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MULTIFRACTAL PHENOMENA AND PACKING DIMENSION

FRÉDÉRIC BAYART, YANICK HEURTEAUX

Abstract. We undertake a general study of multifractal phenomena for functions. We

show that the existence of several kinds of multifractal functions can be easily deduced

from an abstract statement, leading to new results. This general approach does not work

for Fourier or Dirichlet series. Using careful constructions, we extend our results to these

cases.

1. Introduction

The starting points of this paper are the following three results on the multifractal prop-

erties of some classes of functions.

I Multifractal Hölder regularity of functions in Besov spaces. Let f : Rd → Rd
be locally bounded. We say that f is Hölderian with exponent α at x0 (and we write

f ∈ Cα(x0)) if there exists C,R > 0 and a polynomial P of degree less than α such that

(1) ‖f(x)− P (x)‖L∞(B(x0,r))
≤ rα, ∀r ∈ (0, R].

We define the lower pointwise Hölder exponent h−(x0) of f at x0 as the supremum of the

nonnegative real numbers α > 0 such that f ∈ Cα(x0) and the level sets E−HR(h, f) and

E−HR(h, f) (HR as Hölder regularity) :

E−HR(h, f) =
{
x ∈ [0, 1]d; h−(x) ≤ h

}
E−HR(h, f) =

{
x ∈ [0, 1]d; h−(x) = h

}
.

Let now s > 0, p ≥ 1 and consider the Besov space Bs
p,q([0, 1]d) with s− d/p > 0. For any

function f ∈ Bs
p,q([0, 1]d) and for almost all x ∈ [0, 1]d, f is Hölderian with exponent α at

x for any α < s; however, it can happen that the regularity of f at some point x0 is worst

but it cannot be too bad since f always belong to Cs−d/p(x0). The following theorem was

obtained by Stéphane Jaffard in [12].

Theorem A.

(i) For all functions f ∈ Bs
p,q([0, 1]d) and all h ∈ [s− d/p, s],

dimH
(
E−HR(h, f)

)
≤ d+ (h− s)p.

(ii) For quasi-all functions f ∈ Bs
p,q([0, 1]d), for all h ∈ [s− d/p, s],

dimH
(
E−HR(h, f)

)
= d+ (h− s)p.
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The terminology quasi-all used here is relative to the Baire category theorem. It means

that this property is shared by a residual set of functions in Bs
p,q([0, 1]d). Moreover,

dimH(E) means the Hausdorff dimension of E.

IMultifractal divergence of Fourier series. Let f ∈ Lp(T), p > 1, where T = R/Z
is the unit circle, and let (Snf)n be the sequence of the partial sums of its Fourier series.

Carleson’s Theorem says that the sequence (Snf(x))n is bounded for almost every x ∈ T
and indeed is almost surely convergent to f(x); however, it can happen that it is unbounded

but not too badly: Snf(x) is always dominated by n1/p. This motivates to introduce the

lower divergence index β−FS(x0) (FS as Fourier Series) at x0 ∈ T as the infimum of the real

numbers β such that Snf(x0) = O(nβ) and for β ≥ 0, the level sets

E−FS(β, f) =
{
x ∈ T; β−FS(x) ≥ β

}
E−FS(β, f) =

{
x ∈ T; β−FS(x) = β

}
=

{
x ∈ T; lim sup

n→+∞

log |Snf(x)|
log n

= β

}
.

The following theorem summarizes results from [1, 3, 5]:

Theorem B. Let p ≥ 1.

(i) For all functions f ∈ Lp(T) and all β ∈ [0, 1/p],

dimH
(
E−FS(β, f)

)
≤ 1− βp.

(ii) For quasi-all functions f ∈ Lp(T), for all β ∈ [0, 1/p],

dimH
(
E−FS(β, f)

)
= 1− βp.

IMultifractal radial behavior of harmonic functions. Let Sd (resp. Bd+1) be the

euclidean unit sphere (resp. unit ball) in Rd+1 and let dσ be the normalized Lebesgue

measure on Sd. If f ∈ L1(Sd), the Poisson integral P [f ] of f is the harmonic function

defined on Bd+1 by

P [f ](x) =

∫
Sd

P (x, ξ)f(ξ)dσ(ξ)

where P (x, ξ) = 1−‖x‖2
‖x−ξ‖d+1 is the Poisson kernel. By Fatou’s theorem, (P [f ](rx))r∈(0,1)

converges as r → 1 for a.e. x ∈ Sd. However, it can happen that it is unbounded but

not too badly: P [f ](rx) is always dominated by (1− r)−d. This leads us to introduce the

lower divergence index β−HF(x0) (HF as Harmonic Functions) at x0 ∈ Sd as the infimum

of the real numbers β such that P [f ](rx0) = O
(
(1− r)−β

)
and for β ≥ 0, the level sets

E−HF(β, f) =
{
x ∈ Sd; β−HF(x) ≥ β

}
E−HF(β, f) =

{
x ∈ Sd; β−HF(x) = β

}
=

{
x ∈ Sd; lim sup

r→1

log |P [f ](rx)|
− log(1− r)

= β

}
.

The following theorem was proved in [4]:
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Theorem C.

(i) For all functions f ∈ L1(Sd) and all β ∈ [0, d],

dimH
(
E−HF(β, f)

)
≤ d− β.

(ii) For quasi-all functions f ∈ L1(Sd), for all β ∈ [0, d],

dimH
(
E−HF(β, f)

)
= d− β.

I These three theorems share many similarities. This is clear if we look at their statement.

This is also true if we look at their proofs: in each case, we begin by proving (i) using a

certain type of maximal inequality, then we build a saturating function verifying (ii) and

finally we deduce residuality. Nevertheless, the technical details are rather different and

involve arguments which seem very specific to the situation. Our first objective in this

paper is to device a general framework to perform this process. We introduce multifractal

analysis of sequences indexed by dyadic cubes. Such a framework already appeared in the

literature (see for instance [14]) but only to bound the Hausdorff dimension of level sets

and not to construct multifractal functions. Our results will allow us to get new examples

of multifractal phenomena (for instance, regarding the divergence of wavelet expansions)

and in particular to obtain in a unified way Theorem A and C. It turns out that Theorem

B does not fall into this general framework (although the level sets E−FS(β, f) may also

be expressed using a sequence indexed by dyadic cubes). The main reason for that it the

nonpositivity of the Dirichlet kernel. Thus, Theorem B requires supplementary arguments.

Our second aim is to investigate the existence of multifractal functions when we replace

the lower divergence index by the upper divergence index. Namely, for the Fourier series

case, define β+
FS(x0) as the supremum of the real numbers β such that nβ = O(Snf(x0))

and for β ≥ 0, the level sets

E+
FS(β, f) =

{
x ∈ T; β+

FS(x) ≥ β
}

=

{
x ∈ T; lim inf

n→+∞

log |Snf(x)|
log n

≥ β
}

E+
FS(β, f) =

{
x ∈ T; β+

FS(x) = β
}

=

{
x ∈ T; lim inf

n→+∞

log |Snf(x)|
log n

= β

}
EFS(β, f) =

{
x ∈ T; β+

FS(x) = β−FS(x) = β
}

=

{
x ∈ T; lim

n→+∞

log |Snf(x)|
log n

= β

}
.

It turns out that, when we investigate the size of E+
FS(β, f), the pertinent notion is the

packing dimension which is denoted by dimP . We shall prove the following result.

Theorem 1.1. Let p ≥ 1.

(i) For all functions f ∈ Lp(T) and all β ∈ [0, 1/p],

dimP
(
E+

FS(β, f)
)
≤ 1− βp.

(ii) There exists a function f ∈ Lp(T) such that, for all β ∈ [0, 1/p],

dimH
(
EFS(β, f)

)
= dimP

(
EFS(β, f)

)
= 1− βp.

In particular, dimP
(
E+

FS(β, f)
)

= 1− βp.
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We have a similar statement for the radial behavior of harmonic functions. Here, the

upper divergence index β+
HF(x0) is defined as the supremum of the real numbers β such

that (1− r)−β = O
(
P [f ](rx0)

)
and for β ≥ 0, the level sets are

E+
HF(β, f) =

{
x ∈ Sd; β+

HF(x) ≥ β
}

=

{
x ∈ Sd; lim inf

n→+∞

log |P [f ](rx)|
− log(1− r)

≥ β
}

E+
HF(β, f) =

{
x ∈ Sd; β+

HF(x) = β
}

=

{
x ∈ Sd; lim inf

n→+∞

log |P [f ](rx)|
− log(1− r)

= β

}
EHF(β, f) =

{
x ∈ Sd; β+

HF(x) = β−HF(x) = β
}

=

{
x ∈ Sd; lim

n→+∞

log |P [f ](rx)|
− log(1− r)

= β

}
.

The analogue of Theorem C for the upper divergence index reads as follows.

Theorem 1.2.

(i) For all functions f ∈ L1(Sd) and all β ∈ [0, d],

dimP
(
E+

HF(β, f)
)
≤ d− β.

(ii) There exists a nonnegative function f ∈ L1(Sd) such that, for all β ∈ [0, d],

dimH
(
EHF(β, f)

)
= dimP

(
EHF(β, f)

)
= d− β.

In particular, dimP
(
E+

HF(β, f)
)

= d− β.

As suggested above, Theorem 1.2 will follow from our general framework as this will be

the case for several other examples (like Hölder regularity or wavelet expansions). In

comparison, the proof of Theorem 1.1 is much more difficult.

Let us point out that the property required in part (ii) of Theorem 1.1 or 1.2 is considerably

stronger than the one needed in part (ii) of Theorem B or C. In particular, we will explain

why there is no hope that the functions constructed in Theorem 1.1 or 1.2 form a residual

subset of the ambient space.

The paper is organized as follows. In Section 2, we introduce our general framework

and give the version of our main theorems in this context. Section 3 is devoted to its

applications in three different contexts: harmonic functions, Hölder regularity and wavelet

expansions. In Section 4, we prove Theorem 1.1 using partly the general framework, and

partly a very careful construction. Finally, in Section 5, we perform a multifractal analysis

of the divergence of Dirichlet series.

We end up this introduction by some words on notations. We use classical notations and

results for the different notions of dimensions we introduce. All the relative informations

may be found in [9]. We will use the notation f(x) � g(x) when there is some constant

C > 0 such that |f(x)| ≤ C|g(x)| for all (appropriate) x. If both f(x) � g(x) and

g(x)� f(x) hold, we will write f(x) � g(x). If I is a cube, then cI, c > 0, will mean the

cube with the same center and length multiplied by c.
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2. The general framework

The general framework our paper is based on is inspired by that exposed in [14]. We start

with a compact set K ⊂ RN , N ≥ 1 and d > 0. We assume that, for each j ≥ 1, there

exists a family Λj of subsets of K such that

• for any λ ∈ Λj , there exists xλ ∈ K such that B(xλ, c · 2−j) ⊂ λ ⊂ B(xλ, C · 2−j)
(the constants c and C do not depend on j and λ);

• for any λ 6= µ ∈ Λj , λ ∩ µ = ∅;
•
⋃
λ∈Λj

λ = K;

• card(Λj) � 2jd.

With these assumptions at hand, it is clear that dimH(K) = dimP(K) = d and that we

may compute the dimension (either box, or Hausdorff, or packing) of any subset of K

using coverings or packings with elements of Λ =
⋃
j Λj . In most cases, K will be equal

to [0, 1]d and Λj will be the sequence of dyadic cubes of the j-th generation. The other

example we will consider is K = Sd. It is easy to figure out what can be the sequence Λ

in that case (see for example [4]). For convenience, we will call later (λ)λ∈Λj the family

of dyadic cubes of the j-th generation and |λ| will denote the diameter of λ. We will also

assume that there exists in K an increasing family (Fα)α∈(0,d) of subsets of K such that,

for any α ∈ (0, d), dimP(Fα) = dimH(Fα) = α and moreover Hα(Fα) > 0. Again this is

true if K = [0, 1]d or K = Sd. If we omit the condition on the packing dimension, which

is not necessary for the forthcoming Theorem 2.9, all compact subsets of RN have this

property (see [2, Theorem 3.1]).

Let now X ⊂ Y be two closed cones in a Banach space, namely f + g ∈ X and cf ∈ X for

any f, g ∈ X and any c ≥ 0. The usual norm in Y will be denoted by ‖·‖. We assume that

for all λ ∈ Λ, we have a continuous map f ∈ Y 7→ eλ(f). We shall impose later conditions

on these maps. Observe that, for any x ∈ K and any j ≥ 0, there exists a unique λ ∈ Λj
such that x ∈ λ. We will denote it by Ij(x). We shall also denote by ej(f, x), or by ej(x)

when there is no ambiguity, the value of eλ(f).

Definition 2.1. Let f ∈ Y , x0 ∈ K and α ≥ 0.

(i) We say that f ∈ Cα(x0) if there exists C ≥ 0 such that, for any j large enough,

|ej(f, x0)| ≤ C · 2−αj . The lower index of f at x0 is then

h−(f, x0) = sup
{
α ≥ 0; f ∈ Cα(x0)

}
with the usual convention sup (∅) = −∞.

(ii) We say that f ∈ Iα(x0) if there exists C ≥ 0 such that, for any j large enough,

|ej(f, x0)| ≥ C · 2−αj . The upper index of f at x0 is then

h+(f, x0) = inf
{
α ≥ 0; f ∈ Iα(x0)

}
with the usual convention inf (∅) = +∞.
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Our first result is a bound on the dimension of the sublevel sets related to these indexes

under mild conditions on (eλ). Let us introduce the following notation:

F−(α, f) = {x ∈ K; h−(f, x) ≤ α}
F+(α, f) = {x ∈ K; h+(f, x) ≤ α}.

Proposition 2.2. Let f ∈ Y . Assume that there exist p ≥ 1 and C > 0 such that, for

any j ≥ 0,
∑

λ∈Λj
|eλ(f)|p ≤ C. Then for any α ∈ [0, d/p],

dimH
(
F−(α, f)

)
≤ pα and dimP

(
F+(α, f)

)
≤ pα.

Proof. The result on Hausdorff dimension is already contained in [14, Theorem 5]. Let us

recall the argument, in order to be self-contained. Let n ≥ 0, ε > 0 and x ∈ F−(α, f).

We can find j ≥ n such that

(2) |ej(f, x)| ≥ 2−j(α+ε) � |Ij(x)|α+ε.

We can then find a covering R of F−(α, f) constituted of dyadic cubes of generation

greater than n and satisfying (2). We have∑
I∈R
|I|(α+2ε)p �

∑
j≥n

2−jεp
∑
λ∈Λj

|eλ(f)|p � 1

and we can easily conclude that

dimH
(
F−(α, f)

)
≤ p(α+ 2ε) .

The same paper [14] also states a result for the dimension of F+(α, f), but it is not about

the dimension we are interested in (in [14], the lower packing dimension is considered

whereas we are concerned with the usual packing dimension) and the condition made on

(eλ) is different. Thus let us prove the statement about dimP
(
F+(α, f)

)
. Let ε > 0 and let

x ∈ F+(α, f). Then there exists jx ≥ 1 such that, for any j ≥ jx, |Ij(x)|α+ε ≤ |ej(f, x)|.
Let

F+
l,ε(α, f) =

{
x ∈ F+(α, f); ∀j ≥ l, |Ij(x)|α+ε ≤ |ej(f, x)|

}
,

so that

F+(α, f) =
⋂
n≥1

⋃
l≥1

F+
l,1/n(α, f).

By a classical property of the packing dimension (see [9, Proposition 3.6]), it is sufficient

to prove that for any l > 0 and any ε > 0, dimB

(
F+
l,ε(α, f)

)
≤ p(α + ε). For j ≥ l, let Γj

be the set of dyadic cubes of the j-th generation meeting F+
l,ε(α, f). Then for any λ ∈ Γj ,

|λ|α+ε ≤ |eλ(f)| so that ∑
λ∈Γj

|λ|(α+ε)p ≤
∑
λ∈Λj

|eλ(f)|p ≤ C.

Hence, the cardinal number of Γj is dominated by 2jp(α+ε), which yields the result. �

We now introduce the general framework required to obtain the existence of at least one

multifractal function in a strong sense. Let us introduce, for α ≥ 0, the level sets

F (α, f) =
{
x ∈ K; h−(f, x) = h+(f, x) = α

}
.
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Theorem 2.3. Assume that there exists p ≥ 1 and a constant C > 0 such that

(GF1): For any f ∈ Y , for any j ≥ 0,
(∑

λ∈Λj
|eλ(f)|p

)1/p
≤ C‖f‖;

(GF2): For any j ≥ 0, for any (aλ)λ∈Λj , there exists f ∈ X such that

• ‖f‖ ≤ C
(∑

λ∈Λj
|aλ|p

)1/p
;

• ∀λ ∈ Λj, eλ(f) ≥ 1
C |aλ|;

(GF3): For any f, g ∈ X, for any λ ∈ Λ, for any c ∈ R+,

eλ(cf) = ceλ(f)

eλ(f + g) ≥ max
(
eλ(f), eλ(g)

)
.

Then there exists f ∈ X such that, for all α ∈ [0, d/p],

dimP
(
F (α, f)

)
= dimH

(
F (α, f)

)
= pα.

Remark 2.4. In particular, if we introduce

F+(α, f) =
{
x ∈ K; h+(f, x) = α

}
,

we have for any α ∈ [0, d/p],

(3) dimP
(
F+(α, f)

)
= pα.

This can be compared with the generic result obtained in Theorem 2.9. Nevertheless, as

it will be seen in Proposition 3.2, we cannot hope (3) to be true for quasi-all functions in

Y , even for a single α ∈ (0, d/p).

Before to proceed with the proof, let us comment these three assumptions. Assumption

(GF1), which comes from Proposition 2.2, is useful to bound the dimension of the level

sets. Observe also that it implies the following simple formulas

h−(f, x) = lim inf
j→+∞

log |ej(f, x)|
−j log 2

and h+(f, x) = lim sup
j→+∞

log |ej(f, x)|
−j log 2

.

In particular,

F (α, f) =

{
x ∈ K ; lim

n→+∞

log |ej(f, x)|
−j log 2

= α

}
.

Assumption (GF2) says that we can saturate the condition given by (GF1), whereas the

last assumption (GF3) is a property of regularity which is useful to add the singularities.

Observe that it is satisfied when all maps f 7→ eλ(f) are linear functionals and if X is

the “positive” cone {f ∈ Y ; eλ(f) ≥ 0, ∀λ ∈ Λ}, which will be the case of several of our

examples.

The proof of Theorem 2.3 is divided into a series of lemma, in which we will construct

functions with stronger and stronger properties.

Lemma 2.5. Let α > 0 and G ⊂ K be such that dimB(G) < pα. Then there exists f ∈ X
satisfying h+(f, x) ≤ α for any x ∈ G.



8 FRÉDÉRIC BAYART, YANICK HEURTEAUX

Proof. Provided j is large enough (say j ≥ j0), G can be covered by at most 2jpα disjoint

dyadic cubes in Λj . We denote by Γj the set of these cubes. We then set

aλ =

{
2−jα if λ ∈ Γj
0 otherwise

so that
∑

λ∈Γj
|aλ|p ≤ 1. By (GF2), we get a function fj ∈ X and it is enough to set

f =
∑

j≥j0 j
−2fj since, for any x ∈ G and any j ≥ j0,

ej(f, x) ≥ j−2ej(fj , x) ≥ j−22−jα.

�

Remark 2.6. If we use the inequality card(Λj)� 2jd and if we define aλ = 2−jd/p when

λ ∈ Λj , we can also construct in the same way a function f ∈ X satisfying h+(f, x) ≤ d/p
for any x ∈ K. This will be useful in the proof of Theorem 2.3.

Lemma 2.7. Let α ∈ (0, d/p) and F ⊂ K be such that dimP(F ) = pα. Then there exists

f ∈ X satisfying h+(f, x) ≤ α for any x ∈ F .

Proof. Let (αl) be a sequence decreasing to α. Then there exists a sequence (Gl,u) of

subsets of K such that F ⊂
⋂
l

⋃
uGl,u and dimB

(
Gl,u

)
< pαl for all l, u. For each l, u,

Lemma 2.5 gives us a function fl,u which we may assume to be normalized. We then set

f =
∑

l,u 2−(l+u)fl,u and we pick x ∈ F . Then, for any l ≥ 1, there exists u ≥ 1 such that

x ∈ Gl,u, so that, for any j ≥ 1,

ej(f, x) ≥ 2−(l+u)ej(fl,u, x).

Letting j to +∞ (independently of l and u), we get

lim sup
j→+∞

log ej(f, x)

−j log 2
≤ lim sup

j→+∞

log ej(fl,u, x)

−j log 2
≤ αl.

Since this is true for any l ≥ 1, this yields the result of Lemma 2.7. �

Proof of Theorem 2.3. Let (Fα)α∈(0,d/p) be an increasing family of subsets of K such that,

for any α ∈ (0, d/p), dimP(Fα) = dimH(Fα) = pα and moreover Hpα(Fα) > 0 (see the

hypothesis made on K at the beginning of the section). Let Fd/p = K and let (αk)k≥1

be a dense sequence in (0, d/p] containing d/p. For any k ≥ 1, Lemma 2.7 (or Remark

2.6) yields the existence of a function fk associated to Fαk which we may assume to be

normalized. We set f =
∑

k≥1 k
−2fk and we consider α ∈ (0, d/p] and x ∈ Fα. If k ≥ 1

and j ≥ 1, we have

ej(f, x) ≥ k−2ej(fk, x).

In particular, if αk ≥ α, x ∈ Fαk and we get

lim sup
j→+∞

log ej(f, x)

−j log 2
≤ αk.

Since the sequence (αk)k≥1 is dense and contains d/p, we thus deduce that Fα ⊂ F+(α, f)

for all α ∈ (0, d/p] and Hpα(F+(α, f)) > 0. Observe now that F+(α, f) ⊂ F (α, f) ∪⋃
β<αF−(β, f). Proposition 2.2 ensures that Hpα

(⋃
β<αF−(β, f)

)
= 0 and we get

Hpα
(
F (α, f)

)
> 0 which is sufficient to conclude when α > 0.
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Les us finally remark that the equality dimP
(
F (0, f)

)
= dimH

(
F (0, f)

)
= 0 is a conse-

quence of Proposition 2.2. �

Remark 2.8. We can slightly relax the assumptions (GF1) and (GF2). In (GF1), it

is sufficient that
(∑

λ∈Λj
|eλ(f)|q

)1/q
� ‖f‖ for all q > p and in (GF2), it is sufficient

that, for any r < p, we can construct a function f satisfying ‖f‖ �
(∑

λ∈Λj
|aλ|r

)1/r
.

We now discuss the residuality of multifractal functions. This will only happen if we look

at the lower index. We shall denote, for α ≥ 0,

F−(α, f) =
{
x ∈ K; h−(f, x) = α

}
.

We need to add two supplementary conditions on the sequences (eλ(f))λ∈Λ. The first one

is relative to the topological properties of these sequences, which is not surprising since we

want a topological statement. Roughly speaking, (GF4) says that the cone Y contains a

dense part D made with ”regular functions”. In particular, it is satisfied if Y contains a

dense part of fonctions f satisfying |eλ(f)| ≤ C2−jd/p for any j and any λ ∈ Λj . Condition

(GF5) is another property of regularity, which is again satisfied if each map f 7→ eλ(f) is

a linear functional. Moreover, we assume that Y is separable.

Theorem 2.9. Let p ≥ 1 and assume that (GF1), (GF2), (GF3) and the following

properties are satisfied:

(GF4): Y is separable and there exists D ⊂ Y dense such that, for any f ∈ D,

lim inf
j→+∞

supλ∈Λj log |eλ(f)|
−j log 2

≥ d

p
;

(GF5): For any λ ∈ Λ and any f, g ∈ Y , |eλ(f + g)| ≥ |eλ(f)| − |eλ(g)|.
Then there exists a residual set R ⊂ Y such that, for any f ∈ R and any α ∈ [0, d/p],

dimH
(
F−(α, f)

)
= pα.

As for Theorem 2.3, this statement will be a consequence of the following proposition,

which constructs a residual set for a fixed level.

Proposition 2.10. Under the assumptions of Theorem 2.9, let α ∈ (0, d/p] and E be a

subset of K such that Hpα(E) < +∞. There exists a residual set RE ⊂ Y such that, for

any g ∈ RE and any x ∈ E, h−(g, x) ≤ α.

Proof. Without less of generality, we may assume that Hpα(E) < 1. For any n ≥ 1, one

can find a finite set Bn of dyadic cubes of generation greater than n, covering E, and such

that
∑

λ∈Bn |λ|
pα ≤ 1. We denote by Bn,j the dyadic cubes of generation j which are

elements of Bn. Let also Jn ≥ n such that Bn,j is empty provided j /∈ [n, Jn]. For a fixed

n ≥ 1 and a fixed j ∈ {n, . . . , Jn}, we may construct a function fn,j ∈ X such that, for

any λ ∈ Bn,j , eλ(fn,j) ≥ 2−jα and

‖fn,j‖p �
∑

λ∈Bn,j

2−jpα � 1.



10 FRÉDÉRIC BAYART, YANICK HEURTEAUX

We then set f =
∑

n≥1

∑Jn
j=n n

−2j−2fn,j which belongs to X. Observe that if λ ∈ Bn,j ,
then eλ(f) ≥ j−42−jα. Using (GF4) and the separability of Y , we can introduce a dense

sequence (fl)l≥1 ⊂ Y such that

|eλ(fl)| ≤
1

2j5
2−jα

for all dyadic cubes λ ∈ Λj , j sufficiently large. We set gl = fl + 1
l f so that the sequence

(gl)l≥1 keeps being dense in Y . Let now m ≥ 1 and l ≥ 1 be fixed and let us set

Nm,l = max(m, l). For any λ ∈ BNm,l of the j-th generation, we have

eλ(gl) ≥
1

l
eλ(f)− eλ(fl)

≥ 1

lj4
2−jα − 1

2j5
2−jα

≥ 1

2j5
2−jα if j ≥ l.

By continuity of the maps g 7→ eλ(g) and because BNm,l is finite, there exists δm,l > 0 such

that, for all λ ∈ BNm,l , for all g ∈ Y with ‖g − gl‖ < δm,l, then

eλ(g) ≥ 1

4j5
2−jα.

We finally set RE =
⋂
m≥1

⋃
l≥1BY (gl, δm,l) which is a residual subset of Y and let us

consider g ∈ RE . For any m ≥ 1, there exists l ≥ 1 such that ‖g − gl‖ < δm,l. Let now

x ∈ E. Then x belongs to
⋃
λ∈BNm,l

λ, so that there exists j ≥ m satisfying |ej(g, x)| ≥
1

4j5
2−jα which concludes the proof. �

Remark 2.11. To prove Proposition 2.10, we do not need really (GF4). It suffices that

there exists a dense set D ⊂ X such that, for all f ∈ D,

lim inf
j→+∞

supλ∈Λj log |eλ(f)|
−j log 2

> α.

Proof of Theorem 2.9. We argue as for Theorem 2.3. Let (Fα)α∈(0,d/p] be an increas-

ing family of subsets of K such that dimH(Fα) = pα and 0 < Hpα(Fα) < +∞. Let

(αk) be a dense sequence in (0, d/p] containing d/p and let us consider the residual set

R =
⋂
kRFαk . For any f ∈ R, any α ∈ (0, d/p] and any x ∈ Fα, we easily get that

lim infj→+∞
log |ej(f,x)|
−j log 2 ≤ α so that Fα ⊂ F−(α, f) and Hpα (F−(α, f)) > 0. Writing

F−(α, f) = F−(α, f)∪
⋃
β<αF−(β, f) and using Proposition 2.2, we get Hpα

(
F−(α, f)

)
>

0. �

Remark 2.12. A remarkable feature of both the proofs of Theorems 2.3 and 2.9 is that

they do not involve a particular increasing family of sets (Fα) satisfying dim(Fα) = pα.

In particular, the construction does not depend on the notion of well-approximable real

numbers. In that sense, it is simpler than the previous constructions done in [3, 5, 12].

Remark 2.13. The interest of having two cones X and Y becomes clearer after the proof

of Proposition 2.10. It is sometimes easier to build a saturating function in a cone (think

again at the positive cone) and then to deduce residuality in the ambient space.
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3. Applications

3.1. Harmonic functions. We shall now prove that Theorem C and Theorem 1.2 on

harmonic functions follow directly from our general framework. The key point is to obtain

a dyadic version of radial limits. As a consequence of Harnack inequality, it will be easy

to obtain for non-negative functions. Recall that dσ is the normalized Lebesgue measure

on Sd.

Lemma 3.1. Let f ∈ L1(Sd), f ≥ 0, x ∈ Sd and j ≥ 0. Then for any r ∈
[
1 − 2−j , 1 −

2−(j+1)
]
,

P [f ](rx) � 2jd
∫
ξ∈Ij(x)

P [f ]
(
(1− 2−j)ξ

)
dσ(ξ).

Proof. This follows from Harnack inequality, which implies that there exist two constants

c, C > 0 such that, for any f ∈ L1(Sd), f ≥ 0, for any x ∈ Sd, for any j ≥ 0, for any

r ∈
[
1− 2−j , 1− 2−(j+1)

]
, for any ξ ∈ Ij(x),

cP [f ]
(
(1− 2−j)ξ

)
≤ P [f ](rx) ≤ CP [f ]

(
(1− 2−j)ξ

)
.

Observe indeed that the distance from (1 − 2−j)ξ to rx is dominated by the distance of

rx to the boundary of Bd+1. �

This lemma leads us to define, for any f ∈ L1(Sd), for any j ≥ 0 and any λ ∈ Λj ,

eλ(f) =

∫
λ
P [f ]

(
(1− 2−j)ξ

)
dσ(ξ)

and to consider X = Y = {f ∈ L1(Sd); f ≥ 0}. With these notations, Lemma 3.1 yields,

for any f ∈ X and any x ∈ Sd,

lim sup
r→0

log |P [f ](rx)|
− log(1− r)

= d− lim inf
j→+∞

log |ej(f, x)|
−j log 2

lim inf
r→0

log |P [f ](rx)|
− log(1− r)

= d− lim sup
j→+∞

log |ej(f, x)|
−j log 2

.

Therefore, using the notations of the introduction and that of Section 2, we have

E+
HF(β, f) = F+(d− β, f) and EHF(β, f) = F (d− β, f).

Here, p = 1 and we have to prove that the sequence (eλ)λ∈Λ satisfies the assumptions of

the general framework. For (GF3) and (GF5), this is trival. For (GF1), we just observe

that, for any j ≥ 0 and any f ∈ L1(Sd), f ≥ 0,∑
λ∈Λj

|eλ(f)| =
∫
Sd
P [f ]

(
(1− 2−j)ξ

)
dσ(ξ) ≤ ‖f‖1

since the Poisson kernel is a contraction on L1(Sd). To prove (GF2), it suffices to set, for

any j ≥ 0 and any sequence (aλ)λ∈Λj ,

f =
∑
λ∈Λj

2jd|aλ|1λ.
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It follows easily from Lemma 4 in [4] that, for any λ ∈ Λj ,

eλ(f) =

∫
λ
P [f ]

(
(1− 2−j)ξ

)
dσ(ξ) ≥

∫
λ

2jd|aλ|P [1λ]
(
(1− 2−j)ξ

)
dσ(ξ)� |aλ|.

Finally, (GF4) is clear if we choose for D the set of nonnegative continuous functions on

Sd. For these functions, |eλ(f)| ≤ C2−jd‖f‖∞ if λ ∈ Λj .

Thus we may apply Theorem 2.3 and Theorem 2.9 to get Theorem C and Theorem 1.2,

except that we control the dimension of the level sets only for nonnegative functions and

that we have obtained residuality for nonnegative functions and not in L1(Sd) (here X = Y

and indeed the behavior of eλ(f) characterizes the radial behaviour only for nonnegative

functions). The first problem is easily tackled by observing that |P [f ](rx)| ≤ P [|f |](rx)

so that E±HF(β, f) ⊂ E±HF(β, |f |) and conclusion (i) of Theorem C and Theorem 1.2 remains

true for any function f ∈ L1(Sd). To obtain conclusion (ii) of Theorem C, we need to

modify slightly the proof of Proposition 2.10. We take for D the set of continuous functions

on Sd, and the proof will work almost words for words if we observe that

P [gl](rx) ≥ 1

l
P [f ](rx)− P [fl](rx)

and that we may apply Lemma 3.1 to f which belongs to X.

We now include the example showing that we cannot expect to have residuality in Theorem

2.3. The obstruction is very strong.

Proposition 3.2. Quasi-all functions f ∈ L1(Sd) satisfy β+
HF (x) ≤ 0 for all x ∈ Sd.

Proof. Let ε > 0 and ρ ∈ (0, 1). We consider

U(ε, ρ) =

{
f ∈ L1(Sd); ∀x ∈ Sd, ∃r ∈ (ρ, 1), |P [f ](rx)| < 1

(1− r)ε

}
and we claim that U(ε, ρ) is a dense open set. Indeed, it contains all continuous func-

tions. Moreover, pick any f ∈ U(ε, ρ). For any x ∈ Sd, there exists rx ∈ (ρ, 1) such

that |P [f ](rxx)| < 1
(1−rx)ε . By continuity of (g, y) 7→ P [g](rxy), there exists an open

neighbourhood Ox of x in Sd and a neighbourhood Vx of f in L1(Sd) such that

∀g ∈ Vx, ∀y ∈ Ox, |P [g](rxy)| < 1

(1− rx)ε
.

By compactness, Sd is covered by a finite number of open sets Ox, says Ox1 , . . . ,Oxp . Then

Vx1 ∩ · · · ∩ Vxp is a neighbourhood of f contained in U(ε, ρ). We now pick a sequence (εk)

going to zero and a sequence (ρl) going to 1 and observe that any function f in the residual

set
⋂
k,l U(εk, ρl) satisfies lim infr→1

log |P [f ](rx)|
− log(1−r) ≤ 0 and β+

HF (x) ≤ 0. for all x ∈ Sd. �

This proof can be easily adapted to the other examples of this paper. We only need the

existence of a dense set of regular functions and the continuity of (g, y) 7→ P [g](ry) for

a fixed value of r. We do not formulate a statement in our general context because we

discretize the problem and we lose continuity at the boundary points of the dyadic cubes.
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3.2. Haar expansions. Let Λ be the set of dyadic intervals of [0, 1), ϕ = 1[0,1) and

(ψµ)µ∈Λ be the standard Haar functions with L∞-normalization. Recall that the sequence

made of ϕ and (2j/2ψµ)µ∈Λ is an orthonormal basis in L2([0, 1)). If j ≥ 1, define the j-th

partial sum of the Haar expansion of f by

Tjf = 〈f, ϕ〉ϕ+

j−1∑
i=0

∑
µ∈Λi

2i/2〈f, ψµ〉ψµ.

Recall that Tjf ≥ 0 if f ≥ 0. As for Fourier series, (Tjf(x))j≥1 converges almost every-

where to f(x) and we have a control of the Hausdorff dimension of the sublevel sets of

divergence. For any β, define

E−HE(β, f) =

{
x ∈ [0, 1); lim sup

j→+∞

log |Tjf(x)|
j log 2

≥ β

}
.

Aubry has shown in [1] that if β ∈ [0, 1/2], dimH
(
E−HE(β, f)

)
≤ 1 − 2β and that, given

E ⊂ [0, 1) with dimH(E) < 1− 2β, there exists f ∈ L2([0, 1)) such that, for any x ∈ E,

lim sup
j→+∞

log |Tjf(x)|
j log 2

≥ β.

Our general framework can be used to go much further. As usual, we also denote

E−HE(β, f) =

{
x ∈ [0, 1); lim sup

j→+∞

log |Tjf(x)|
j log 2

= β

}

E+
HE(β, f) =

{
x ∈ [0, 1); lim inf

j→+∞

log |Tjf(x)|
j log 2

≥ β
}

EHE(β, f) =

{
x ∈ [0, 1); lim

j→+∞

log |Tjf(x)|
j log 2

= β

}
.

Theorem 3.3.

(i) For all β ∈ [0, 1/2] and all f ∈ L2([0, 1)),

dimP
(
E+

HE(β, f)
)
≤ 1− 2β;

(ii) There exists a nonnegative function f ∈ L2([0, 1)) such that, for all β ∈ [0, 1/2],

dimH
(
EHE(β, f)

)
= dimP

(
EHE(β, f)

)
= 1− 2β;

(iii) For quasi-all functions f ∈ L2([0, 1)), for all β ∈ [0, 1/2],

dimH
(
E−HE(β, f)

)
= 1− 2β.

Proof. Let f ∈ L2([0, 1)). Recall that Tjf is the orthogonal projection on the vector space

generated by (1λ)λ∈Λj . In particular, it is well known that Tjf ≥ 0 when f ≥ 0. Moreover,

if j ≥ 1 and λ ∈ Λj , then Tjf is constant on λ. Thus we may set eλ(f) = 2−j/2Tjf(x)

where x is any element of λ and it is easy to check that

lim inf
j→+∞

log |Tjf(x)|
j log 2

=
1

2
− lim sup

j→+∞

log |ej(f, x)|
−j log 2

lim sup
j→+∞

log |Tjf(x)|
j log 2

=
1

2
− lim inf

j→+∞

log |ej(f, x)|
−j log 2

.
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Therefore, Theorem 3.3 will follow from the results of Section 2 if we are able to prove that

the sequence (eλ)λ∈Λ satisfies the assumptions of the general framework with p = 2. We

set X = {f ∈ L2([0, 1)); f ≥ 0} and Y = L2([0, 1)). As before, the verification of (GF3)

and (GF5) are immediate, as soon as we observe that the eλ are linear and positive on

X. In order to prove (GF1), we just observe that if λ ∈ Λj , |eλ(f)|2 =
∫
λ |Tjf(x)|2 dx so

that ∑
λ∈Λj

|eλ(f)|2 = ‖Tjf‖22 ≤ ‖f‖
2
2.

Property (GF4) is easily obtained by taking for D the set of (finite) linear combination

of elements of the Haar basis, that is the set of fonctions f for which there exists k ≥ 0

such that f is constant on any λ ∈ Λk. Indeed, for such a function f , Tjf = f if j ≥ k

and

|eλ(f)| ≤ 2−j/2‖Tjf‖∞ = 2−j/2‖f‖∞ if λ ∈ Λj .

For the property of reconstruction (GF2), we start from j ≥ 1 and a finite sequence

(aλ)λ∈Λj . We then set

f =
∑
λ∈Λj

2j/2|aλ|1λ ∈ X.

Since f is constant on any dyadic cube of the j-th generation, Tjf = f and for any λ ∈ Λj ,

eλ(f) = |aλ|. Moreover,

‖f‖22 =
∑
λ∈Λj

∫
λ
|f(x)|2dx =

∑
λ∈Λj

|aλ|2 =
∑
λ∈Λj

|eλ(f)|2.

�

3.3. Hölder regularity. We now show that Theorem A falls into our general framework

and that we can also obtain results for pointwise anti-Hölderian irregularity. We follow the

definitions introduced in [7] and [8]. Let f : Rd → R be locally bounded and let x0 ∈ Rd.
The finite differences of arbitrary order of f are defined inductively by

∆1
hf(x0) = f(x0 + h)− f(x), ∆n+1

h f(x0) = ∆n
hf(x0 + h)−∆n

hf(x0).

It is known (see for example [6]) that if α > 0 is not an integer, then f ∈ Cα(x0) if and

only if there exists C,R > 0 such that,

(4) sup
‖u‖≤r

∥∥∥∆[α]+1
u f

∥∥∥
L∞
(
Bαu (x0,r)

) ≤ Crα, ∀r ∈ (0, R],

where Bα
u (x0, r) =

{
x;
[
x; x+ ([α] + 1)u)

]
⊂ B(x0, r)

}
. When α is an integer, there is

an extra logarithmic term. However, this is unimportant if we look at the lower pointwise

exponent h−(x0) which could also be defined as the supremum of those α such that (4)

holds.

This motivates the following definition for anti-Hölderian irregularity. We say that f ∈
Iα(x0) if there exists C,R > 0 such that, for any r ∈ (0, R),

sup
‖u‖≤r

∥∥∥∆[α]+1
u f

∥∥∥
L∞
(
Bαu (x0,r)

) ≥ Crα.
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The upper pointwise Hölder exponent of f at x0 , denoted by h+(x0), is the infimum of

the real numbers α such that f ∈ Iα(x0). As usual, we introduce the level sets

E+
HR(h, f) =

{
x ∈ [0, 1]d; h+(x) ≤ h

}
EHR(h, f) =

{
x ∈ [0, 1]d; h−(x) = h+(x) = h

}
.

The following statement adds informations to the results of Theorem A.

Theorem 3.4.

(i) For all functions f ∈ Bs
p,q([0, 1]d) and all h ∈ [s− d/p, s],

dimP
(
EHR(h, f)

)
≤ d+ (h− s)p;

(ii) There exists a function f ∈ Bs
p,q([0, 1]d) such that, for all h ∈ [s− d/p, s],

dimP
(
EHR(h, f)

)
= dimH

(
EHR(h, f)

)
= d+ (h− s)p.

Remark 3.5. Observe that point (i) in Theorem 3.4 is weaker than the analogue assertions

in Proposition 2.2, Theorem 1.1 and Theorem 1.2. We are not able to get the stronger

property

dimP
(
E+

HR(h, f)
)

= dimP
(
{x ∈ [0, 1]d; h+(x) ≤ h}

)
≤ d+ (h− s)p

because of the weakness of point (2) in Lemma 3.6. In particular, in this context, h+(x)

is in general not equal to lim supj→+∞
log dj(f,x)
−j log 2 (see the definition of dj(f, x) below).

We shall recall very briefly the basics of multiresolution wavelet analysis (for details, see for

instance [18, 19]). For an arbitrary integer N ≥ s, one can construct compactly supported

functions ϕ and (ψ(i))1≤i<2d such that

{ϕ(x− k); k ∈ Zd} ∪ {ψ(i)(2jx− k); 1 ≤ i < 2d, k ∈ Zd, j ∈ Z}

form an orthogonal basis of L2(Rd) (we choose the L∞-normalization of wavelets). We

also assume that each ψ(i) has at least N + 1 vanishing moments. Then any function

f ∈ L2([0, 1]d) can be decomposed as follows:

f(x) = c0(f)ϕ(x) +

+∞∑
j=1

∑
k∈{0,...,2j−1}d

2d−1∑
i=1

c
(i)
j,k(f)ψ(i)(2jx− k)

=: c0(f)ϕ(x) +
∑
λ∈Λ

2d−1∑
i=1

c
(i)
λ (f)ψ

(i)
λ (x),

using the classical identification between the dyadic cube

λ =
d∏
`=1

[
k`
2j
,
k` + 1

2j

)
and the numbers j and k = (k1, . . . , kd).
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It is well-known that the (global and local) regularity of a function is linked to the behavior

of its wavelet coefficients. More precisely, we will need the notion of wavelet leaders. For

every dyadic cube λ ∈ Λj , j ≥ 1, one defines the wavelet leader dλ by setting

dλ(f) = sup
{
|c(i)
µ (f)|; 1 ≤ i < 2d, µ ⊂ 3λ

}
.

As usual, if λ is the unique cube in Λj that contains the point x, the coefficient dλ(f) will

be also denoted by dj(f, x). The following results were obtained in [7, 8, 13].

Lemma 3.6. Let f ∈ Bs
p,q(Rd) .

(1) For any x ∈ [0, 1]d, h−(x) = lim infj→+∞
log dj(f,x)
−j log 2 ;

(2) Let x ∈ [0, 1]d. If there exists C > 0 such that for any j ≥ 0, dj(f, x) ≥ C2−jα,

then f ∈ Iα(x);

(3) For any x ∈ [0, 1]d, h−(x) = h+(x) = h if and only if limj→+∞
log dj(f,x)
−j log 2 = h.

In order to fit our general framework, we finally define eλ(f) = 2

(
s− d

p

)
j
dλ(f); we set X

the cone of f ∈ Bs
p,q([0, 1]d) with nonnegative wavelet coefficients and Y = Bs

p,q([0, 1]d).

Lemma 3.7. The sequence (eλ)λ∈Λ satisfies properties (GF1) to (GF5).

Proof. Let us recall that the Bs
p,q([0, 1]d)-norm of f with wavelet coefficients (c

(i)
λ (f)) is

‖f‖Bsp,q =

∑
j≥1

2(sp−d)j
∑
λ∈Λj

2d−1∑
i=1

|c(i)
λ (f)|p

q/p


1/q

.

Using this formulation of the norm, we easily get (GF1) and (GF2). For (GF1), this

is done for instance in [23]. For (GF2), just define f =
∑

λ∈Λj
|aλ|ψ

(1)
λ . The verification

of (GF3) is easy (recall that we are working in the cone of functions with nonnegative

wavelet coefficients), whereas we get (GF4) by setting for D the set of functions with

only a finite number of nonzero wavelet coefficients. Finally, for (GF5), observe that for

λ ∈ Λ, if µ ⊂ 3λ and 1 ≤ i < 2d are such that |c(i)
µ (f)| = dλ(f), then

dλ(f + g) ≥ |c(i)
µ (f + g)| ≥ |c(i)

µ (f)| − |c(i)
µ (g)| ≥ dλ(f)− dλ(g).

�

Let us now translate the results obtained in the general framework to the language of

Hölder regularity. We have two kinds of indexes at our disposal: those coming from the

general framework, which we shall denote by adding an index GF, like hGF(x), and those

coming from the Hölder exponent. Lemma 3.6 translates into

(1) h−(x) = h−GF(x) + s− d

p

(2) h+(x) ≤ h+
GF(x) + s− d

p

(3) EHR(h, f) = F

(
h− s+

d

p
, f

)
.

Therefore, Theorems 2.9 and 2.3 exactly yield Theorem A and Theorem 3.4.
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4. Fourier series

We now investigate the multifractal analysis of the divergence of Fourier series. We first

prove the inequality

(5) dimP
(
E+

FS(β, f)
)
≤ 1− βp

which is point (i) of Theorem 1.1. It will be a consequence of the following localization

lemma, which is a particular case of [5, Lemma 2.5].

Lemma 4.1. Let p ≥ 1. There exists δ > 0 such that, for any f ∈ Lp(T), for any x ∈ T
such that |S2jf(x)| ≥ ‖S2jf‖p,

‖S2jf‖Lp(3Ij(x)) ≥
δ2−j/p

j3/p
|S2jf(x)|.

We begin by proving (5) in the case p > 1 (the case p = 1 is a little more difficult).

Let us introduce, for any dyadic interval λ ∈ Λj , the quantity eλ(f) = ‖S2jf‖Lp(3λ). Let

0 < β ≤ p (which is the only interesting case) and x ∈ E+
FS(β, f). For such an x, we

have limn→+∞ |Snf(x)| = +∞. On the other hand, the Riesz theorem ensures that the

sequence
(
‖Snf‖p

)
n≥0

is bounded. We can then use Lemma 4.1 when n = 2j is sufficiently

large. We get

lim sup
j→+∞

log |ej(f, x)|
−j log 2

≤ 1

p
− lim inf

j→+∞

log |S2jf(x)|
j log 2

≤ 1

p
− lim inf

n→+∞

log |Snf(x)|
log n

.

In other words and using our standard notations, we have shown that

E+
FS(β, f) ⊂ F+

(
1

p
− β, f

)
.(6)

Proposition 2.2 gives immediately the conclusion, since Riesz theorem ensures that∑
λ∈Λj

‖S2jf‖
p
Lp(3λ) � ‖S2jf‖

p
Lp(T) � ‖f‖

p.

In the case p = 1, the Riesz inequality only says that

‖Snf‖1 � log(n+ 1)‖f‖1 .

We first need to fix ε > 0 and to introduce eλ(f) = 2−jε‖S2jf‖L1(3λ). It follows that∑
λ∈Λj

|eλ(f)| = 2−jε
∑
λ∈Λj

‖S2jf‖L1(3λ) � 2−jε‖S2jf‖1 � j2−jε‖f‖1 � ‖f‖1,

which is the condition needed to apply Proposition 2.2.

On the other hand, if β > 0 and x ∈ E+
FS(β, f), it is always true that

lim
n→+∞

|Snf(x)|
‖Snf‖1

= +∞,

so that we can use Lemma 4.1. We get

lim sup
j→+∞

log |ej(f, x)|
−j log 2

≤ 1 + ε− lim inf
n→+∞

log |Snf(x)|
log n
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and we can conclude that E+
FS(β, f) ⊂ F+(1 + ε − β, f). Proposition 2.2 then yields

dimP
(
E+

FS(β, f)
)
≤ 1 + ε− β and we let ε to 0.

Unfortunately, we cannot go much further staying inside the general framework. Indeed

the Dirichlet kernel is not positive. In particular, it is harder than in the previous cases

to add the singularities. The Dirichlet kernel is not a positive kernel but it is a real kernel

and, in order to make |Snf(x)| large, it suffices to make large either its real part or its

imaginary part. That is the way we will use to construct singularities. As usual, we

will need to construct polynomials with spectra far from zero which take large values on

big sets. The multiplication by einx (which translates the spectrum) will not be in our

situation a good idea, because the function einx is not a real function. We will prefer to

multiply by sin(2πnx) and to consider points x where sin(2πnx) ≥ c > 0. That is the

reason why we first introduce the following compact set.

Recall that any x ∈ [0, 1) can be uniquely written
∑

j≥1
εj(x)

2j
with εj(x) ∈ {0, 1} and

with a sequence (εj(x))j≥1 that takes the value 0 infinitely often. Consider a sequence of

positive integers (mk)k≥1 such that mk+1 −mk ≥ 3 for all k. For n ≥ 1, let

Ωn = {1, . . . , n}\
⋃
k≥1

{mk, mk + 1, mk + 2}

and define

Ω =
⋃
n≥1

Ωn.

We will assume that (mk) is sparse enough. In our context, this will mean that

card{k ∈ N; mk ≤ n} = O(nγ)

for some γ ∈ (0, 1). In particular, setting un = card(Ωn) we have un ∼ n. However, we

will also need that (mk) is not too sparse and we also require that mk+1/mk tends to 1.

For instance, one may take mk = (k + 1)2.

Define

K =
{
x ∈ [0, 1); εmk(x) = εmk+2(x) = 0 and εmk+1(x) = 1 for all k ≥ 1

}
.

In other words, let Iε1···εn be the dyadic interval

Iε1···εn =

 n∑
j=1

εj
2j

;

n∑
j=1

εj
2j

+
1

2n

 .

Define the set Ln of admissible words of length n to be the words ε1 · · · εn with εj = 0 if

j ∈ {mk, k ≥ 1}, εj = 1 if j ∈ {mk + 1, k ≥ 1} and εj = 0 if j ∈ {mk + 2, k ≥ 1}. Then

K =
⋂
n≥1

⋃
ε1···εn∈Ln

Iε1···εn .

The choice of such a compact K ensures the following.

Lemma 4.2. For any x ∈ K and for any k ≥ 1, sin(2π2mkx) ≥
√

2
2 .
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Proof. We just need to observe that, for any x ∈ K,

2mkx ∈ N +

[
1

4
,
3

8

]
.

�

Moreover, the choice of the sequence (mk) ensures that K has dimension 1.

Proposition 4.3. dimH(K) = dimP(K) = 1.

Proof. Of course, it suffices to prove that dimH(K) ≥ 1. Define the probability measure

m on K in the following way. Let I ∈ Λn be a dyadic interval of the n-th generation.

If n + 1 6∈ {mk; k ≥ 1} ∪ {mk + 1; k ≥ 1} ∪ {mk + 2; k ≥ 1}, then I is divided into

two sons I ′ and I ′′ of the (n + 1)-th generation such that m(I ′) = m(I ′′) = 1
2m(I). If

I = Iε1···εn with (n+ 1) ∈ {mk; k ≥ 1} then the total mass is transfered in Iε1···εn010, that

is m(Iε1···εn010) = m(Iε1···εn). The measure m is clearly supported by the compact set K.

Moreover, for n ≥ 1 and I ∈ Λn, we have m(I) ≤ 2−un . Observe that un ≥ n − cnγ so

that

m(I) ≤ 2−(n−cnγ) = φ(|I|)
where φ(t) = t× 2c|log2(t)|γ . In particular, Hφ(K) > 0 and dimH(K) ≥ 1. �

We now follow the way of the general case, with some additional complications, working

first in sets with small upper box dimensions.

Lemma 4.4. Define Mk = 2mk−1 and Nk = 3 · 2mk−1 if k ≥ 1.

Let p ≥ 1, s ∈ (0, 1] and G ⊂ K such that dimB(G) < s. There exists f ∈ Lp(T), ‖f‖p ≤ 1,

such that

• For any x ∈ K and for any k ≥ 1,

<e(SNkf(x)) ≥ 0 and =m(SNkf(x)) ≥ 0

• For any x ∈ [0, 1) and for any k ≥ 1,

<e(Snf(x)) = <e(SN2k
f(x)) for any n ∈ [N2k,M2k+2)

=m(Snf(x)) = =m(SN2k+1
f(x)) for any n ∈ [N2k+1,M2k+3)

• For any x ∈ G,

lim inf
k→+∞

log<e(SN2k
f(x))

logN2k
≥ 1− s

p

lim inf
k→+∞

log=m(SN2k+1
f(x))

logN2k+1
≥ 1− s

p
.

Proof. Before to proceed with the details of the proof, let us comment the strategy. We

will construct polynomials Pk with small Lp-norms and which behave badly on G. Then,

we will translate the Fourier spectrum of these polynomials, and add these translates, in

order to get f . There are two problems to tackle. The first one is that, even if Pk(x) is

large, SnPk(x) does not need to be large, and even positive, for small values of n. That is

why we will alternate the addition of real polynomials and pure imaginary polynomials.
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The second trouble comes from the translation. As explained in the introduction of this

section, in order to preserve the real part and the imaginary part of the polynomials Pk,

we will multiply them by sin(2πnx), with n correctly chosen. That is why we only consider

points x ∈ K for which we know that Lemma 4.2 is valid.

Let us now proceed with the details. Since dimB(G) < s, there exists CG > 0 such that,

for any k ≥ 1, we can find a set Γk of closed dyadic intervals of length 2−(mk−1) which cover

G, with card(Γk) ≤ CG2(mk−1)s. Let Jk =
⋃
I∈Γk

I and χk the piecewise affine function

defined by

χk(x) = max
(
0, 1− 2mk−1dist (x, Jk)

)
.

Let us observe that 0 ≤ χk ≤ 1, that χk(x) = 1 on each I ∈ Γk, that ‖χ′k‖∞ ≤ 2mk−1 and

that χk(x) = 0 on each closed dyadic interval I of generation mk− 1 such that I ∩Jk = ∅.
In particular,

‖χk‖p ≤
(

3CG2(mk−1)s × 2−(mk−1)
)1/p

� 2(mk−1)(s−1)/p.

We can now approximate 2−(mk−1)(s−1)/pχk (whose Lp-norm is controlled by a constant in-

dependent of k) by a trigonometric polynomial, using Fejér sums of order 2mk−1. Applying

for instance Lemma 1.6 of [3], we get a polynomial Pk satisfying
Pk(x) ≥ 0

‖Pk‖p � 1

Sp(Pk) ⊂ [−2mk−1, 2mk−1], where Sp denotes the Fourier spectrum

x ∈ G =⇒ Pk(x) ≥ 1
42(mk−1)(1−s)/p.

We then translate the Fourier spectrum of these polynomials by setting

Qk(x) := sin(2π2mkx)Pk(x).

Let us observe that the Fourier spectrum of Qk is contained in[
−2mk − 2mk−1,−2mk + 2mk−1

]
∪
[
2mk − 2mk−1, 2mk + 2mk−1

]
= [−Nk,−Mk] ∪ [Mk, Nk].

Hence, since mk+1 −mk ≥ 3, these polynomials have disjoint spectra. Moreover, Lemma

4.2 ensures that if x ∈ K, Qk(x) ≥
√

2
2 Pk(x) ≥ 0. We finally define

f(x) =
∑
j≥1

1

j2
Q2j(x) + i

∑
j≥1

1

j2
Q2j+1(x)

which is a convergent series in Lp(T) and we claim that f , up to renormalization, sat-

isfies all the requirements of Lemma 4.4. The first point is clear since <e(SNkf) (resp.

=m(SNkf)) is a nonnegative combination of polynomials Qj , which are nonnegative on K

by construction. The second point follows directly from the construction and the descrip-

tion of the spectra of the polynomials Qj . For the last one, it suffices to observe that, for

any x ∈ G,

<e
(
SN2k

f(x)
)
≥ 1

k2
Q2k(x) ≥

√
2

2k2
P2k(x)� 2m2k(1−s)/p

k2
.

Since log(N2k) behaves like m2k log 2, we get the result. We can do the same with

=m(SN2k+1
f). �
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Following the strategy of the general framework, we can now go from subsets G ⊂ K with

controlled upper box dimension to subset F ⊂ K satisfying dimP (F ) = s.

Lemma 4.5. Let s ∈ (0, 1) and F ⊂ K be such that dimP (F ) = s. There exists f ∈ Lp(T),

‖f‖p ≤ 1, such that

• For any x ∈ K and for any k ≥ 1,

<e(SNkf(x)) ≥ 0 and =m(SNkf(x)) ≥ 0

• For any x ∈ [0, 1) and for any k ≥ 1,

<e(Snf(x)) = <e(SN2k
f(x)) for any n ∈ [N2k,M2k+2)

=m(Snf(x)) = =m(SN2k+1
f(x)) for any n ∈ [N2k+1,M2k+3)

• For any x ∈ F ,

lim inf
k→+∞

log<e(SN2k
f(x))

logN2k
≥ 1− s

p

lim inf
k→+∞

log=m(SN2k+1
f(x))

logN2k+1
≥ 1− s

p
.

Proof. Let (sl) be a sequence decreasing to s. Then there exists a sequence (Gl,u) of subsets

of K such that F ⊂
⋂
l

⋃
uGl,u and dimB(Gl,u) < sl. For each couple (l, u), Lemma 4.4

gives us a function fl,u. The function

f =
∑
l,u≥1

1

2l+u
fl,u

is the function we are looking for if we observe that if x ∈ Gl,u and k ≥ 1,

<e(SN2k
f(x)) ≥ 1

2l+u
<e(SN2k

fl,u(x)) and =m(SN2k+1
f(x)) ≥ 1

2l+u
=m(SN2k+1

fl,u(x)).

�

Remark 4.6. If s = 1 and F = K the function f = 1+i√
2

obviously satisfies the conclusion

of Lemma 4.5.

To finish the proof of the construction of a function f satisfying point (ii) of Theorem

1.1 we need now to construct a family (Fα)α∈(0,1) of increasing subsets of K such that

dimH(Fα) = dimP(Fα) = α. This is not so easy because K is not ”selfsimilar” (the set Ln
of admissible words of length n does not satisfy card(Ln) � 2n). Nevertheless, we have

the following.

Lemma 4.7. There exists a increasing family (Fα)0<α<1 of subsets of K such that for

any α ∈ (0, 1), dimH(Fα) = dimP(Fα) = α and Hψα(Fα) > 0 for some gauge function ψα
satisfying ψα(x) = o (xs) for any s < α.

Let us first suppose that Lemma 4.7 is true and finish the proof of Theorem 1.1. Define

F1 = K and let (αk) be a dense sequence in (0, 1] with α1 = 1. Lemma 4.5 (or Remark

4.6) gives us a function fk with s = αk. As in the proof of Theorem 2.3, we then set



22 FRÉDÉRIC BAYART, YANICK HEURTEAUX

f =
∑

k≥1
1
k2
fk and consider α ∈ (0, 1] and x ∈ Fα. Let k ≥ 1 such that αk ≥ α and n ≥ 1

be very large. There exists q ≥ 1 such that n ∈ [Nq, Nq+1).

If q = 2m is even, we write

|Snf(x)| ≥ <e
(
Snf(x)

)
= <e

(
SNqf(x)

)
≥ k−2 ×<e

(
SNqfk(x)

)
.

If q = 2m+ 1 is odd, we write

|Snf(x)| ≥ =m
(
Snf(x)

)
= =m

(
SNqf(x)

)
≥ k−2 ×=m

(
SNqfk(x)

)
.

Now, log n ≤ log(Nq+1) and
log(Nq)

log(Nq+1) → 1. Thus,

lim inf
n→+∞

log |Snf(x)|
log n

≥ 1− αk
p

.

Since αk may be chosen arbitrarily close to α, we get

Fα ⊂ E+
FS(β, f) with β =

1− α
p

.

In particular, Hψα
(
E+

FS(β, f)
)
> 0. We now use the same argument as in Theorem 2.3.

Observe that

E+
FS(β, f) ⊂ EFS(β, f) ∪

⋃
δ>β

E−FS(δ, f) .

Theorem B ensures that Hψα
(⋃

δ>β E
−
FS(δ, f)

)
= 0 and we get

Hψα
(
EFS(β, f)

)
> 0 and dimH

(
EFS(β, f)

)
≥ α = 1− βp

which is sufficient to conclude when β < 1/p. The case β = 1/p is a trivial consequence

of point (i) of the theorem.

Question 4.8. Does there exists a real-valued function f satisfying the conclusions of

Theorem 1.1?

We now finish this section with the proof of Lemma 4.7. The sets Fα will be obtained as

Besicovitch sets. Remember that if 0 < δ < 1/2 and if

Eδ =

x ∈ [0, 1); lim sup
n→+∞

1

n

n∑
j=1

εj(x) ≤ δ

 ,

then, the Hausdorff dimension and the packing dimension of Eδ are equal to α(δ), where

α(δ) denotes

α(δ) := −δ log2(δ)− (1− δ) log2(δ).

Moreover, Hα(δ)(Eδ) = +∞ (see for instance [15] or [17]).

Observe now that the function δ 7→ α(δ) is an increasing function mapping (0, 1/2) onto

(0, 1). If α ∈ (0, 1) and if δ is the unique real number in (0, 1/2) such that α = α(δ) we set
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Fα = Eδ ∩K and we claim that the family (Fα)0<α<1 satisfies the conclusion of Lemma

4.7. This will be due to the fact that the sequence (mk) is sparse.

It is clear that dimP(Fα) ≤ dimP(Eδ) = α(δ) = α. So we just have to prove that

Hψα(Fα) > 0 for some suitable gauge function ψα. As in the proof of Proposition 4.3, we

use an appropriate probability measure m which is supported by Eδ ∩K.

We define m on the dyadic intervals by the following formulas.

• If n ∈ Ω, then

m(Iε1···εn) =

{
δm(Iε1···εn−1) if εn = 1

(1− δ)m(Iε1···εn−1) otherwise.

• If n ∈ {mk; k ≥ 1} or n ∈ {mk + 2; k ≥ 1}, then m(Iε1···εn−10) = m(Iε1···εn−1) and

m(Iε1···εn−11) = 0

• If n ∈ {mk + 1; k ≥ 1}, then m(Iε1···εn−11) = m(Iε1···εn−1) and m(Iε1···εn−10) = 0.

The last two parts of the definition ensure that m(K) = 1.

It is well known that, with respect to the measure m, the sequence (εj)j∈Ω is a sequence

of independent Bernoulli variables with m(εj = 1) = δ, j ∈ Ω. Moreover, if x ∈ K, and if

In(x) is the unique dyadic interval of the n-th generation that contains x, we have

m (In(x)) =
∏
j∈Ωn

δεj(x)(1− δ)1−εj(x).

Define

Xj(x) = −εj(x) log2(δ)− (1− εj(x)) log2(1− δ).

The random variables (Xj)j∈Ω are independent uniformly distributed with E(Xj) =

α(δ) = α and we have for any x ∈ K

− log2m (In(x)) =
∑
j∈Ωn

Xj(x) := Sn(x).

Let σ2 = V (Xj) and recall that the cardinal number of Ωn is un. The law of the iterated

logarithm ensures that dm-almost surely,

(7) lim inf
n→+∞

Sn − unα√
2un log log un

= −σ.

In particular, considering θ ∈ (0, 1) such that θ > 1/2, dm-almost surely, there exists

n0 ∈ N such that, for any n ≥ n0, Sn ≥ unα− uθn, namely

(8) m(|In(x)|) ≤ 2−unα+uθn .

Using the inequalities n ≥ un ≥ n− cnγ , this in turn yields

m(|In(x)|) ≤ |In(x)|α exp
(
d |log |In(x)||θ

)
for some positive constant d if θ also satisfies θ > γ.

Let Kδ be the set of points of K that satisfy (7) and let ψα(t) = tα exp
(
d |log t|θ

)
.

Equation (8) and the mass distribution principle ensure that Hψα(Kδ) > 0.
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On the other hand, if x ∈ Kδ, we have

lim
n→+∞

1

un

∑
j∈Ωn

εj(x) = δ.

Observing that
∑n

j=1 εj(x) =
∑

j∈Ωn
εj(x) + O (nγ) and that un ∼ n, we can conclude

that

lim
n→+∞

1

n

n∑
j=1

εj(x) = δ.

Finally, Kδ ⊂ Eδ and Hψα (Fα) = Hψα (Eδ ∩K) ≥ Hψα (Kδ) > 0.

5. Dirichlet series

5.1. Introduction. To end up this paper, we now deal with the multifractal analysis of

the divergence of Dirichlet series. Let us introduce the Hardy space of Dirichlet series

H2 =

g(s) =
∑
k≥1

akk
−s; ‖g‖2H2 =

∑
k≥1

|ak|2 < +∞

 .

A Dirichlet series g(s) =
∑

k≥1 akk
−s in H2 defines an holomorphic function in the half-

plane C1/2 =
{
s ∈ C; <e(s) > 1

2

}
. On the line <e(s) = 1

2 , the Dirichlet series may diverge

but the Cauchy-Schwarz inequality ensures that∣∣∣∣∣
n∑
k=1

akk
− 1

2
+it

∣∣∣∣∣� log(n+ 1)1/2‖g‖H2

for all t ∈ R and all n ∈ N∗. Moreover, a version of Carleson’s convergence theorem has

been obtained in [11] and in [16]: for almost all t ∈ R, the series
∑

k≥1 akk
− 1

2
+it converges.

Define, for t ∈ R,

β−DS(t) = lim sup
n→+∞

log
∣∣∣∑n

k=1 akk
− 1

2
+it
∣∣∣

log log n
= inf

({
β ∈ R ;

∣∣∣∣∣
n∑
k=1

akk
− 1

2
+it

∣∣∣∣∣� log(n+ 1)β

})

β+
DS(t) = lim inf

n→+∞

log
∣∣∣∑n

k=1 akk
− 1

2
+it
∣∣∣

log logn
= sup

({
β ∈ R ;

∣∣∣∣∣
n∑
k=1

akk
− 1

2
+it

∣∣∣∣∣� log(n+ 1)β

})
and consider, for β ∈ [0, 1/2], the associated sets E−DS(β, g), E+

DS(β, g), E−DS(β, g), E+
DS(β, g),

EDS(β, g).

Theorem 5.1.

(i) For all g ∈ H2 and all β ∈ [0, 1/2],

dimH
(
E−DS(β, g)

)
≤ 1− 2β and dimP

(
E+

DS(β, g)
)
≤ 1− 2β;

(ii) For quasi-all functions g ∈ H2, for all β ∈ [0, 1/2],

dimH
(
E−DS(β, g)

)
= 1− 2β;

(iii) There exists a function g ∈ H2 such that, for all β ∈ [0, 1/2],

dimH
(
EDS(β, g)

)
= dimP

(
EDS(β, g)

)
= 1− 2β.
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Unfortunately, the study of the pointwise behavior for Dirichlet series is more difficult

than for Fourier series (for instance, we do not have an analogue to Fejér’s kernel) and is

not a consequence of our general context (for more information on the problems arising in

the theory of Hardy spaces of Dirichlet series, the reader may consult [21] or [22]). Our

strategy to prove Theorem 5.1 is to compare the behavior of Dirichlet series with that of

Fourier integrals of L2-functions by a discretization argument (this idea comes from [16]).

An intermediate step will be to prove a corresponding result for Fourier integrals. The

construction of multifractal functions will use the work done in Section 4.

Let us introduce some terminology. Let F ∈ L2([0,+∞)). The Cauchy-Schwarz inequality

ensures that for any R > 0 and any t ∈ R,
∣∣∣∫ R0 F (u)eitudu

∣∣∣ ≤ R1/2‖F‖2. Define

β−FI(t) = lim sup
R→+∞

log
∣∣∣∫ R0 F (u)eitudu

∣∣∣
logR

β+
FI(t) = lim inf

R→+∞

log
∣∣∣∫ R0 F (u)eitudu

∣∣∣
logR

and the corresponding sets E−FI(β, F ), E+
FI(β, F ), E−FI(β, F ), E+

FI(β, F ), EFI(β, F ).

5.2. From Fourier series to Fourier integrals.

Lemma 5.2. Let f(z) =
∑

k≥0 akz
k ∈ H2(D) and define F ∈ L2([0,+∞)) by F (t) = ak

if t ∈ [k, k + 1). Let β > 0. There exists N ∈ N such that, for any n ≥ N , for any

t ∈ [−π, π) such that |Snf(eit)| ≥ nβ, then∣∣∣∣∫ R

0
F (u)eitudu

∣∣∣∣ ≥ 1

2
Rβ, ∀R ∈ [n, n+ 1).

Proof. It is clear that F ∈ L2([0,+∞)) and that ‖F‖L2([0,+∞)) = ‖f‖H2 .

If R ∈ [n, n+ 1), we may write∫ R

0
F (u)eitudu =

n∑
k=0

ak

∫ k+1

k
eitudu− an

∫ n+1

R
eitudu.

The last term tends to 0 uniformly in t ∈ [−π, π). Computing the integral, we get∫ R

0
F (u)eitudu =

n∑
k=0

ak
ei(k+1)t − eikt

it
+ o(1)

= Snf(eit)
eit − 1

it
+ o(1).

We conclude by observing that, for any x ∈ [−π/2, π/2),
∣∣ sinx
x

∣∣ ≥ 2
π >

1
2 . �

This lemma will be used in the following way. Modulo the natural identification of T
with [−π, π), for any β > 0, E−FS(β, f) ⊂ E−FI(β, F ) and E+

FS(β, f) ⊂ E+
FI(β, F ). In particu-

lar, the construction of multifractal functions for Fourier series will help us to construct

multifractal functions for Fourier integrals.
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5.3. From Dirichlet series to Fourier integrals.

Lemma 5.3. Let g(s) =
∑

k≥1 bkk
−s ∈ H2 and let us define G ∈ L2([0,+∞)) by G(t) =

bk(
log(k+1)−log(k)

)1/2 provided t ∈ [log k, log(k + 1)).

Let β > 0 and A > 0. There exists N ∈ N such that, for any n ≥ N , for any t ∈ [−A,A]

such that
∣∣∣∑n

k=1 bkk
− 1

2
+it
∣∣∣ ≥ (log n)β, then∣∣∣∣∫ R

0
G(u)eitudu

∣∣∣∣ ≥ 1

2
Rβ, ∀R ∈ [log n, log(n+ 1)) .

Proof. It is straightforward to check that ‖G‖L2([0,+∞)) = ‖g‖H2 . Moreover, as before, if

R ∈ [log n, log(n+ 1)),∫ R

0
G(u)eitudu =

n∑
k=1

bk(
log(k + 1)− log(k)

)1/2 eit log(k+1) − eit log k

it
+ o(1)

=

n∑
k=1

bk(log(1 + 1/k))1/2kit × eit log(1+1/k) − 1

it log(1 + 1/k)
+ o(1).

Taylor’s formula ensures that for any real number u,∣∣eiu − 1− iu
∣∣ =

∣∣∣∣−u2

∫ 1

0
eisu(1− s)ds

∣∣∣∣ ≤ |u|22
.

It follows that∣∣∣∣∣
∫ R

0
G(u)eitudu−

n∑
k=1

bk (log(1 + 1/k))1/2 kit

∣∣∣∣∣ ≤ o(1) +
|t|
2

n∑
k=1

|bk| (log(1 + 1/k))3/2

≤ o(1) +
|t|
2

n∑
k=1

|bk|
k3/2

.

On the other hand,∣∣∣(log(1 + 1/k))1/2 − k−1/2
∣∣∣ =

∣∣log(1 + 1/k)− k−1
∣∣

(log(1 + 1/k))1/2 + k−1/2
� k−3/2.

Using Cauchy-Schwarz inequality, we can conclude that∣∣∣∣∣
∫ R

0
G(u)eitudu−

n∑
k=1

bkk
− 1

2
+it

∣∣∣∣∣� o(1) + (1 + |t|)‖g‖H2

and the lemma follows easily. �

Remark 5.4. Going slightly further, we can give a new proof of a very important state-

ment in the theory of Hardy spaces of Dirichlet series: H2 may be embedded into the

invariant Hardy space H2
i (C1/2). Precisely, assume that g is a Dirichlet polynomial. Then

we have shown that∣∣∣∣∫ +∞

0
G(u)eitudu− g

(
1

2
− it

)∣∣∣∣� (1 + |t|)‖g‖H2 .
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Therefore, by Plancherel’s theorem,∫ 1

0

∣∣∣∣g(1

2
− it

)∣∣∣∣2 dt � ‖g‖2H2 +

∫ 1

0

∣∣∣∣∫ +∞

0
G(u)eitudu

∣∣∣∣2 dt
� ‖g‖2H2 + ‖G‖22
� ‖g‖2H2 .(9)

5.4. From Fourier integrals to Dirichlet series. We will also need to go in the reverse

direction.

Lemma 5.5. Let G ∈ L2([0,+∞)) and define g(s) =
∑

k≥1 bkk
−s ∈ H2 by

bk =

∫ log(k+1)

log k
G(u)eu/2du.

Let β > 0 and A > 0. There exists N ∈ N such that, for any n ≥ N , for any t ∈ [−A,A],

for any R ∈ [log(n), log(n+ 1)) such that
∣∣∣∫ R0 G(u)eitudu

∣∣∣ ≥ Rβ, then∣∣∣∣∣
n∑
k=1

bkk
− 1

2
+it

∣∣∣∣∣ ≥ 1

2
(log n)β.

Proof. We first show that g belongs to H2. We just write

+∞∑
k=1

|bk|2 =
+∞∑
k=1

∣∣∣∣∣
∫ log(k+1)

log k
G(u)eu/2du

∣∣∣∣∣
2

≤
+∞∑
k=1

∫ log(k+1)

log k
|G(u)|2du

∫ log(k+1)

log k
eudu = ‖G‖2L2([0,+∞)).

Moreover, and proceeding as above, if R ∈ [log n, log(n+ 1)),∣∣∣∣∣
∫ R

0
G(u)eitudu−

n∑
k=1

bkk
− 1

2
+it

∣∣∣∣∣
≤ o(1) +

n∑
k=1

∫ log(k+1)

log k

∣∣∣∣∣G(u)eitu −G(u)
eu/2

k1/2
eit log k

∣∣∣∣∣ du
= o(1) +

n∑
k=1

∫ log(k+1)

log k
|G(u)eu/2| ×

∣∣∣e(it− 1
2)u − e(it−

1
2) log k

∣∣∣ du
Observe that if log k ≤ u ≤ log(k + 1),∣∣∣e(it− 1

2)u − e(it−
1
2) log k

∣∣∣ =

∣∣∣∣∫ u

log k

(
it− 1

2

)
× e(it−

1
2)sds

∣∣∣∣
≤ (log(k + 1)− log k)×

∣∣∣∣it− 1

2

∣∣∣∣
≤ 1

k

(
|t|+ 1

2

)
.
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If follows that∣∣∣∣∣
∫ R

0
G(u)eitudu−

n∑
k=1

bkk
− 1

2
+it

∣∣∣∣∣ � o(1) + (|t|+ 1)
n∑
k=1

∫ log(k+1)

log k

|G(u)eu/2|
k

du

� o(1) + (|t|+ 1)

 n∑
k=1

(∫ log(k+1)

log k
|G(u)eu/2|du

)2
1/2

� o(1) + (|t|+ 1)‖G‖L2([0,+∞))

and the conclusion of the lemma follows easily. �

5.5. A localization lemma for Fourier integrals. The three above lemmas are useful

to transfer multifractal functions from one situation to another one. We need a last tool

to bound the dimensions. It is the exact analogue of Lemma 4.1 for Fourier integrals.

For a function F ∈ L2(R), we denote by F̂ or by F(F ) its Fourier transform F(F )(ξ) =∫
F (t)eitξdt, and by F(F ) its conjugate Fourier transform, so that FF(F ) = 2πF . We

also denote by FR the function 1[−R,R]F .

Lemma 5.6. Let G ∈ L2(R), R ≥ 2, t ∈ R such that |ĜR(t)| ≥ ‖G‖2 and let I be the

interval of size 1/R centred at t. Then

‖ĜR‖L2(I) ≥ δ
R−1/2

logR
|ĜR(t)|

for some constant δ independent of R, t and G.

Proof. Let w ∈ C∞(R) be a positive function with support in [−1, 1] such that 0 ≤ w ≤ 1,

w(0) = 1 and such that there exist two positive constants A and B such that, for all ξ ∈ R,

|ŵ(ξ)| ≤ Ae−B|ξ|1/2

(for the construction of such a function, we refer for instance to [1, Lemma 6]). We set

wI(x) = w
(

2(x−t)
|I|

)
which has support in I and satisfies

|ŵI(ξ)| ≤ C|I|e−D|ξ|
1/2|I|1/2 .

Let ρ = R+ γR(logR)2 for some large γ > 0 and define f1, f2 ∈ L2(R) by

F(f1) = 1[−ρ,ρ]F(ĜRwI)

f2 = ĜRwI − f1.

By Nikolskii’s inequality for Fourier integrals (see [20]),

‖f1‖∞ � ρ1/2‖f1‖2
� ρ1/2‖ĜRwI‖2
� ρ1/2‖ĜR‖L2(I).(10)

On the other hand, we may write

F(f2) =
(
1(−∞,−ρ) + 1(ρ,+∞)

)
GR ? F(wI)
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Now,∫ +∞

ρ
|GR ? F(wI)(ξ)|dξ ≤

∫ +∞

ρ

∣∣∣∣∫ R

−R
G(u)F(wI)(ξ − u)du

∣∣∣∣ dξ
≤

∫ +∞

ρ

(∫ R

−R
|G(u)|2du

)1/2(∫ R

−R
|F(wI)(ξ − u)|2du

)1/2

dξ

� ‖GR‖2R−1/2

∫ +∞

ρ
exp

(
−D|ξ −R|1/2R−1/2

)
dξ

� ‖GR‖2R1/2

∫ +∞

ρ−R
R

exp
(
−Du1/2

)
du

= ‖GR‖2R1/2

∫ +∞

γ1/2 logR
exp (−Dv) 2vdv

� ‖GR‖2R1/2 exp

(
−D

2
γ1/2 logR

)
≤ ‖G‖2

2

provided γ is large enough. The same is true for the integral
∫ −ρ
−∞. It follows that∥∥F(f2)

∥∥
1
≤ ‖G‖2. Hence,

(11) ‖f2‖∞ ≤
1

2π

∥∥F(f2)
∥∥

1
≤ ‖G‖2

2
≤ |ĜR(t)|

2
.

Since f1(t) + f2(t) = ĜRwI(t), we deduce from (10) and (11) that

‖ĜR‖L2(I) � ρ−1/2‖f1‖∞ ≥ ρ−1/2
(
|ĜR(t)| − ‖f2‖∞

)
≥ 1

2
ρ−1/2|ĜR(t)| � R−1/2

logR
|ĜR(t)|.

�

5.6. Proof of Theorem 5.1. We first work with Fourier integrals and we intend to show

that for any F ∈ L2([0,+∞)) and any β ∈ [0, 1/2],

dimP
(
E+

FI(β, F )
)
≤ 1− 2β and dimH

(
E−FI(β, F )

)
≤ 1− 2β

We can suppose β > 0 and it suffices to work with E+
FI(β, F ) ∩ [0, 1] and E−FI(β, F ) ∩ [0, 1].

For λ a dyadic interval of the j-th generation, we define

eλ(F ) =

(∫
3λ
|F̂2j (ξ)|2dξ

)1/2

.

By Lemma 5.6, E+
FI(β, F ) ⊂ F+(1

2 − β, F ). Since the sequence (eλ(F ))λ∈Λj satisfies∑
λ∈Λj

|eλ(F )|2 �
∥∥∥F̂2j

∥∥∥2

2
� ‖F‖22,

we deduce the result on the packing dimension of E+
FI(β, F ) ∩ [0, 1] from Proposition 2.2.

The proof for the Hausdorff dimension needs a more sophisticated tool. Define now

eλ(F ) = sup
2j≤R<2j+1

(∫
3λ
|F̂R(ξ)|2dξ

)1/2

.
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Let β ∈ (0, 1/2] and t ∈ E−FI(β, F ) ∩ [0, 1]. For any ε > 0, there exists R as large as we

want such that |F̂R(t)| ≥ Rβ−ε. Let j ≥ 1 such that 2j ≤ R < 2j+1. Then 3Ij(t) contains

the interval with center t and radius R−1. This implies, by Lemma 5.6,

ej(F, t)�
R−1/2

logR
Rβ−ε � 2−j(

1
2
−β+2ε).

Therefore, E−FI(β, F ) ∩ [0, 1] ⊂ F−
(

1
2 − β + 2ε, F ). To apply Proposition 2.2, we need to

prove the inequality
∑

λ∈Λj
|eλ(F )|2 � ‖F‖22 which can be obtained by writing

∑
λ∈Λj

|eλ(F )|2 =
∑
λ∈Λj

sup
2j≤R<2j+1

(∫
3λ
|F̂R(ξ)|2dξ

)
�
∫
R

sup
2j≤R<2j+1

|F̂R(ξ)|2dξ � ‖F‖22.

The last inequality is a consequence of the Carleson-Hunt theorem for Fourier integrals

(see [10, Chapter 6]).

We now come back to Dirichlet series and to the proof of Theorem 5.1. Let us begin with

point (i). Let g ∈ H2 and let G be associated to g by Lemma 5.3. If β > 0, the lemma

states

E−DS(β, g) ⊂ E−FI(β,G) and E+
DS(β, g) ⊂ E+

FI(β,G)

and the previous discussion gives the aforementioned bound on the dimension of E−DS(β, g)

and E+
DS(β, g). Now again, the case β = 0 which is not included in Lemma 5.3 is obvious.

Let us turn to point (iii) and to the construction of multifractal Dirichlet series. We begin

with the multifractal function f ∈ L2(T) given by Theorem 1.1. Applying successively

Lemma 5.2 and Lemma 5.5, we get g ∈ H2 such that, for all β ∈ (0, 1/2),

Hψβ
(
E+

DS(β, g)
)
> 0

for some gauge function ψβ satisfying ψβ(x) = o(xs) for any s < 1− 2β (see the details of

the proof of Theorem 1.1). We end up the proof as for Theorem 2.3 to conclude that if

0 < β < 1/2,

dimH
(
EDS(β, g)

)
= dimP

(
EDS(β, g)

)
= 1− 2β.

The key point is that dimH
(
E−DS(α, g)

)
≤ 1− 2α for α > β.

The values β = 0 and β = 1/2 need a different argument. The case β = 1/2 is an obvious

consequence of point (i) of the theorem. For the case β = 0, we can mention a version of

Carleson’s convergence theorem which says that the series
∑

k≥1 akk
− 1

2
+it is almost surely

convergent (see for example [11] or [16]).

It remains to prove point (ii) of Theorem 5.1 and to show that the set R of functions

g ∈ H2 such that for all β ∈ [0, 1/2], dimH
(
E−DS(β, g)

)
= 1 − 2β, is residual. We deduce

this from the existence of at least one function in R (namely the function given by point

(iii)), the density of Dirichlet polynomials, and a routine argument mimicking that of

Theorem 2.9. �
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5.7. An open question. Beyond H2, a theory of Hp-spaces of Dirichlet series is un-

der development. For p ≥ 1, Hp may be defined as the closure of the set of Dirichlet

polynomials for the norm

‖P‖pp = lim
T→+∞

1

T

∫ T

0
|P (it)|pdt.

It can be proved that, for any f(s) =
∑

k≥1 akk
−s ∈ Hp, for any t ∈ R and for any n ≥ 2,∣∣∣∣∣

n∑
k=1

akk
− 1

2
+it

∣∣∣∣∣� ‖f‖p(log n)1/p.

Do we have results similar to Theorem 5.1 for Hp? An obvious obstruction is that we do

not know whether Hp embeds into Hp
i (C1/2) (see (9)) when p is not an even integer.
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