Unsupervised Interpretable Pattern Discovery in Time Series Using Autoencoders - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Unsupervised Interpretable Pattern Discovery in Time Series Using Autoencoders

Kevin Bascol
Rémi Emonet
Elisa Fromont

Résumé

We study the use of feed-forward convolutional neural networks for the unsupervised problem of mining recurrent temporal patterns mixed in multivariate time series. Traditional convolutional autoen-coders lack interpretability for two main reasons: the number of patterns corresponds to the manually-fixed number of convolution filters, and the patterns are often redundant and correlated. To recover clean patterns, we introduce different elements in the architecture, including an adap-tive rectified linear unit function that improves patterns interpretability, and a group-lasso regularizer that helps automatically finding the relevant number of patterns. We illustrate the necessity of these elements on synthetic data and real data in the context of activity mining in videos.
Fichier principal
Vignette du fichier
sspr_kevin16.pdf (2.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01374576 , version 1 (30-09-2016)

Identifiants

  • HAL Id : hal-01374576 , version 1

Citer

Kevin Bascol, Rémi Emonet, Elisa Fromont, Jean-Marc Odobez. Unsupervised Interpretable Pattern Discovery in Time Series Using Autoencoders. The joint IAPR International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2016), Nov 2016, Merida, Mexico. ⟨hal-01374576⟩
243 Consultations
1707 Téléchargements

Partager

More