →∞.

Moreover, for any error rate 0 < ρ < 1, if γ < 1− ρ is chosen appropriately and

α < (1− ρ)e−(1+
1

1+ρ
), for any fixed µ, and any ξ̃µ obtained by deleting at random

ρ logN of the 1’s in ξµ, we have:

P(∀i : Ti(ξ̃
µ) = ξµi )→ 1
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as N →∞.

Finally, if M > − log(1− e−1)N2/(logN)2

P(∀i : Ti(ξ
µ) = ξµi )→ 0

as N →∞.

It is interesting to observe that the previous theorem also gives a result on the

Willshaw model with a threshold dynamics.

Corollary 4.2. In the Willshaw model with i.i.d. random variables ξµi , threshold

h = γ log(N), γ < 1 and M = αN2/(logN)2 for α < e−2 we have for any fixed µ

P(∀i : Ti(ξ
µ) = ξµi )→ 1

as N →∞.

Moreover, for any error rate 0 < ρ < 1, if γ < 1− ρ is chosen appropriately and

α < (1− ρ)e−(1+
1

1+ρ
), for any fixed µ, and any ξ̃µ obtained by deleting at random

ρ logN of the 1’s in ξµ, we have:

P(∀i : Ti(ξ̃
µ) = ξµi )→ 1

as N →∞.

Finally, if M > − log(1− e−1)N2/(logN)2

P(∀i : Ti(ξ
µ) = ξµi )→ 0

as N →∞.

In computer simulations the threshold dynamics in the Willshaw model is out-

performed by WTA. Our theoretical results are by now limited to the question

of the stability of messages and one step of the retrieval dynamics.

Theorem 4.3. Consider the Willshaw model with i.i.d. messages and coordinates

such that P[ξµi = 1] = c
N

, where c = log(N). Consider the WTA dynamics with

threshold h(1) and let M = αN2/(logN)2. Then for α < − log(1− e−1) we have

for any fixed µ

P(∀i : Ti(ξ
µ) = ξµi )→ 1

as N →∞.

This bound is sharp: For α > − log(1− e−1) we have for any fixed µ

P(∃i : Ti(ξ
µ) 6= ξµi )→ 1

as N →∞.

Finally, if ρ logN , 0 ≤ ρ < 1 of the initial 1’s of message ξµ are erased at random

to obtain ξ̃µ, we can prove the following result:

For α < − log(1− e−1/(1−ρ)) we have for any fixed µ

P(∀i : Ti(ξ̃
µ) = ξµi )→ 1

as N →∞.



12 VINCENT GRIPON, JUDITH HEUSEL, MATTHIAS LÖWE, AND FRANCK VERMET

Again, this bound is sharp: For α > − log(1− e−1/(1−ρ)) we have for any fixed µ

P(∃i : Ti(ξ̃
µ) 6= ξµi )→ 1

as N →∞.

Remark 4.4. For mathematical convenience, we assumed in Th. 4.3 that the

stored messages are independent, with i.i.d. coordinates (ξµi ) such that

P[ξµi = 1] =
c

N
.

We can naturally expect the same results in the case where exactly c neurons

are active in each stored message, but properties of independence are lacking to

prove such results in this situation.

A very similar statement holds for the GB model with the WTA algorithm.

Theorem 4.5. In the GB model with independent messages with WTA dynamics

(which again is called T ) let M = αl2/c2. Then for α < − log(1 − e−1) we have

for any fixed µ

P(∀(a, c) : T(a,c)(ξ
µ) = ξµ(a,c))→ 1

as N →∞.

If ρ logN of the initial 1’s of a message ξµ are erased at random to construct ξ̃µ,

we obtain: For α < − log(1− e−1/(1−ρ)) we have for any fixed µ

P(∀(a, c) : T(a,c)(ξ̃
µ) = ξµ(a,c))→ 1

as N →∞.

5. Proofs

This section contains the proofs of the results in the previous section. We start

with Theorem 4.1.

Proof of Theorem 4.1. Recall the situation of the theorem. We choose h = γ log(N)

with γ ∈ (0, 1). Then, for each δ ∈ (0, 1),

P(∃1 ≤ i ≤ N, Ti(ξ
1) 6= ξ1i )

≤P
(∣∣ log(N)−

∑
j

ξ1j
∣∣ ≥ (1− δ) log(N)

)
+P

({
∃1 ≤ i ≤ N, Ti(ξ

1) 6= ξ1i

}
∩
{∣∣∣ log(N)−

∑
j

ξ1j

∣∣∣ < (1− δ) log(N)
})

and the first term disappears as N → ∞ due to the law of large numbers, since

the ξµi are Bernoulli random variables with success probability p = logN/N .

Let δ > γ. If ∣∣∣ log(N)−
∑
j

ξ1j

∣∣∣ < (1− δ) log(N),
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we have that
∑

j ξ
1
j > δ log(N), and for each i with ξ1i = 1, we obtain

Si(ξ
1) =

∑
j 6=i

Jijξ
1
j = ξ1i

∑
j 6=i

ξ1j+
∑
j 6=i

ξ1j

M∑
µ=2

ξµi ξ
µ
j ≥

∑
j 6=i

ξ1j ≥ δ log(N)−1 ≥ γ log(N),

for N large enough, i.e. Ti(ξ
1) = 1.

On the other hand, for each i with ξ1i = 0, we get

P

(
{Ti(ξ1) 6= ξ1i } ∩ {ξ1i = 0} ∩

{∣∣∣ log(N)−
∑
j

ξ1j

∣∣∣ < (1− δ) log(N)
})

≤
d(2−δ) log(N)e∑
k=bδ log(N)c

P

({∑
j 6=i

ξ1j

M∑
µ=2

ξµi ξ
µ
j ≥ γ log(N)

}
∩ {ξ1i = 0} ∩

{∑
j

ξ1j = k
})

=

d(2−δ) log(N)e∑
k=bδ log(N)c

P

({∑
j

ξ1j

M∑
µ=2

ξµi ξ
µ
j ≥ γ log(N)

}
∩ {ξ1i = 0}

∣∣∣ ∑
j

ξ1j = k

)
· P

(∑
j

ξ1j = k

)
,

since for j = i, the term ξ1j
∑M

µ=2 ξ
µ
i ξ

µ
j is equal to 0.

This yields

P

(
{Ti(ξ1) 6= ξ1i } ∩ {ξ1i = 0} ∩

{∣∣∣ log(N)−
∑
j

ξ1j

∣∣∣ < (1− δ) log(N)
})

≤ max
bδ log(N)c≤k≤d(2−δ) log(N)e

P

(∑
j

ξ1j

M∑
µ=2

ξµi ξ
µ
j ≥ γ log(N)

∣∣∣ ∑
j

ξ1j = k

)
·

d(2−δ) log(N)e∑
k=bδ log(N)c

P

(∑
j

ξ1j = k

)

≤P

(∑
j

ξ1j

M∑
µ=2

ξµi ξ
µ
j ≥ γ log(N)

∣∣∣ ∑
j

ξ1j = d(2− δ) log(N)e

)
,

since the quantity
∑

j ξ
1
j

∑M
µ=2 ξ

µ
i ξ

µ
j is increasing with

∑
j ξ

1
j , and the maximum

is attained for k = d(2− δ) log(N)e.
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Without loss of generality, (2− δ) log(N) ∈ N and ξ1j = 1, 1 ≤ j ≤ (2− δ) log(N);

ξ1j = 0, j > (2− δ) log(N). Then, for each t > 0,

P

(∑
j

ξ1j

M∑
µ=2

ξµi ξ
µ
j ≥ γ log(N)

∣∣∣ ∑
j

ξ1j = (2− δ) log(N)

)

=P

(2−δ) log(N)∑
j=1

M∑
µ=2

ξµi ξ
µ
j ≥ γ log(N)


≤e−tγ log(N)E exp

t (2−δ) log(N)∑
j=1

M∑
µ=2

ξµi ξ
µ
j


=e−tγ log(N)

E exp

t (2−δ) log(N)∑
j=1

ξ2i ξ
2
j

M−1

=e−tγ log(N)
(

1− p+ p
(
1− p+ pet

)(2−δ) log(N)
)M−1

≤e−tγ log(N)
(

1− p+ pep(e
t−1)(2−δ) log(N)

)M−1
≤ exp

[
−tγ log(N) + (M − 1)p

(
ep(e

t−1)(2−δ) log(N) − 1
)]

= exp
[
−tγ log(N) + (M − 1)p

(
p(et − 1)(2− δ) log(N) +O(log(N)p2)

)]
= exp

[
−tγ log(N) +Mp2(et − 1)(2− δ) log(N) +O(M log(N)p3)

]
,

using 1 + u ≤ eu for all u ≥ 0, expanding the exponential and assuming t to be

small.

Assuming M = αN2/ log(N)2, we obtain that the last line is equal to

exp
[
−tγ log(N) +Mp2(et − 1)(2− δ) log(N) +O(M log(N)p3)

]
= exp

[
−tγ log(N) + α(et − 1)(2− δ) log(N) +O(log(N)2/N)

]
= exp

[
log(N)(−tγ + α(et − 1)(2− δ))

]
(1 + o(1)).

The function −tγ + α(et − 1)(2− δ) takes its minimum at t = log(γ/(α(2− δ))).
We aim at showing

P

(
∃1 ≤ i ≤ N, Ti(ξ

1) 6= ξ1i

∣∣∣ ∣∣∣ log(N)−
∑
j

ξ1j

∣∣∣ < (1− δ) log(N)

)
→ 0.
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Following the lines above, this probability can be estimated by

P
(
∃1 ≤ i ≤ N, Ti(ξ

1) 6= ξ1i
∣∣ ∣∣ log(N)−

∑
j

ξ1j
∣∣ < (1− δ) log(N)

)
≤P
(
∃1 ≤ i ≤ N, ξ1i = 0, Ti(ξ

1) 6= ξ1i
∣∣∑

j

ξ1j = (2− δ) log(N)
)

≤N · exp
[
log(N)(−tγ + α(et − 1)(2− δ))

]
≤N · exp [log(N)(−γ log(γ/((2− δ)α)) + α(2− δ)(γ/(α(2− δ))− 1))]

=N · exp [log(N)(−γ log(γ/((2− δ)α)) + γ − α(2− δ))]

and we need

γ log(γ/((2− δ)α))− γ + α(2− δ) > 1,

which is fulfilled if

α <
γ

2− δ
1

e1+1/γ
.

So for each α < e−2, we can find a threshold h = γ log(N) such that

P(∃1 ≤ i ≤ N, Ti(ξ
1) 6= ξ1i )→ 0.

This proves the first part of the theorem.

For the second part notice that any fixed ξµ will have almost logN 1’s such that

we can delete ρ logN many of them and the statement of the theorem makes

sense. The rest of the proof of part two consists of choosing h now as a value

slightly smaller than (1 − ρ) logN and repeating the above arguments. Indeed,

call ξ̃1 a configuration obtained from ξ1 when deleting ρ logN 1’s. Then, as above,

the local field Si(ξ̃
1) splits into a signal term and a noise term:

Si(ξ̃
1) =

∑
j 6=i

ξ̃1jJij = ξ1i
∑
j 6=i

ξ̃1j +
∑
j 6=i

ξ̃1j
∑
µ≥2

ξµi ξ
µ
j .

In comparison to the first part of the proof the ingredient
∑

j 6=i ξ̃
1
j of the signal

term is decreased to a size of (1−ρ) logN , while the noise term
∑

j 6=i ξ̃
1
j

∑
µ≥2 ξ

µ
i ξ

µ
j

is treated in a similar fashion as in part one and is typically of order α(1 −
ρ)(logN).

For the third statement of the theorem we will make use of an observation that is

also useful in the proof of Theorem 4.3 and will actually be shown in this context:

For a message (without loss of generality ξ1) with active neurons ξ11 = . . . = ξ1c = 1

and ξ1i = 0 for all i ≥ c we show that for M large enough, i.e. M = αN2/(logN)2

and α > − log(1− e−1) with probability converging to 1, there exists an i ≥ c+ 1

such that for all j ≤ c there is a µ ≥ 2 such that ξµi ξ
µ
j = 1.

After borrowing this statement from the proof of Theorem 4.3 we can proceed as

follows: Taking into account that with overwhelming probability c is larger than
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(1− δ) logN for any δ > 0 and N large enough, we see that in Amari’s model for

such an i ≥ c+ 1

Ti(ξ
1) = Θ(

∑
j 6=i

Jijξ
1
j − γ logN)

= Θ(
∑
j≤c

Jij − γ logN)

≥ Θ((1− δ) logN − γ logN) = 1

if we choose 1 − δ > γ. As we can choose δ > 0 arbitrarily small, with any

threshold γ logN with γ < 1 such a neuron will not be recovered correctly. �

Proof of Corollary 4.2. The only thing one has to observe is that for each i with

ξ1i = 1 we again have Ti(ξ
1) = 1, because again

∑
j ξ

1
j ≥ γ log(N) for any γ < 1.

On the other hand for each i with ξ1i = 0 we have that the probability that ξ1i
is turned into a 1 by the dynamics and thus not recovered correctly is given by

P(
∑

j Jijξ
1
j ≥ γ log(N)). Now,∑

j

Jijξ
1
j <

∑
j

ξ1j
∑
µ≥2

ξµi ξ
µ
j

and the right hand side is the quantity considered in the previous proof. Thus

the bound obtained in the previous proof is also a bound for the Willshaw model

with threshold dynamics. �

Remark 5.1. Of course, the previous proof underestimates the storage capacity

of the Willshaw model with threshold dynamics. However, the difference between

Jij and
∑

µ≥2 ξ
µ
i ξ

µ
j is not that huge. Indeed, for M = αN2/(logN)2 the latter is

close to a Poisson random variable with parameter α and we will see in the next

theorem, that even with a better performing dynamics we only reach a bound of

α ≤ 0.45.

We continue with the Willshaw model with WTA dynamics.

Proof of Theorem 4.3. We start with proving the third statement of the theorem.

This will automatically yield the first part by setting ρ to 0.

Using the same method as in the proof of Theorem 4.1, we can restrict the

proof to the cases where c1 neurons in the message ξ1 are active, with c1 ∈
[(1− ε1)c, (1 + ε1)c], for some small ε1 > 0. Assume that f of the “1”-bits in ξ1

are erased and k = c1 − f “1”s are known. Without loss of generality, we can

assume that ξ1i = 1 for i ≤ c1 and ξ1i = 0 for i ≥ c1 + 1.

Let ξ̃1 ∈ {0, 1}N be a version of ξ1 corrupted as described above, such that ξ̃1i = 1

for i ≤ k and ξ̃1i = 0 for i ≥ k + 1. We have trivially that,

hi(ξ̃
1) =

k∑
j=1

Jij,
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and thus hi(ξ̃
1) = k for all i ≤ c1. Therefore y = T (ξ̃1) will satisfy yi = ξ1i for all

i ≤ c1.

Thus recalling the WTA we see that y 6= ξ1, if there exist i ≥ c1 + 1, such that

for all j ≤ k there exists µ ≥ 2 such that ξµi ξ
µ
j = 1.

The probability of the latter event can be bounded as follows. Consider

P[∃i ≥ c1 + 1,∀j ≤ k : ∃µ ≥ 2, ξµi ξ
µ
j = 1]

≤ N

M−1∑
l=0

∑
I⊂{2,...,M}

card(I)=l

P[∀j ≤ k : ∃µ ≥ 2, ξµNξ
µ
j = 1|ξµN = 1⇔ µ ∈ I]P[ξµN = 1⇔ µ ∈ I]

≤ N

M−1∑
l=0

∑
I

P[∀j ≤ k : ∃µ ∈ I, ξµj = 1]P[ξµN = 1⇔ µ ∈ I]

= N
M−1∑
l=0

(
M − 1

l

)
(1− (1− c

N
)l)k(

c

N
)l(1− (

c

N
))M−l−1

= N
M−1∑
l=0

(
M − 1

l

) k∑
i=0

(
k

i

)
(−1)i(1− c

N
)il(

c

N
)l(1− (

c

N
))M−l−1

= N
k∑
i=0

(
k

i

)
(−1)i(1− c

N
+

c

N
(1− c

N
)i)M−1

by elementary transformations.

Now we expand the term in the brackets and use the bound 1 + x ≤ ex for all x

to obtain

P[∃i ≥ c1 + 1,∀j ≤ k : ∃µ ≥ 2, ξµi ξ
µ
j = 1]

≤ N
k∑
i=0

(
k

i

)
(−1)i

(
1− i

( c
N

)2
+
i(i− 1)

2

( c
N

)3
+O

(
i3
( c
N

)4))M−1
≤ N

k∑
i=0

(
k

i

)
(−1)i exp

(
−iM

( c
N

)2
+M

i(i− 1)

2

( c
N

)3
+O

(
Mi3

( c
N

)4))

= N

k∑
i=0

(
k

i

)
(−1)ie−iM( c

N )
2
(

1 +M
i(i− 1)

2

( c
N

)3
+O

(
Mi3

( c
N

)4))

≤ N(1− e−M( c
N
)2)k +MN(

c

N
)3

k∑
i=0

(
k

i

)
(−1)ie−iM( c

N
)2 i(i− 1)

2

+N(1 + e−M( c
N
)2)kO

(
Mk3

( c
N

)4)
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= N(1− e−M( c
N
)2)k +MN(

c

N
)3e−2M( c

N
)2 k(k − 1)

2
(1− e−M( c

N
)2)k−2

+N(1 + e−M( c
N
)2)kO

(
Mk3

( c
N

)4)
.

If we choose

M = α(
N

c
)2 and k = (1− ρ) log(N) for some ρ ∈ [0, 1[

we arrive at

P[∃i ≥ c1 + 1,∀j ≤ k : ∃µ ≥ 2, ξµi ξ
µ
j = 1]

≤ N(1− e−α)(1−ρ) log(N) + αe−2α(logN)3(1− e−α)(1−ρ) logN−2

+(1 + e−α)(1−ρ) log(N)O(
(logN)5

N
).

If (1−ρ) log(1− e−α) < −1, i.e. α < − log(1− e−1/(1−ρ)), the first term converges

to 0 and the two last terms also vanish for N →∞. This gives

P[∃i ≥ c1 + 1,∀j ≤ k : ∃µ ≥ 2, ξµi ξ
µ
j = 1]→ 0

as desired.

It remains to prove the reverse bound on the storage capacity. The considerations

are similar to what we did above. Now assume that M ≥ α(N
c

)2 for some α > 0

and again that ξ1 has entries ξ1i = 1 for i = 1, . . . c1 and ξ1i = 0 for i > c1.

Again consider

P[∃i ≥ c1 + 1,∀j ≤ k : ∃µ ≥ 2, ξµi ξ
µ
j = 1]

= 1− P
[ ⋂
i≥c1+1

{∃j ≤ k : ∀µ ≥ 2, ξµi ξ
µ
j = 0}

]

= 1− P{ξµj ,j≤k,µ≥2}
N∏

i=c1+1

P{ξµi ,µ≥2}
[
∃j ≤ k :

∑
µ≥2

ξµi ξ
µ
j = 0

]

by independence after conditioning (and the P{ξµj } denote the probabilities with

respect to the corresponding random variables). Now

P{ξµi ,µ≥2}
[
∃j ≤ k :

∑
µ≥2

ξµi ξ
µ
j = 0

]
= 1− P{ξµi ,µ≥2}

[
∀j ≤ k :

∑
µ≥2

ξµi ξ
µ
j ≥ 1

]
Let Xj :=

∑
µ≥2 ξ

µ
i ξ

µ
j . We observe by similar arguments as in Section 3 that the

(Xj) are positively associated with respect to P{ξµi ,µ≥2}. Therefore, for i ≥ c1 + 1,

P{ξµi ,µ≥2}[∀j ≤ k : Xj ≥ 1] ≥
k∏
j=1

(
P{ξµi ,µ≥2}[Xj ≥ 1]

)
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which gives

P[∃i ≥ c1 + 1,∀j ≤ k : ∃µ ≥ 2, ξµi ξ
µ
j = 1]

≥ 1− P{ξµj ,j≤k,µ≥2}
N∏

i=c1+1

(
1−

k∏
j=1

(P{ξµi ,µ≥2}[Xj ≥ 1])

)
To compute the right hand side take e.g. i = N . Then for all j ≤ k,

P{ξµN ,µ≥2}[Xj ≥ 1]) = 1− P{ξµN ,µ≥2}

(
M∑
µ=1

ξµNξ
µ
j = 0

)
= 1−

∏
µ:ξµj =1

P{ξµN ,µ≥2} (ξµN = 0)

= 1−
(

1− c

N

)Wj

,

where Wj :=
∑M

µ=1 ξ
µ
j . With overwhelming probability

Wj ∈
[
(1− ε)Mc

N
, (1 + ε)

Mc

N

]
for all N large enough, for all j ≤ k. More precisely, for all ε > 0, k = C log(N),

with C > 0,

P
[
∀j ≤ k : Wj ∈

[
(1− ε)Mc

N
, (1 + ε)

Mc

N

]]
≥ 1− 2C log(N)e−

Mcε2

2N .

This justifies that we can restrict to these cases, and putting things together, we

obtain for M = α(N
c

)2 that

P[∃i ≥ c1 + 1,∀j ≤ k : ∃µ ≥ 2, ξµi ξ
µ
j = 1] ≥ 1−

(
1−

(
1− e−α

)k)N−k1
.

The right hand side converges to 1 if
(

1− (1− e−α)
k
)N

goes to 0, which is the

case if and only if

N log
(

1−
(
1− e−α

)k) ≈ −N
(
1− e−α

)k
= −N exp

(
k log(1− e−α)

)
= −N1+(1−ρ) log(1−e−α) → −∞.

This is true if 1 + (1− ρ) log(1− e−α) > 0, which is true if and only if

α > − log(1− e−1/(1−ρ)).

This finishes the proof. �

Remark 5.2. Note that the previous proof reveals that not only we have upper and

lower bounds on the storage capacity of the Willshaw model with WTA dynamics,

but also that these bounds match. Such matching bounds can very rarely be proven.
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The only other model we are aware of where this is the case, is the Hopfield model

(see [20] and [4]).

Proof of Theorem 4.5. The decisive observation here is that the GB model is “al-

most” a Willshaw model. As a matter of fact, as stated already in the description

of the model in Section 2, the only difference is, that in the GB model there is a

restriction on the location of the 1’s. However, if we analyze the proof of Theorem

4.3, we find that the dynamics is in a sense ”non-spatial”, i.e. a neuron is getting

signals from all the other neurons in both of these models. Thus this detail does

not influence the proof.

This observation, however, also raises the question, whether we can also prove

the third statement in Theorem 4.3 for the GB model. It is, indeed, natural to

conjecture that a similar statement holds true. However, in the proof of part 3

of Theorem 4.3 we make use of positive association. This property enters the

proof in the Willshaw model, because with our setting we are having increasing

functions of i.i.d. random variables (the spins ξµi ), that are indeed positively

associated. In the GB model, the extra condition that each pattern has exactly

one 1 in each of the blocks implies that for each fixed µ the random variables

ξµ(a,k) are no longer independent. Hence we do not have positive association. �

6. The wrong message revisited – a limit of all reconstruction

techniques

In this section we return to the question addressed in Section 3. There we showed

that in the GB model with M too large a wrong message will be recognized with

large probability as a correct one, which limits the confidence we can have into

our associative memory.

A very similar consideration shows that we cannot reconstruct erased messages

in the GB model, if M is too large. Indeed, in the GB model suppose we delete at

random a proportion of (1−ρ)c of active bits of a given message. If the remaining

bits can be completed in more than one way to a message that is recognized by

the system (N.B. not necessarily a message that is stored in the network), there

is no way whatsoever, a reconstruction algorithm could find the correct message

with probability one.

Using ideas from Section 3 one can prove a theorem on the probability to complete

an erased message by a message on a given set of neurons. To formulate it,

suppose that a message ξ1 is stored in the network. Without loss of generality

ξ1(a,1) = 1 for all clusters 1 ≤ a ≤ c and all the other bits are 0. Assume we keep

the ξ1(a,1) = 1 for the clusters 1 ≤ a ≤ ρc, 0 < ρ < 1 and set all other neurons

to 0. Then for each cluster ρc + 1 ≤ a ≤ c we choose a neuron (a, i), 2 ≤ i ≤ l

and set it to 1. Let G be the event that the message ζ having 1’s in position

(a, 1), 1 ≤ a ≤ ρc and (a, i) for ρc + 1 ≤ a ≤ c is recognized by the system as a

stored message.
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Theorem 6.1. Suppose that in the GB model we store M = αl2 log c messages.

Then P(G) tends to 0 if and only if α < 2.

Proof. We only sketch the proof here as it is almost identical to the considerations

in Section 3.

Other than there, we already know ρc bits of ζ are correct. Hence we only need

to find messages that are active on the remaining r(c, ρ) := ρ(1 − ρ)c2 + (1 −
ρ)c((1− ρ)c− 1)/2 = c2

2
(1− ρ2)− 1

2
c(1− ρ) edges.

Positive association bounds thus P(G) by (1 − (1 − 1
l2

)M)r(c,ρ) =: d r(c,ρ) from

below. The same exponential inequality as in Section 3 also shows an upper

bound for P(G) by d r(c,ρ) plus a vanishing term. Replacing (1− 1
l2

)M by c−α we

thus see that d r(c,ρ) is of order exp(− c2−α

2
(1− ρ2)) and therefore goes to zero, if

and only if, c2−α(1− ρ2)→∞. �

Remark 6.2. Similarly to Theorem 3.1, we get that P(G) is well approximated

by d
c2

2
(1−ρ2), when the latter goes to 0, for α ∈]1, 2[. This is not the case for

α ∈]0, 1[, since the additive error term in the upper bound vanishes, but slower

than d
c2

2
(1−ρ2).

7. Dynamical properties of the models

An interesting question is the convergence of the proposed dynamics. Recall that

we distinguish two types of dynamics: a) fixed threshold ones where h is fixed

a priori and b) varying threshold ones where h is updated at each iteration of

the dynamics (e.g. WTA). Note that in all cases we consider the memory effect

described in Section 2.2.

Let us first consider the Willshaw model.

7.1. Willshaw model. In this section we show the following results:

(1) Choosing a fixed h forces convergence of the dynamics,

(2) Choosing a varying h can lead to oscillations in the dynamics,

(3) Choosing the threshold h(1) as defined in Section 2, performance does not

benefit from iterating more than once the dynamics.

Note that the major interest of varying thresholds is that they lead to better

performance as illustrated in Section 7.3. There thus exists a tradeoff between

performance and convergence guarantees for the Willshaw model.

Theorem 7.1. Choosing a fixed threshold h forces the dynamics to converge.

Proof. Let us consider an input pattern ξ̃µ where some 1s have been erased.

Denote cµ = ‖ξ̃µ‖0 to be the number of 1’s in ξ̃µ. Then it is immediate that if

h > cµ the dynamics converges in one iteration to a null vector.

On the other hand, let us introduce the sequence
(
ξ̃µ(t)

)
t≥0

:



22 VINCENT GRIPON, JUDITH HEUSEL, MATTHIAS LÖWE, AND FRANCK VERMET

ξ̃µ(0) := ξ̃µ

ξ̃µ(t+ 1) := T
(
ξ̃µ(t)

)
and for all t ∈ N,

and the sequence (aµ(t))t≥0 such that aµ(t) = {i, ξ̃µi (t) = 1} for all t ∈ N0.

We now can show the following proposition:

Proposition 7.2. If h ≤ cµ, the sequence (aµ(t))t≥0 is nondecreasing with respect

to inclusion.

Proof. Let us proceed by induction.

First we have trivially that aµ(0) ⊆ aµ(1). This is due to the fact that ∀i, j ∈
aµ(0), Jij = 1.

Then let us suppose that for some t we have aµ(t) ⊆ aµ(t + 1). By definition,

∀i ∈ aµ(t+1), we have #{j ∈ aµ(t), Jij = 1} ≥ h, where # denotes the cardinality

operator.

Since aµ(t) ⊆ aµ(t + 1), it also holds that #{j ∈ aµ(t + 1), Jij = 1} ≥ h and we

conclude that aµ(t+ 1) ⊆ aµ(t+ 2). �

A direct corollary is that (aµ(t))t≥0 converges. �

Theorem 7.3. Choosing a varying h can lead to oscillations in the dynamics of

the Willshaw model.

Proof. To illustrate this property, we propose an example where N = 5 and c = 2.

We choose the threshold h(1) as defined in Section 2. Let us consider that:

(ξµ)1≤µ≤6 =




1

1

0

0

0




1

0

1

0

0




1

0

0

1

0




0

1

0

0

1




0

0

1

0

1




0

0

0

1

1


 .

Consider the input:

ξ̃µ(0) =


1

0

0

0

0

 .

One can easily check that:

(
ξ̃µ(t)

)
0≤t≤3

=




1

0

0

0

0




1

1

1

1

0




1

0

0

0

0




1

1

1

1

0


 ,
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t = 0 t = 1 t = 2k, k ≥ 1 t = 2k + 1, k ≥ 1

Figure 1. Illustration of the oscillation of the dynamics when using WTA

with the Willshaw model. Here the model contains N = 5 neurons and the

number of 1s in stored messages is c = 2.

and thus ξ̃µ(2) = ξ̃µ(0). �

The same dynamics is illustrated in Figure 1.

More generally, using the threshold h(1) as defined in Section 2, the performance

of the model does not benefit from using more than one iteration, as expressed

in the following theorem:

Theorem 7.4. Consider a Willshaw network where the threshold is chosen as

the maximum of the achieved scores (h(1)). Choose as input a partially (but

not completely) erased version ξ̃µ of a stored message ξµ. Then the dynamics

converges if and only if it converges in one step. In particular, it can only converge

to ξµ if it does so in one iteration.

Proof. Let us use the same notations as in the proof of Theorem 7.1. We denote

by h(1)(t) the value of the threshold at step t.

Let us discuss two cases:

(1) In the first case it holds for all i and j that ξ̃µi (1) = 1 and ξ̃µj (1) = 1 implies

that Jij = 1. In other words: All activated neurons after one iteration are

connected one to another. In this case one can easily check that

h(1)(1) = card({i, ξ̃µi (1) = 1})

and thus we have for all t ≥ 1 that ξ̃µ(1) = ξ̃µ(t).

(2) There are i′ and j′ such that ξ̃µi′(1) = 1 and ξ̃µj′(1) = 1 but Ji′j′ = 0, i.e.

there are activated neurons that are not interconnected.

Note that by construction of J we then cannot have that ξ̃µ(1) = ξµ. We

fix such a pair i′ and j′. By construction of J , we have for all i and j

that ξµi = 1 and ξµj = 1 implies that Jij = 1. As a direct consequence, we

obtain that

h(1)(0) = card({i, ξ̃µi (0) = 1})
and therefore all neurons activated at step 0 are connected to all neurons

activated at step 1 (note also that {i, ξµi = 1} ( {i, ξ̃µi (1) = 1}). Thus we
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obtain

h(1)(1) = card({i, ξ̃µi (1) = 1}).
Consequently, ξ̃µi′(2) = 0 and ξ̃µj′(2) = 0 which leads to ξ̃µ(1) 6= ξ̃µ(2). We

conclude that the neurons activated in ξ̃µ(2) are those connected to all

neurons in ξ̃µ(1). In particular we obtain {i, ξ̃µi (0) = 1} ⊆ {i, ξ̃µi (2) = 1}.
Similarly we have that h(1)(2) = card({i, ξ̃µi (2) = 1}).

We then observe that there cannot be a neuron active at step 3 that is

not active at step 1, as the neurons activated at step 3 are connected to

all neurons activated at step 2 and thus to all neurons activated at step

0. We conclude that for all t ≥ 1 we have that

ξ̃µ(2t− 1) = ξ̃µ(2t+ 1) and ξ̃µ(2t) = ξ̃µ(2t+ 2),

together with ξ̃µ(1) 6= ξ̃µ(2).

�

7.2. GB model. Interestingly, the specific GB structure can be exploited in

order to provide good performance and to ensure at the same time convergence

of the dynamics. This is thanks to the previously mentioned SUM-OF-MAX rule

(see Equation (1)). Recall the SUM-OF-MAX dynamic rule:

T(a,k)(σ) = Θ(s(a,k)(σ)− h(a)), where h(a) = max{s(a, k), k = 1, . . . , l}.

This rule can be advantageously combined with a modification of the input when

retrieving a partially erased image. This modification consists in activating all

neurons in clusters where no neuron is active. Then we have trivially h(a) = c for

all a and this modification is such that the set of active neurons is non-increasing

with iterations of the dynamics.

Here is a rapid sketch of the proof of this result: to be activated using the SUM-

OF-MAX rule, a neuron has to be connected to at least one activated neuron in

each cluster. In particular it has to be connected to an activated neuron in its

own cluster. Due to the specific structure of the GB model, the only connection

a neuron may have with a neuron in its own cluster is with itself. Therefore, to

be activated, a neuron has to already be activated at the previous step of the

dynamics.

We refer to this algorithm as “SOM” in Figure 2.

7.3. Simulations. In order to compare the performance of the three above men-

tioned solutions, we run several simulations. We consider that the number of 1s

in each message is c for the Willshaw model.

We propose to use three different families of algorithms: a) fixed threshold ones

where h is determined a priori, b) varying threshold ones where h can be modified

at each iteration and c) exhaustive search where solutions are looked for using a

brute-force approach. This last option allows us to compare the different models

intrinsically, thus removing any bias from chosen retrieval dynamics.
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For case a) we define h as the number of 1s in the input pattern. This value

appears to be optimal for most cases we simulated. For case b) we use the

winner-takes-all algorithm previously described in which we select h so that the

number of 1s in the obtained vector is minimum and at least c. For case c)

we use an exhaustive search of potential candidates and select randomly one of

them. Note that for Amari’s model we select the clique (or one of the cliques)

that achieve the maximum sum of inner edge weights. Finally, for each case we

also plot the obtained curves when using SUM-OF-MAX with the GB model for

easier comparison of performance.

We depict the evolution of the error rate for a given problem as a function of the

number of stored patterns. This measure is not totally fair as:

• A stored pattern with c 1s using the Willshaw model or Amari’s one

made of N neurons has entropy log2

((
N
c

))
whereas with the GB model

its entropy is lesser: C log2 (l).

• The number of possible connections in a Willshaw model or Amari’s one

with N neurons is larger than that using a GB model with the same

number of neurons. Moreover in the Amari model each connection can

take up to M distinct values.

In order to account for these differences, we propose to depict also the evolution

of the error rate as a function of the efficiency of the model, defined as the

ratio between the entropy of the set of stored patterns and the number C of

bits required for straightforward encoding of the used synaptic weights. The

latter value C depends on the model parameters: for an Amari model made of

N neurons and storing M patterns, it is equal to:

CAmari =

(
N

2

)
log2(M + 1) .

For the Willshaw model it becomes:

CWillshaw =

(
N

2

)
.

For the GB model, it depends on the parameters c and l and becomes:

CGB =

(
c

2

)
l2 .

The results are depicted in Figure 2. Some remarks about these results:

• No matter what algorithms are used, the performance of the methods

clearly indicates that GB performs better than Willshaw that performs

itself better than Amari’s networks.

• The only difference between Amari’s networks and Willshaw’s is the fact

the former use weighted connections instead of binary ones. Our simula-

tions clearly indicates that weights offer no gain in performance.
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Figure 2. Comparison of performance of Amari, Willshaw and GB models

(with proposed dynamics and SUM-OF-MAX (SOM)). For all simulated point,

there are N = 2048 neurons (grouped in c = 8 clusters of l = 256 neurons for

the GB model), stored messages contain exactly c = 8 1s each and the objective

is to retrieve a previously stored pattern when 4 out of the initial 8 1s in stored

messages are missing. Each point is the average of 100.000 tests. Figures in

first column depict the evolution of the error rate as a function of the number of

stored patterns. Figures in second column depicts the evolution of the error rate

as a function of efficiency. First line correspond to fixed threshold dynamics,

second line to varying threshold strategies and third line to exhaustive ones.
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• It appears clearly that fixed threshold algorithms perform worse than

varying threshold ones.
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[18] M. Löwe and F. Vermet. The capacity of q-state Potts neural networks with parallel re-

trieval dynamics. Statist. Probab. Lett., 77(14):1505–1514, 2007.
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