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Abstract. Approximate message passing (AMP) has been shown to be 
an excellent statistical approach to signal inference and compressed sensing 
problems. The AMP framework provides modularity in the choice of signal 
prior; here we propose a hierarchical form of the Gauss–Bernoulli prior which 
utilizes a restricted Boltzmann machine (RBM) trained on the signal support 
to push reconstruction performance beyond that of simple i.i.d. priors for 
signals whose support can be well represented by a trained binary RBM. We 
present and analyze two methods of RBM factorization and demonstrate how 
these aect signal reconstruction performance within our proposed algorithm. 
Finally, using the MNIST handwritten digit dataset, we show experimentally 
that using an RBM allows AMP to approach oracle-support performance.

Keywords: message-passing algorithms, random graphs, networks, statistical 
inference
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1. Introduction

Over the past decade, a groundswell in research has occurred in both dicult inverse 
problems, such as those encountered in compressed sensing (CS) [1], and in signal 
representation and classification via deep networks. In recent years, approximate mes-
sage passing (AMP) [2] has been shown to be a near-optimal, ecient, and extensible 
application of belief propagation to solving inverse problems which admit a statistical 
description.

While AMP has enjoyed much success in solving problems for which an i.i.d. signal 
prior is known, only a few works have investigated the application of AMP to more 
complex, structured priors. Utilizing such complex priors is key to leveraging many of 
the advancements recently seen in statistical signal representation. Techniques such 
as GrAMPA [3] and Hybrid AMP [4] have shown promising results when incorporat-
ing correlation models directly between the signal coecients, and in fact the present 
contrib ution is similar in spirit to Hybrid AMP.

Another possible approach is to not attempt to model the correlations directly, 
but instead to utilize a bipartite construction via hidden variables, as in the restricted 
Boltzmann machine (RBM) [5, 6]. The RBM is an example of latent variable model, 
which we distinguish from the fully visible models considered by [3, 4]. Such latent vari-
able models can become quite powerful, as they admit interpretations such as feature 
extractors and multi-resolution representations. As we will show, if a binary RBM can be 
trained to model the support patterns of a given signal class, then the statistical descrip-
tion of the RBM easily admits its use within AMP. This is particularly interesting since 
RBMs are the building blocks of deep belief networks [7] and have enjoyed a surge of 
renewed interest over the past decade, partly due to the development of ecient training 
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algorithms (e.g. contrastive divergence (CD) [6]). The present paper demonstrates the 
first steps in incorporating deep learned priors into generalized linear problems.

2. Approximate message passing for compressed sensing

Loopy belief propagation (BP) is a powerful iterative message passing algorithm for 
graphical models [8, 9]. However, it presents two main drawbacks when applied to 
highly-connected, continuous-variable problems, as in CS: first, the need to work with 
continuous probability distributions; and second, the necessity to iterate over one such 
probability distribution for each pair of variables. These problems can be addressed by 
projecting the distributions onto their first two moments and by approximating the 
messages, which exist on the edges of the factor graph representation of the inference 
problem, by the marginals existing on the nodes of the factor graph. Applying both to 
BP for the CS problem, one obtains the AMP iteration.

AMP has been shown to be a very powerful algorithm for CS signal recovery, espe-
cially in the Bayesian setting where an a priori model of the unknown signal is given. 
In CS, one has the following forward model to obtain a set of M observations y,

N ( )∑= + ∼ ∆η η η η
=

y F x w wwhere 0, ,
i

N

i i

1
 (1)

where F  =  [Fηi] is an ×M N  matrix, for �M N , representing linear observations of an 
unknown signal x which are then corrupted by an additive zero-mean white Gaussian 
noise (AWGN) of variance ∆. The measurement rate α = M N/  is of particular inter-
est in determining the diculty of this inverse problem. In the present work, we use 

subscript notation to denote the individual coecients of vectors, i.e. ηy  refers to the ηth 
coecient of y and the double-subscript notation to refer to individual matrix elements 
in row-column order.

We can use AMP to estimate a factorization, up to the first two moments, of the 
posterior distribution ( ) ( ) ( )| ∝ |P P Px F y x y F x, ,0 , where ( )|P y F x,  is the likelihood of 
an observation from the AWGN channel and ( )P x0  is a prior on the signal. If the pos-
terior is trivially factorized, or if it can be approximated by a factorized distribution, 
one can estimate the unknown signal by averaging over the posterior,

x x x P x iF yd , , ,i i i i
MMSEˆ   ( )∫= | ∀ (2)

which is the minimum mean squared error (MMSE) estimate of x. This is in contrast 
to utilizing a maximum a posteriori (MAP) approach to the solution of this inverse 
problem. We refer the reader to [2, 10–13], and in particular to [14], for the present 
notation and the derivation of AMP from BP and now give directly the iterative form 
of the algorithm. Given an estimate of the factorized posterior mean ai and variance ci 
for each element of x, a single step of AMP iteration reads

∑=η η
+V F c ,t

i
i i

t1 2

 (3)
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( )∑ω ω= − −
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i i
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( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
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η
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+
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−
F
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1 2
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 (5)

( )
( )

∑
ω

= + Σ
−

∆+η
η

η η

η

+ +
+

+R a F
y

V
.i

t
i
t

i
t

i

t

t
1 1 2

1

1 (6)

These terms can be interpreted as follows. The variables { }ωη  and ηV{ } represent the first and 

second moments, respectively, of the marginalized messages on the M factors of the factor 

graph. The variables { }Ri  and { }Σi
2  represent the first and second moments, respectively, 

of the marginalized messages on the N signal variables of the factor graph. As such, these 
represent the AMP field on the signal, which are the observational beliefs about the continu-
ous factorized probability density function (PDF) at each signal variable. To find the final 

factorized posterior of the signal, up to a two moment approximation, we must augment this 

AMP field by the signal prior. Once the new values of Ri and Σi
2 are computed, the new esti-

mates of the posterior mean and variance, ai and ci, given the prior ( )P x0 , are calculated as

  ( ) ( )∫ Σ+ �
Z

Na x
x

P x x Rd ; , ,i
t

i
i

i
i i i i

1
0

2
 (7)

  ( ) ( ) ( )∫ Σ −+ +�
Z

Nc x
x

P x x R ad ; , ,i
t

i
i

i
i i i i i

t1
2

0
2 1 2

 (8)

where   ( ) ( )∫= ΣZ Nx P x x Rd ; ,i i i i i i0
2  is a normalization constant, commonly referred to as 

a partition function in statistical physics. The final form of these equations for diering 
values of ( )P xi0  are given in [14]. As seen in equations (7) and (8), in order to use the 
AMP framework, one must know some information about the class of signals from 
which x is drawn. Commonly in CS, we are interested in the case where the signal x is 
sparse, that is, very few of its coecients are non-zero. The concept of sparsity implies 
an assumption that the amount of information required to represent x is actually far 
less than its dimensionality would admit. Essentially, a sparse prior on x is extremely 
informative due to its low-entropic nature.

Much of the CS literature focuses on convex approaches to this inverse problem. 
And so, a convex �1 norm is used as a regularizer to bias solutions to the inverse prob-
lem towards sparsity. Within the probabilistic framework, this corresponds to a selec-
tion of a Laplace distribution for ( )P xi0 .

However, AMP is not restricted to convex priors, but can utilize non-convex priors 
of arbitrary complexity. For example, one can use a two-mode Gauss–Bernoulli (GB) 
prior to model sparse signals (as was considered in detail in [11–13]) such as

( ) ( ) ( ) ( )
{ }

∏ ∏ ∑= = |
∈

P P x P v P x vx ,
i

i

i v

i i i0 0

0,1

0 0

i
 (9)
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where we have introduced Bernoulli random variables vi such that [ ] ρ=E vi , on which 
the values { }xi  are conditioned as ( ) ( )µ σ| = = NP x v 1 ,i i0

2 , and ( ) ( )δ| = =P x v x0i i i0 , 
where ( )δ ⋅  is the zero-centered Dirac delta distribution. This leads to the final expres-
sion for the prior,

( ) ( ) ( )
( )⎛

⎝
⎜

⎞

⎠
⎟∏ρ ρ δ

ρ

πσ
= − +

µ
σ

−
−

P xx; 1
2

e .
i

i

x

0
2

2
i

2

2 (10)

The GB prior has two possible modes: a zero mode and a non-zero one. If we denote the 
set of non-zero coecients of x, those for which vi  =  1, to be the support, then the GB 
prior models both the on- and o-support probability. For [ ]ρ∈ 0, 1 , the distribution 
splits the probabilistic weight between a hard (deterministic) constraint of xi  =  0 and 
a normal distribution for arbitrary parameters that model the on-support coecients. 
For a fixed on-support distribution, here for fixed μ and σ2, the value of ρ controls 
how informative ( )ρP x;0  is. The more informative this prior, the fewer measurements, 
smaller α, are required in order to successfully infer x from y. Of course, if x is not truly 
drawn from ( )ρP x;0 , more measurements will be required to account for the mismatch 
between the true signal and the assumed signal model, as in the case of signals which 
are not truly sparse but merely compressible.

If, rather than a fixed probability of being on-support for all sites, we instead have 
a local probability for each specific site to be on-support, we can write an independent, 
but non-identically distributed, prior. For conciseness, we refer to this property as 
‘non-i.i.d.’ in the remainder of this paper. We easily generalize equation (10) to

( { }) ( ) ( )
( )⎛

⎝
⎜

⎞

⎠
⎟∏ρ ρ δ

ρ

πσ
= − +

µ
σ

−
−

P xx; 1
2

e .i
i

i i
i

x

0
2

2
i

2

2 (11)

This change in the prior must also be reflected in the computation of the means and 
variances used in in equations (7) and (8). In fact, the partition function of (7) and (8) 
becomes

Z

Z Z

( )

( )

( )
( )

( )

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

ρ
π

ρ
π σ

µ
σ

ρ ρ

= −
Σ

−
Σ

+
Σ +

−
−
Σ +

= − +

R

R

1
1

2
exp

2

1

2
exp

2
,

1 ,

i i

i

i

i

i

i

i

i

i i i i

2

2

2

2 2

2

2 2

z nz

 

(12)

where we introduce two sub-partition terms related to the o-support (Zi
z) and on-

support (Zi
nz) probabilities. From this partition function, for a given setting of Ri and 

Σi
2 (which result from the AMP evolution), we can write the posterior means and vari-

ances, a and c according to the fixed GB prior parameters { }ρi , μ, and σ2.
A nice feature of this two-mode prior is that it also admits a natural estimation of the 

probability of a particular coecient to be on- or o-support. Specifically, at a given point 

in the AMP evolution, we have [ ]= = ρZ
Z

vProb 1i
AMP i i

i

nz

 and [ ] ( )= = ρ− Z

Z
vProb 0i

AMP 1 i i

i

z

, 

leading to
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(13)

where γ = Z

Zi
i

i

nz

z  has the natural logarithm

( )
( )

γ
µ
σ σ

=
Σ
−

−
Σ +

+
Σ

Σ +

R R
ln

2 2
ln .i

i

i

i

i

i

i

2

2

2

2 2

2

2 2 (14)

The additional information provided by AMP results in a modified support probabil-

ity ˜( ) ( )∝ ∏ γP Pv v ei
v lni i. Explicating ( )P v  allows us to envision more complex support 

models for the coecients of x. The previous model assumes the independence between 
the coecients of x, however, the existence of dependencies, now well-acknowledged for 
many natural signals as structured sparsity, can be leveraged through joint models. In 
the variational Bayesian context, we cite [4, 15, 16], which consider neighborhood prob-
abilities, Markov chains, and so-called Boltzmann machines, respectively, as generic sup-
port models. In a similar vein, we propose the use of a binary RBM as a joint support 
model. In contrast with the models of [4, 15], the RBM model can provide a more accu-
rate modeling of support correlations. Also, the RBM model can be trained at low cost 
[6], which is the main bottleneck of the general Boltzmann machine model used in [16].

3. Binary restricted Boltzmann machines

An RBM is an energy based model defined over both visible and a set of latent, or  
hidden, variables. From the perspective of statistical physics, the RBM can be viewed 
as a boolean Ising model existing on a bipartite graph. The joint probability distribu-
tion over the visible and hidden layers for the RBM is given by

( ) ( )∝ −P v h, e ,E v h, (15)

where the energy ( )E v h,  reads

E b v b h W v hv h, .
i

i i

j
j j

i j

ij i j
v h

,

( ) ∑ ∑ ∑= − − −
 (16)

The RBM model is described by the two sets of biasing coecients bv and bh on the 
visible and hidden layers, respectively, and the learned connections between the layers 
represented by the matrix [ ]= WW ij .

In the sequel, we leverage the connection between the RBM and the well known 
results of statistical physics to discuss a simplification of the RBM under the so-called 
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mean-field approximation in both the first- and second-order approximation, known as 
Thouless–Anderson–Palmer (TAP) approximation [17–19], in order to obtain factoriza-
tions over the visible and hidden layers from this joint distribution.

3.1. Mean-field approximation of the RBM

Given the value of an energy-function ({ })E x , also called Hamiltonian in physics, a 
standard technique is to use the Gibbs variational approach where the Gibbs free 
energy F  is minimized over a trial distribution, Pvar, with

({ }) ({ }) ( ){ }= −F P E S Px Pvar Gibbs varvar (17)

where     { }⋅ Pvar
 denotes the average over distribution Pvar and SGibbs is the Gibbs entropy.

It is instructive to first review the simplest variational solution, namely, the 1st-
order naïve mean-field (NMF) approximation, where ( )= ∏P Q xi i ivar . Within this ansatz, 
a classical computation shows that the free energy, in the case of the binary RBM, 
reads as

( ¯ ¯ ) ¯ ¯ ¯ ¯

[ ( ¯ ) ( ¯ )]

[ ( ¯ ) ( ¯ )]

∑ ∑ ∑

∑

∑

= − − −

+ + −

+ + −

F b v b h W v h

v v

h h

v h,

H H 1

H H 1 ,

i
i i

j
j j

i j

ij i j

i

i i

j

j j

NMF
RBM v h

,

 

(18)

where x x xH ln( ) ( )=  and ¯ [ ] [ ]= = =Ev v vProb 1i i i . Since the hidden variables are also 
binary, this identity is equally true for h̄j.

The fixed points of the means of both the visible and hidden units are of particular 
interest. With these fixed points we can calculate a factorization for both ( )P v  and ( )P h . 
First, we look at the derivatives of the NMF free energy for the RBM with regards to 
the visible and hidden sites, which, when evaluated at the critical point, gives us the 
fixed-point conditions for the expected values of the variables

v b W hsigm ,i i
j

ij j
v¯ ( ¯ )∑= +

 (19)

¯ ( ¯ )∑= +h b W vsigm ,j j
i

ij i
h

 (20)

where ( ) [ ]+ − −�xsigm 1 e .x 1  These equations are in line with the assumed NMF fixed-
point conditions used for finding the site activations given in the RBM literature.  
In fact, they are often used as a fixed-point iteration (FPI) to find the minimum free 
energy.

We will now modify the NMF solution via a second-order correction, as was origi-
nally shown for RBMs in [20] using TAP. The TAP approach is a classical tool in 
statistical physics and spin glass theory which improves on the NMF approximation by 
taking into account further correlations. In many situations, the improvement is drastic, 
making the TAP approach very popular for statistical inference [19]. There are many 
ways in which the TAP equations can be presented. We shall refer, for the sake of this  

http://dx.doi.org/10.1088/1742-5468/2016/07/073401
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presentation, to the known results of the statistical physics community. One approach 
to derive the TAP approximation is to recognize that the NMF free energy is merely 
the first term in a perturbative expansion in power of the coupling constants W, as was 
shown by Plefka [21], and to keep the second-order term. Alternatively, one may start 
with the Bethe approximation and use the fact that the system is densely connected 
[18, 19]. Proceeding according to Plefka, the TAP free energy reads

W v hv h v h, ,
1

2
,

i j
ij i jTAP

RBM
NMF
RBM

,

2( ¯ ¯ ) ( ¯ ¯ ) ˆ ˆ∑= −F F (21)

where we have denoted the variances of hidden and visible variables, ĥ and v̂, respec-

tively, as ˆ [ ] [ ] ¯ ¯= − = −E Eh h h h hj j j j j
2 2 2

 and ˆ [ ] [ ] ¯ ¯= − = −E Ev v v v vi i i i i
2 2 2. Repeating the 

extremisation, one now finds

v b W h v W hsigm
1

2
,i i

j

ij j i

j
ij j

v 2¯ ¯ ¯ ˆ⎜ ⎟
⎛

⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟∑ ∑= + + − (22)

¯ ¯ ¯ ˆ⎜ ⎟
⎛

⎝
⎜ ⎛

⎝
⎞
⎠

⎞

⎠
⎟∑ ∑= + + −h b W v h W vsigm

1

2
.j j

i

ij i j

i
ij i

h 2
 (23)

Equations (22) and (23), often called the TAP equations, can be seen as an exten-
sion of the mean field iteration of equations (19) and (20). The additional term is called 
the Onsager retro-action term in statistical physics [18]. In fact, these are the tools one 
uses in order to derive AMP itself. Given an RBM model, we now have two approxi-
mated solutions to obtain the equilibrium marginal through the iteration of either 
equations (19) and (20) or equations (22) and (23).

Because of the sigmoid functions in the fixed-point conditions, iterating on these 
fixed points will not wildly diverge. However, it is possible that such an FPI will arrive 
at one of the two trivial solutions for the factorization, either the ground-state of the 

field-less RBM or ( ( ) )+bsign 1
1

2
v . Whether or not the FPI arrives at these trivial points 

relies on the balance between the evolution of the FPI and the contributing fields. It 
may also enter an oscillatory state, especially if the learned RBM couplings are too large 
in magnitude, reducing the accuracy of the Plefka expansion which assumes small mag-
nitude couplings. We shall see, however, that this FPI works extremely well in practice.

4. RBMs for AMP

The scope of this work is to use the RBM model within the AMP framework and to 
perform inference according to the graphical model depicted in figure 1. Here, we would 
like to utilize the binary RBM to give us information on each site’s likelihood of being 
on-support, that is, its probability to be a non-zero coecient. This shoehorns nicely 
into our sparse GB prior as in equation (10).

Since, in the case of an RBM, P(vi) has the classical exponential form of an energy-
based model, we see from equation (13) that the information provided by AMP simply 
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amounts to an additional local bias on the visible variables equal to γln i. That is, the 
AMP-modified RBM free energy relies on the introduction of an additional field term 
along with a constant bias,

( ¯ ¯ ) ( ¯ ¯ ) ¯∑ γ= − +−F F Cvv h v h, , ln .
i

i i
RBM AMP RBM

 (24)

As we can see, this field eect only exists on the visible layer of the RBM. Because 
of this, the AMP framework does not put any extra influence on the hidden layer, 
but only on the visible layer. Thus, the fixed point of the hidden layer means is 
not influenced by AMP, but the visible ones are. With respect to (19) and (22), the 
AMP-modified fixed point updates of the the visible variable means contain one extra 
 additive within the sigmoid, giving

¯ ¯
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑γ= + +v b W hsigm ln ,i i i

j

ij j
v

 (25)

for the NMF-based fixed point. For the TAP we have

v b W h v W hsigm ln
1

2
.i i i

j

ij j i

j
ij j

v 2¯ ¯ ¯ ˆ⎜ ⎟
⎛

⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟∑ ∑γ= + + + − (26)

The most direct approach for factorizing the AMP influenced RBM is to con-
struct a fixed-point iteration (FPI) using the NMF or TAP fixed-point conditions. 
We give the final construction of the AMP algorithm with the RBM support prior in  
algorithm 1 using this approach. This approach can be understood in terms of its 
graphical representation given in figure 1, which shows the network of statistical depen-
dencies from the observations to the hidden RBM units. Given some initial condition 
for v̄ and h̄, we can successively estimate the visible and hidden layers via their respec-
tive fixed-point equations. Empirically, we have found that the hidden-layer variables 
should be initialized to zero, while the visible side variables can be initialized to zero, 
uniformly randomly, or by drawing a random initial condition according to the distri-
bution implied by the RBM visible bias bv.

Figure 1. Graphical representation of the statistical dependencies of the proposed 
RBM-AMP. The right side represents observational side, with linear constraints, 
while the left side represent the RBM prior on the support of the signal (see text).

yFxvWh

Prior Side Observation Side
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For the FPI schedule, one might intuitively attempt an approach similar to per-
sistent contrastive divergence [22] and allow the values of v̄ and h̄ persist throughout 
the AMP FPI, taking only a single FPI step on the RBM magnetizations at each AMP 
iteration. Indeed, we have found this to be the most computationally ecient integra-
tion of the RBM into the AMP framework. However, we point out that this persistent 
strategy should only begin after a few AMP iterations have been completed. In the first 
iterations, the RBM factorization should instead be allowed to converge on a value of v̄.  
Persistence of the hidden and visible magnetizations from the first iteration leads to 
poor reconstruction performance, especially when α is small. Because the early values 
of { }γln i  can be quite weak, using only a single update step on the RBM magnetizations 
early in the reconstruction does not adequately enforce the support prior. Later, as the 
AMP fields grow in magnitude, a single-step persistent update of the RBM magnetiza-
tions can be used to decrease run time.

Finally, after obtaining the value of v̄, either by running the RBM FPI until conv-
ergence or by taking a single step on v̄, we must infer the correct values { }ρi . One might 
at first attempt to use the setting { ¯ }ρ = vi i , however, this is an improper approach for 
the hierarchical support prior we have proposed. Instead, one should use

¯

¯ ( ¯ )
( ¯ ( ¯ ) )ρ γ=

+ −
= − − −+

+ +

Z

Z Z

Z

Z Z

Z

Z Z

v

v v
v v

1
sigm ln ln 1 ln ,i

i

i i

i i i

i

i i

i

i i

i

i i

z

nz z

z

nz z

nz

nz z

 (27)

to obtain the correct per-pixel sparsity terms to use in conjunction with the standard 
Gauss–Bernoulli form of (7) and (8).

Algorithm 1. AMP with RBM support prior

  Input: F, y, W, bv, bh, PersistentStartIter

  Initialize: a,c,v̄, { ¯   }= ∀h j0,j , { ˆ   }= ∀h j0,j , =Iter 1
  repeat
    AMP Update on { }ωη ηV ,  via (3), (4)
    AMP Update on { }ΣR ,i i

2  via (6), (5)
    Calculate { }γln i  via (14) ∀i
    if Iter  <  PersistentStart then

     (Re)Initialize: = ∀h h j, 0,j j{ ¯ ˆ   }
     (Re)Initialize: = ∀v i0,i{ ¯   }
     repeat

       Update { ¯ ˆ }h h,j j  via (20) or (23)
       Update { ¯ ˆ }v v,i i  via (25) or (26)
     until Convergence on v̄
    else

     Update { ¯ ˆ }h h,j j  via (20) or (23)
     Update { ¯ ˆ }v v,i i  via (25) or (26)
    end if
    Calculate { }ρi  via (27)
    AMP Update on {ai} using { }ρi  via (7)
    AMP Update on {ci} using { }ρi  via (8)
    ← +Iter Iter 1
  until Convergence on a
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5. Numerical results with MNIST

To show the ecacy of the proposed RBM-based support prior within the AMP 
framework, we present a series of experiments using the MNIST database of hand-
written digits. Each sample of the database is a ×28 28 pixel image of a digit with 
values in the range [0, 1]. In order to build a binary RBM model of the support 
of these handwritten digits, the training data was thresholded so that all non-zero 
pixels were given a value of 1. We then train an RBM with 500 hidden units on 60 
000 training samples from the binarized MNIST training set using the sampling-
based contrastive divergence (CD-1) technique [6] for 100 epochs, averaging the 
RBM model parameter gradients across 100-sample minibatches, at a learning rate 
of 0.005 under the prescriptions of [23]. We additionally impose an �2 weight-decay 
penalty on the magnitude of the elements of W at a strength of 0.001. Such penalties, 
while also desirable for learning performance [23], are necessary for the TAP-based  
AMP-RBM due to the fact that the Plefka expansion of equation (21) is reliant on 
the magnitudes of W being small. For further reading on training RBMs, as well as 
other undirected graphical models, we refer the reader to [24]. Once the generative 
RBM support model is obtained, we construct the CS experiments as follows. For a 

given measurement rate α, we draw the i.i.d. entries of F from a zero-mean normal 

distribution of variance N1/ . The linear projections Fx are subsequently corrupted 
with an AWGN of variance ∆ = −10 8 to form y. In all experiments we utilize the first 
300 digit images from the MNIST test set.

We compare the following approaches in figure 2. First, we show the reconstruc-
tion performance of AMP using an i.i.d. GB prior (AMP-GB), assuming that the 
true image-wide empirical ρ is given as a parameter for each specific test image. 
Next, we demonstrate a simple modification to this procedure: the GB prior is 
assumed to be non-i.i.d. and the values of { }ρi  are empirically estimated from the 
training samples as the probability of each pixel to be non-zero. We expect that 
our proposed approach should at least perform as well as non-i.i.d. AMP-GB, as 
this same information should be encoded in bv for a properly trained RBM model. 
Hence, this approach should correspond to an RBM with [ ]=W 0ij . We also show 
the performance of the proposed approach: AMP used in conjunction with the  
RBM support model. We present results for both the NMF and TAP factorizations 
of the RBM. For the AMP-RBM approaches, we start persistence after 50 AMP 
iterations. For all tested approaches, we assume that ∆ is known to the reconstruc-
tion algorithms, as well as the prior parameters μ and σ2. This is not a strict require-
ment, however, as channel and prior parameters can be estimated within the AMP 
iteration if so desired [14].

In the left panel of figure 2, we present the percentage of successfully recovered 
digit images of the 300 digit images tested. A successful reconstruction is denoted as 
one which achieves MSE  ⩽10−4. It is easily observable from these results that lever-
aging a non-i.i.d. support prior does indeed provide drastic performance improve-
ments, as even the simple non-i.i.d. version of AMP-GB recovers significantly more 
digits than i.i.d. AMP-GB. We also see that by using the RBM model of the support,  
along with a TAP-based support probability estimation, we are able to improve upon 
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this simple approach. For example, at α = 0.22, by using the RBM support prior in 
conjunction with TAP factorization we are able to recover an additional 56.0% of the 
test set than with no support information, and an additional 29% than when using 
only empirical per-coecient support probabilities. The fact that both AMP-RBM 
approaches improve on non-i.i.d. AMP-GB demonstrates that the learned support 
correlations are genuinely providing useful information during the AMP CS recon-
struction procedure. We also note that the second-order TAP factorization provides 
reconstruction performance on this test set which is either equal to, or better than, the 
NMF factorization, at the cost of an additional matrix-vector multiplication at each 
iteration of the RBM factorization. To demonstrate how these approaches compare 
with maximum achievable performance, we also show the support oracle performance, 
which corresponds to the percentage of test samples for which ⩽ρ α. The proposed 
AMP-RBM approach, for the given RBM support model, closes the gap to oracle 
performance.

In the right panel of figure 2, we show the performance of the support estimation in 
terms of the Matthews correlation coecient (MCC) which is calculated from the ×2 2 
confusion matrix between the true and estimated support. We observe from this chart 
that, even though measurement rate might be so low as to prevent an accurate recon-
struction in terms of MSE, the estimated support of the recovered image may indeed be 
highly correlated with the true image. However, the values of the on-support coecients 
will not be correctly estimated in this regime. The estimated support may still be used 
for certain tasks in this case, such as classification. More visual evidence of this eect 

Figure 2. Comparison of MNIST reconstruction performance over 300 test set 
digits over the measurement rate α. For both charts, lower curves represent greater 
reconstruction performance. (Left) Percentage of test set digit images successfully 
(MSE ⩽ −10 4) recovered. Note that the AMP-RBM model comes very close to the 
oracle reconstruction performance bound for this test set. (Right) Correlation, in 
terms of MCC, between the recovered support and the true digit image support. 
Here, the solid lines represent the average correlation at each tested α, while the 
solid regions represent the range of one standard deviation of the correlations over 
the test set.
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can be seen in figure 3, were we can observe see, even to the down to the extreme limit 
of α< 0.1, that the AMP-RBM recovered images are still quite correlated with the true 
image. For non-i.i.d. AMP-GB, the eect of the prior eectively forces the support to 
the central region of the image, and for i.i.d. AMP-GB, the support information is com-
pletely lost, having almost zero correlation with the true image.

It is also of interest to analyze the eect of RBM training and model parameters on 
the performance of the proposed approach. Indeed, it is curious to note exactly how well 
trained the RBM must be in order to obtain the performance demonstrated above. In the 
right panel of figure 4 we see that a lightly trained, here on the order of 40 epochs, RBM 
attains maximal performance, showing that an overwrought training procedure is not 
necessary in order to obtain significant performance improvements for CS reconstruction. 
Additionally, in the left panel of figure 4 we see that increasing the complexity of the RBM 
model, and therefore more accurately estimating the joint support probability,increases 
reconstruction performance, showing that more complex RBMs, perhaps even stacked 
RBM models, may have the potential to further improve upon these results.

Lastly, in terms of computational eciency and scalability, the inclusion of the 
inner RBM factorization loop does increase the computational burden of the recon-
struction in proportion to the number of hidden units and the number of factorization 
iterations required for convergence. However, these iterations are computationally light 
in comparison to the AMP FPI and so the use of the RBM support prior is not unduly 
burdensome.

Figure 3. Visual comparison of reconstructions for four test digits across α for the 
same experimental settings. The rows of each box, from top to bottom, correspond 
to the reconstructions provided by i.i.d. AMP-GB, non-i.i.d. AMP-GB, the proposed 
approach with NMF RBM factorization, and the proposed approach with TAP RBM 
factorization, respectively. The columns of each box, from left to right, represent 
the values α = 0.025, 0.074, 0.123, 0.172, 0.222, 0.271, 0.320, 0.369, 0.418, 0.467. The 
advantages provided by the proposed approach are clearly seen by comparing the 
last row to the first one. The digits shown have ρ = 0.342 (top left), ρ = 0.268 
(bottom left), ρ = 0.214 (top right), and ρ = 0.162 (bottom right). The vertical 
blue line represents the α ρ=  oracle exact-reconstruction boundary for each 
reconstruction task.
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6. Conclusion

In this work we show that using an RBM-based prior on the signal support, when 
learned properly, can provide CS reconstruction performance superior to that of 
both simple i.i.d. and empirical non-i.i.d. sparsity assumptions for message-passing 
techniques such as AMP. The implications of such an approach are large as these 
results pave the way for the introduction of much more complex and deep-learned 
priors. Such priors can be applied to the signal support as we have done here, or 
further modifications can be made to adapt the AMP framework to the use of RBMs 
with real-valued visible layers. Such priors would even aid in moving past the M  =  K 
oracle support transition.

Additionally, a number of interesting generalizations of our approach are pos-
sible. While the experiments we present here are only concerned with linear pro-
jections observed through an AWGN channel, much more general, non-linear, 
observation models can be used moving from AMP to GAMP [11]. Our approach 
can be then readily applied with essentially no modification to the algorithm. With 
the successful application of statistical physics tools to signal reconstruction, as 
was done in applying TAP to derive AMP, similar approaches could be adapted 
to produce even better learning algorithms for single and stacked RBMs. Perhaps 
such future works might allow for the estimation of the RBM model in parallel with 
signal reconstruction.

Figure 4. (Left) Test set reconstruction performance for varying numbers of 
RBM hidden units. One can clearly see an improvement of the reconstruction 
performance as the RBM model complexity increases. (Right) Test set reconstruction 
performance at α = 0.2 as a function of the number of epochs, from 5 to 1000, used 
to learn a 500 hidden unit RBM model. Note the sensitivity of the NMF RBM 
factorization to model over-fitting.
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