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Abstract

The aim of this paper is to solve numerically the inverse problem of determining the com-
plex refractive index of an electromagnetic medium from partial boundary field measurements
at a fixed frequency. The governing equations are the time-harmonic Maxwell equations formu-
lated in electric field in a two-dimensional bounded domain. We express the inverse problem
as the minimization of a cost function representing the difference between the measured and
predicted fields. Our numerical reconstruction algorithm combines the BFGS method and an
iterative process, called the Adaptive Eigenspace Inversion. The unknown complex coefficient is
expanded in terms of eigenfunctions of an elliptic operator. Both the eigenspace and the mesh
are iteratively adapted during the minimization procedure. Numerical experiments illustrate
the performance of the reconstruction for various configurations.

Keywords: Inverse medium problem, Maxwell’s equations, cost functional, minimization iterative
process, Adaptive Eigenspace Method, numerical reconstruction.

1 Introduction
The present paper deals with the numerical resolution of an electromagnetic inverse medium prob-
lem. More precisely, we consider the problem of determining the complex refractive index of a
medium, namely the dielectric permittivity (real part) and the electric conductivity (imaginary
part), from a finite number of boundary field measurements at a fixed frequency. The governing
equations are the time-harmonic Maxwell equations formulated in electric field in a two-dimensional
bounded domain. Such an electromagnetic inverse problem arises in various areas of science and
engineering with many applications, e.g. in medical imaging, geophysical exploration or non-
destructive testing. For instance, microwave imaging (electromagnetic high frequencies) is under
investigation for cancer screening or brain stroke detection (see Tournier et al [32, 33]). Numerical
methods that are able to highlight dielectric contrast between normal and possibly abnormal tissue
are of interest.

From a mathematical point of view, the considered inverse medium problem is severely ill-posed
and we refer the reader to the book [31] by Romanov and Kabanikhin. Indeed, coefficients of
elliptic problems (like the time-harmonic Maxwell problem) in a bounded domain are uniquely
∗e-mail: maya.de-buhan@parisdescartes.fr
†e-mail: marion.darbas@u-picardie.fr
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determined by the entire Dirichlet-to-Neumann map on the whole boundary of the domain (e.g.
Ola, Païvärinta and Somersalo [26], Caro, Ola and Salo [12], Kenig, Salo and Uhlman [24] and
references therein). A typical problem of this type is Calderón’s inverse conductivity problem [11].
Nevertheless, it is legitimate to search for reconstruction methods using partial information on the
Dirichlet-to-Neumann map, which is often the case in practice. Several analytical and numerical
studies have been devoted to the detection of inhomogeneities in the electromagnetic parameters
of a body. Ammari et al (e.g. [2, 3]) have introduced asymptotic methods to reconstruct small
amplitude perturbations in coefficients from measurements on a part of the boundary. This yields
constructive numerical methods for the localization of electromagnetic defects (e.g. Ammari et
al [1], Asch and Mefire [4], Darbas and Lohrengel [15]). Concerning minimization approaches,
Beilina et al (e.g. [7, 8]) have developed an adaptive finite element method based on a posteriori
estimates. Other successful methods have been proposed in the literature for the numerical solution
of the electromagnetic scattering medium problem. Data are in this case measurements of the far-
field pattern of the scattered field. Without being exhaustive, we can mention among them the
linear sampling method of Haddar and Monk [21], a preconditioned Newton method initiated by
Hohage [23], or a regularized recursive linearization method used by Bao and Li [5].

Here, we propose to formulate the inverse medium problem as the minimization of a cost function
representing the difference between the measured and predicted fields. To solve the minimization
problem, we use a gradient-based quasi-Newton algorithm. The main goal of this paper is to present
a reconstruction method for the unknown complex refractive index of the medium from boundary
measurements. The idea is to consider the space spanned by some eigenvectors of the Laplacian
operator as the approximation space for the unknown coefficient. Then, the method uses an iterative
process to adapt the mesh and the basis of eigenfunctions to the previous approximation during the
minimization procedure. This method is called Adaptive Eigenspace Inversion. We compare it with
a more standard choice given by a linear piecewise approximation of the coefficient. The Adaptive
Eigenspace Inversion (AEI or referred sometimes as AI) method has been initially proposed for
the viscoelastic system by de Buhan and Osses [9]. It has been successfully applied to an inverse
scattering problem for the wave equation in a paper of de Buhan and Kray [10]. In both cases,
time evolution problems of hyperbolic type are treated. The geometric optics condition of Bardos-
Lebeau-Rauch [6], which allows that the associated inverse problems are uniquely solved, is satisfied.
More precisely, the part of the boundary where the measurements (namely the normal derivative
of the solution) are recorded, and the final observation time control geometrically the domain in
the sense of [6]. The application of the AEI method to time-harmonic problems is a new area
of research. This is the aim of the present work in electromagnetics, and also the one of Grote,
Kray and Nahum which study the resolution of an inverse problem for the Helmholtz equation.
In [19, 20], they proposed to combine a new AEI method and a frequency stepping process where
the frequency of the incident field is iteratively increasing, with successful results. In the inverse
problem we consider in this paper, we restrict ourselves to a fixed frequency. This is motivated by
biomedical applications that we have in mind [32, 33]. Biological tissues are dispersive [18], that
is to say their dielectric properties are frequency-dependent. We are not interested in finding this
dependency law but only in discriminating between healthy and abnormal tissues. This can be
achieved with a single frequency and changing the frequency does not provide more information.

The remainder of the paper is organized as follows. In Section 2, we present the forward problem
under consideration. The formulation of the inverse problem is addressed in Section 3. It is formu-
lated as a nonlinear optimization problem. The key-point is the evaluation of the gradient of the
cost function. We propose to use the adjoint method. In Section 4, we describe the reconstruction
method based on the AEI method from a methodological point of view. Then, in Section 5, various
numerical results are reported to discuss the advantages and limits of the method, with a particular
interest in discontinuous coefficients. Finally, we give some concluding remarks.
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2 The forward problem
Let Ω be a bounded domain in R2 with a smooth boundary Γ := ∂Ω. We denote by µ0 and ε0 the
permeability and the permittivity of the vacuum. We assume that Ω is filled with a non-magnetic
(i.e. constant permeability µ = µ0) and isotropic medium of dielectric permittivity ε = ε(x) and
electrical conductivity σ = σ(x), x ∈ Ω. We consider the system of 2D Maxwell equations

∇× E = −∂tB, ∇×H = ∂tD + J , in Ω, (2.1)

where (E,H) are the electric and magnetic fields, (B,D) are the magnetic and electric flux densities
and J represents the electrical current density. Notice that in two dimensions, the vector rotational
operator is defined for a scalar function ϕ by ∇× ϕ = (∂2ϕ,−∂1ϕ)t, whereas the scalar rotational
operator acting on a vector field v = (v1, v2) is given by ∇ × v = ∂1v2 − ∂2v1. We assume linear
and isotropic constitutive relations

B = µ0H, D = εE, and J = σE. (2.2)

The wave equation for the electric field with no source term can be derived from (2.1) and (2.2)
by eliminating the magnetic field as

∇× (∇× E) + µ0(ε∂2
t E + σ∂tE) = 0.

Considering the harmonic dependence in time of the form E(t,x) = <(e−iωtE(x)), the electric
field E satisfies the following equation in the frequency domain

∇× (∇×E)− k2κE = 0, in Ω, (2.3)

where k = ω
√
ε0µ0 is the wavenumber and the function

κ(x) =
1

ε0

(
ε(x) + i

σ(x)

ω

)
, x ∈ Ω, (2.4)

is the refractive index of the medium. We assume ε, σ ∈ L∞(Ω) and that there are constants
ε, ε > 0, σ, σ > 0 such that ε ≤ ε(x) ≤ ε and σ ≤ σ(x) ≤ σ a.e. in Ω. Let n = (n1, n2)t denote the
outward unit normal to Γ. We impose the boundary condition

(∇×E)× n = g, on Γ. (2.5)

For a scalar function ϕ, we have ϕ × n = (−ϕn2, ϕn1)t. We denote by E[κ] the solution of (2.3)-
(2.5) associated with the refractive index κ. Existence and uniqueness results on the boundary-value
problem (2.3)-(2.5) can be found in [14, 27]. We introduce the following functional space

H(curl; Ω) = {E ∈ L2(Ω)2|∇ ×E ∈ L2(Ω)}.

Assume that g ∈ L2(Γ)2, the variational formulation of the problem (2.3)-(2.5) is given by Find E ∈ H(curl; Ω) such that∫
Ω

[
(∇×E)(∇×ψ)− k2κE ·ψ

]
dx =

∫
Γ

g ·ψds, ∀ψ ∈ H(curl; Ω).
(2.6)

Discretization and numerical solution of the forward problem will be mentioned in Section 5.
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3 Formulation of the inverse problem
The inverse medium problem that interests us reads

(P)

 Given a frequency ω > 0,
reconstruct the exact coefficient κex(x), x ∈ Ω, defined by (2.4),
from the boundary measurement Eobs × n := E[κex]× n on Γ0,

where Γ0 is a part of the boundary Γ including the case Γ0 = Γ. Consequently, we recover the di-
electric permittivity ε(x) and the electrical conductivity σ(x), x ∈ Ω, of the medium. We formulate
the inverse problem as a minimization problem. We solve it using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) iterative algorithm [28] (see also (5.3) for the sketch of the algorithm). This method
of quasi-Newton type requires the computation of the gradient of the cost function with respect to
the parameter at each iteration. The gradient is efficiently evaluated using the adjoint method.

3.1 A minimization problem
Problem (P) is written as an optimization problem, namely it is replaced by the minimization of
the following functional

J(κ) =
1

2

∫
Γ0

|E[κ]× n−Eobs × n|2ds, (3.1)

where E[κ]|Γ0
×n is computed by solving the forward problem (2.3)-(2.5) at a fixed frequency ω > 0

for a given refractive index κ and a boundary data g, and Eobs|Γ0
×n is the measured electric field.

The functional J represents the error between the observed electric field and that predicted by
Maxwell equations. The minimization problem

min
κ∈L∞(Ω)

J(κ) (3.2)

is solved by using the BFGS algorithm. The Hessian of the cost function J is approximated by
means of the gradient of J . The functional and its gradient have to be computed within each
iteration step.

3.2 Computation of the gradient using the adjoint method
In this section, we derive an expression of the derivative of the cost function J with respect to the
coefficient κ in a given arbitrary direction δκ. The directional derivative of J is defined by

DκJ(κ)δκ = lim
t→0

J(κ+ tδκ)− J(κ)

t
.

We introduce δE := δE[κ, δκ] the solution of the following linearized problem{
∇× (∇× δE)− k2κδE = k2δκE[κ], in Ω,
(∇× δE)× n = 0, on Γ.

(3.3)

We have E[κ+ tδκ] = E[κ] + tδE + o(t2). We obtain

DκJ(κ)δκ = lim
t→0

1

2t

[∫
Γ0

(|(E[κ+ tδκ]−Eobs)× n|2 − |(E[κ]−Eobs)× n|2)ds

]
= lim

t→0

1

t

[∫
Γ0

t<
(

((E[κ]−Eobs)× n)(δE× n)
)
ds+

1

2

∫
Γ0

t2|δE× n|2ds
]

= <
(∫

Γ0

((E[κ]−Eobs)× n)(δE× n)ds
)
.

(3.4)
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The adjoint state method allows to simplify this expression. Let F be a test function. The varia-
tional formulation of the linearized equation (3.3) is given by

k2

∫
Ω

δκE[κ] · Fdx =

∫
Ω

(
∇× (∇× δE)− k2κδE

)
· F dx.

By integrating by parts the right-hand side of the previous formulation and using the boundary
conditions satisfied by δE, we obtain

k2

∫
Ω

δκE[κ] · Fdx =

∫
Ω

(
∇× (∇× F)− k2κF

)
· δEdx

−
∫

Γ

((∇× δE)× n) · F ds+

∫
Γ

((∇× F)× n) · δE ds

=

∫
Ω

(
∇× (∇× F)− k2κF

)
· δEdx +

∫
Γ

((∇× F)× n) · δE ds.

Next, we choose F := F[κ] the adjoint variable of δE satisfying

∇× (∇× F)− k2κF = 0, in Ω, (3.5)

with the boundary condition

(∇× F)× n =

{
((E[κ]−Eobs)× n)× n, on Γ0,

0, on Γ \ Γ0.
(3.6)

We get

k2

∫
Ω

δκE[κ] · F[κ]dx = −
∫

Γ0

((E[κ]−Eobs)× n)(δE× n)dx.

Consequently, the differential (3.4) of the functional J is given by

DκJ(κ)δκ = −k2<
(∫

Ω

δκE[κ] · F[κ]dx
)
. (3.7)

At each step of the algorithm, the computation of the gradient needs to solve the forward problem
(2.3)-(2.5) and the associated adjoint problem (3.5)-(3.6) for the coefficient κ in order to obtain the
variables E and F respectively.

In practice, we perform multiple observations Ejobs, 1 ≤ j ≤ M , of the electric field on Γ0 at a
fixed frequency ω. Each measurement Ejobs is associated with the boundary data gj . Then, we can
simply define the functional

JM (κ) =
1

2

M∑
j=1

∫
Γ0

|(Ej [κ]−Ejobs)× n|2ds, (3.8)

where the electric field Ej is solution to the problem{
∇× (∇×Ej)− k2κEj = 0, in Ω,
(∇×Ej)× n = gj , on Γ.

(3.9)

We have the following expression of the gradient in the direction δκ

DκJ
M (κ)δκ = −k2

M∑
j=1

<
[∫

Ω

δκEj [κ] · Fj [κ]dx

]
, (3.10)
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with Fj satisfying the adjoint problem
∇× (∇× Fj)− k2κFj = 0, in Ω,

(∇× Fj)× n = ((Ej [κ]−Ejobs)× n)× n, on Γ0,

(∇× Fj)× n = 0, on Γ \ Γ0.

(3.11)

In the sequel, we consider synthetic data Ejobs, 1 ≤ j ≤ M (which are obtained by the numerical
resolution of the forward problem and are created to simulate the real data). This will be precised
in Section 5.

4 The Adaptive Eigenspace Inversion method
In this section, we describe the reconstruction procedure used to solve (P). It is based on the AEI
method. The originality of the method comes from the parametrization space. Instead of looking
for the value of the unknown coefficient κ at each node of the mesh, it is projected first in the basis
of the eigenvectors of the Laplacian operator. Then, an iterative process is applied to adapt both
the mesh and the basis.

4.1 Choice of the coefficient parametrization
The unknown coefficient κex is a function of x in Ω. In order to numerically recover κex in Ω,
we have first to choose a discretization space. A natural choice would be to use the P1 Lagrange
basis functions (ψ`)1≤`≤N with N the number of internal nodes of the mesh. In the minimization
method, the approximate coefficient κN is decomposed under the form

κN (x) = κb(x) +

N∑
`=1

d`ψ`(x), x ∈ Ω, (4.1)

where the function κb is a lifting of the boundary value of κex, assumed to be known (and not
necessarily constant), obtained as the solution of the following problem:{

−∆κb = 0, in Ω,

κb = κex, on Γ.

The unknowns in (4.1) are the complex values d` for ` = 1 to N . At each node of the computational
domain, there are two degrees of freedom: the real and the imaginary parts of d`. The dimension
of the minimization space is thus equal to 2N .

In our method, we propose another basis. We look for an approximation κL of the exact
coefficient κex of the form

κL(x) = κb(x) +

L∑
`=1

κ`φ`(x), x ∈ Ω, (4.2)

where φ`, 1 ≤ ` ≤ L, are the L first eigenfunctions of the Laplacian operator. The function φ`,
1 ≤ ` ≤ L, is solution to the following eigenvalue problem{

−∆φ` = λ`φ`, in Ω,
φ` = 0, on Γ,

(4.3)

with λ` the corresponding eigenvalue. One advantage of this approach is to decouple the mesh size
N and the dimension of the minimization space (size 2L with L� N). We will give in Section 5.1
a method to find the dimension L of the basis. In Section 5.2, a numerical comparison is drawn
between these two parametrizations.
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4.2 Adaptation of the basis
We propose an adaptive method to improve the accuracy of the reconstruction. This iterative
process works for both continuous (varying) coefficients (see Figure 9) and discontinuous coefficients.
In the latter case, it allows to efficiently capture the discontinuity lines. In the sequel, we focus
particularly on such coefficients. The adaptive method consists in four steps.

Step 1: We choose a parametrization for the coefficient, either (4.1) or (4.2). We solve the mini-
mization problem (3.2) using the BFGS algorithm. We then compute a first approximate
coefficient, denoted by κ(1)

L1
, in the initial mesh.

Step 2: The information contained in the approximation κ
(1)
L1

is used both to adapt the mesh and
to construct another basis that better represents the coefficient. The principle of the basis
adaptation is the following: we look for the coefficient κ(2)

L2
− κb in the space spanned by the

L2 first eigenfunctions (φ`)1≤`≤L2 of an elliptic operator, that is

κ
(2)
L2

(x) = κb(x) +

L2∑
`=1

κ(2),`φ`(x), with
{
−∇ · (A(2)∇φ`) = λ`φ`, in Ω,
φ` = 0, on Γ,

(4.4)

where the matrix function is computed from the knowledge of the first iterate κ(1)
L1

such that

A(2)(x) =
1

max{|∇κ(1)
L1

(x)|, η}
Id, x ∈ Ω.

The matrix Id is the identity matrix. The parameter η > 0 is small such as η = 10−3 and
allows the denominator of A(2)(x) not to vanish. By considering this new elliptic operator, the
variations of the eigenfunctions are concentrated in the regions where the coefficient κ(1)

L1
varies,

in particular close to the discontinuities of κex (see Figure 2). Results on the localization and
exponential decay of eigenfunctions of elliptic operators car be found for instance in [16, 30].
We solve the minimization problem (3.2) using the BFGS algorithm to compute κ(2)

L2
.

Step 3: We search the coefficient κ(3)
L3

such that

κ
(3)
L3

(x) = κb(x) +

L3∑
`=1

κ(3),`φ`(x), where

{
−∇ · (A(3)∇φ`) = λ`φ`, in Ω,

φ` = 0, on Γ,

with the choice
A(3)(x) =

1

max{|∇κ(2)
L2

(x)|2, η}
Id, x ∈ Ω.

Here again, the BFGS method is applied to solve the minimization problem.

Step 4: In the last step, we search the coefficient κ(4)
L4

such that

κ
(4)
L4

(x) = κb(x) +

L4∑
`=1

κ(4),`φ`(x), where

{
−∇ · (A(4)∇φ`) = λ`φ`, in Ω,

φ` = 0, on Γ,

and A(4) is chosen following an anisotropic criterion. The idea is to take into account the
orientation of the discontinuity lines of κex and to accord a preference to variations of the
basis functions in the direction of its gradient. To do that, as presented in Figure 1, we take a
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new orthonormed system (x, X1, X2) whose first axis is locally oriented by the gradient of κ(3)
L3

and we define the rotation matrix P as follows:

P (x) =
1

|∇κ(3)
L3

(x)|


∂κ

(3)
L3

∂x1
(x) −

∂κ
(3)
L3

∂x2
(x)

∂κ
(3)
L3

∂x2
(x)

∂κ
(3)
L3

∂x1
(x)

 .

In the new system, we choose to give more weight to the direction of the gradient, by setting:

A(4)(x) =
1

max{|∇κ(3)
L3

(x)|2, η}
P (x)C(x)P−1(x),

with

C(x) =

 1

max{|∇κ(3)
L3

(x)|2, η}
0

0 1

 .

0

x2

x1

X1
X2

x

discontinuity line of κ(3)
L3

∇κ(3)
L3

Ω

Figure 1 – Illustration of the change of coordinate system for the anisotropic case (Step 4 of the
AEI method).

Notice that at each step s, we increase the power q of the norm of the gradient in the definition
of the matrix A(s): we start from q = 0 at Step 1 (in that case, A(1) = Id and the associated elliptic
operator is the Laplacian) to q = 4 in the direction of the gradient at Step 4. This process allows
to refine increasingly the reconstrution of the coefficient κex. Furthermore, at each step, we use the
solution obtained at the previous step to adapt the mesh. We consider a classical mesh adaptation
algorithm. It is based on the Hessian of the solution κ

(s)
Ls

, s ∈ J1, 3K. It concentrates the nodes
of the mesh where the solution varies to decrease the approximation error without increasing the
computational time [17]. The accuracy of the adaptative eigenspace basis is illustrated in Figure 2.
The real part of the exact coefficient is presented in Figure 13(a). For s ∈ J1, 4K, we project the
exact coefficient in the space spanned by the Ls = 49 first eigenfunctions of the corresponding
elliptic operator. At this stage, the choice Ls = 49, s ∈ J1, 4K, is an arbitrary one. The aim is to
provide an illustration of the efficiency of the AEI method. We give in Section 5.1 (see formula
(5.4)) a method to automatically fix Ls and the value can be different from a step to another.

In Figure 2, we report the mesh obtained at each step, the behavior of the first and the 26th
eigenfunctions, and the projection of the exact coefficient in the successive eigenspaces. The pro-
jection error in L2-norm is efficiently decreased during the process.
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Step 1 Step 2 Step 3 Step 4

Mesh

φ1

φ26

<(κb +

49∑
`=1

(κex, φ`)φ`)

Projection error 1.30% 0.56% 0.19% 0.06%

Figure 2 – At each step: the adapted mesh, the eigenfunctions φ1 and φ26, and the projection of
the exact coefficient <(κex) (cf. Figure 13(a)) in the corresponding basis.
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5 Numerical results
In this section, we discuss the numerical solution of the inverse medium problem (P) by using the
AEI method. We reconstruct the complex refractive index κex of the medium from synthetic noisy
data. First, we describe the data set and the discretized version of the AEI method. Secondly, we
perform only the Step 1 of the method to compare the coefficient parametrizations (4.1) and (4.2).
Finally, we present the reconstruction of the exact coefficient κex via the complete iterative process
for different configurations.

5.1 Description of data driven simulations and implementation
The domain Ω is the unit circle. The partition of the boundary is illustrated in Figure 3(a). The
observations are collected on the boundary Γ0 := {(cos(t), sin(t)), t ∈ [γπ, 2π]} with the parameter
γ ∈ [0, 2[. We consider full data in the case γ = 0 and limited-view ones otherwise. We look for
different types of coefficients κex :

• Continuous functions of x.

• Piecewise constant coefficients:

κex(x) =

{
κi if x ∈ ωi, i ∈ I a finite subset of N,
κb otherwise,

where κi, i ∈ I, and κb are complex constants. The inhomogeneities of the medium are
supported in the subdomains ωi ( Ω satisfying ωi ∩ ωj = ∅, ∀i 6= j.

Ω

Γ0

Γ \ Γ0

(a) Observation boundary Γ0. (b) Triangular mesh.

Figure 3 – Computational domain.

Synthetic noisy data

We work with synthetic data. Let 1 ≤ j ≤M , M ∈ N∗. We take incident plane waves

Ejinc(x) = η⊥j e
ik
√
κbηj ·x, (5.1)

of wave vector ηj = (cos(2(j−1)π/M), sin(2(j−1)π/M))t. The vector η⊥j is a unit vector orthogonal
to ηj and κb a complex constant that characterizes the reference background medium. The square-
root

√
κb stands for the classical complex square-root with branch-cut along the negative real axis.

At fixed frequency ω, recall that the wavenumber k is equal to k = ω
√
ε0µ0 with the permeability
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and the permittivity of the vacuum µ0 = 4π 10−7H.m−1 and ε0 = 8.854187 10−12F.m−1. Examples
of such waves (5.1) are illustrated in Figure 4. Incident waves are attenuated by the dissipative
medium properties.
The synthetic data Ej are obtained by solving the forward problem (2.3)-(2.5) with the exact
coefficient κex and the boundary data gj := (∇×Ejinc)× n. We consider a triangular mesh of the
computational domain Ω.

We adopt Nédélec edge elements of order 1 [29] which give natural approximation spaces of
H(curl; Ω). The basis functions are associated with the edges of the mesh. To avoid the inverse
crime [14], we use Nédélec finite elements of different orders for the numerical solution of the
direct and the inverse problems. Furthermore, to model possible experimental errors, we can add
a Gaussian noise as

Ejobs(xi) := (1 + α rand(xi))E
j(xi), (5.2)

where xi denotes the vertex i of a given discretization of the boundary Γ0, rand gives uniformly
distributed random number in [−1, 1], and α is the level of noise. Note that the model of noise is a
multiplicative noise and not an additive one. Our choice is motivated by Equation (3.7) page 134
in [13]. The input data for the inverse problem are thus the M sets (Ejobs,g

j), j = 1, . . . ,M .

(a) j = 7, ω = 2π108Hz,
κb = 1 + i

(b) j = 13, ω = 6π108Hz,
κb = 1 + i/3

(c) j = 2, ω = 10π108Hz,
κb = 1 + 0.2i

Figure 4 – Incident waves used to illuminate the domain.

Broyden-Fletcher-Goldfarb-Shanno Algorithm

The BFGS algorithm is an iterative method for solving the unconstrained nonlinear optimization
problem of a functional J(κ).

From an initial guess κ0 and an approximate Hessian matrix H0 = Id, the following steps are
repeated until κk converges to the solution. For k ≥ 0:

• Find a descent direction dk by solving Hkdk = −DκJ(κk).

• Perform a line search to find an acceptable stepsize αk in the direction found in the first step,
then update

κk+1 = κk + αkdk.

• Set yk = DκJ(κk+1)−DκJ(κk) and zk = αkdk.

• Update

Hk+1 = Hk +
yky

t
k

ytkzk
− Hkzkz

t
kHk

ztkHkzk
. (5.3)

Convergence can be checked by observing the norm of the gradient.
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Implementation of the reconstruction method

Let us now describe the implementation of the reconstruction method. At each step s ∈ J1, 4K of the
adaptive process, we solve the minimization problem (3.2) iteratively by the BFGS algorithm with
a tolerance of ε. The initial guess at Step s = 1 for the inverse problem is the coefficient κ := κb
that represents an a priori medium. Next, the initial guess at Step s ∈ J2, 4K is the approximate
coefficient κ(s−1) computed at the previous step. The eigenvalue problems are solved by using the
toolbox included in FreeFem++ [22]. These tools are based on the library Arpack++ which
implements the "Implicit Restarted Arnoldi Method" (IRAM) combining Arnoldi factorizations
with an implicitly shifted QR method [25]. For the mesh adaptation, we pay a special attention to
have the more refined mesh but without increasing the total number of vertices.

The number L of eigenfunctions used in the expansion (4.2) is automatically fixed in the following
way. At each step s of the AEI method, we start with L = 1 and we increase it from 10 to 10. We
stop when adding 10 eigenfunctions to the basis does not allow to decrease significantly the value
of the functional JM . Thus, we set Ls equal to the first value L such that the following stopping
criterion is met:

JM (κ
(s)
L )− JM (κ

(s)
L+10)

JM (κ
(s)
L )

< δ, (5.4)

where δ > 0 could depend on the level of noise α if it is known a priori.
At each iteration of BFGS, the computation of the gradient (3.10) needs the solution of the

forward problem (2.3)-(2.5) and the adjoint problem (3.5)-(3.6). To this end, we choose Nédélec
edge elements of order 0, and not of order 1 used to generate the data. We solve the 2M problems
in parallel (thanks to MPI). Note that the unknown coefficient is not defined on the same mesh
used to solve the state and adjoint problems. Table 1 gathers the numerical values used for all the
following examples, unless specified otherwise where appropriate.

ω γ M α ε δ
2π108 Hz 0.1 16 0 10−3 10−3

Table 1 – Fixed values in the remaining of the Article (unless specified otherwise).

The complete numerical procedure for solving the inverse medium problem is the following:

AEI algorithm

• At fixed frequency ω, generate the synthetic noisy data Ejobs (5.2), 1 ≤ j ≤M , on the boundary
Γ0 := {(cos(t), sin(t)), t ∈ [γπ, 2π]}.

• AEI steps: for s ∈ J1, 4K (Step s, see Section 4.2)

– If s > 1 then adapt the mesh with respect to κ(s−1)
Ls−1

.

– Fix L = 1. While the stopping criterion (5.4) is not satisfied,
∗ Apply the BFGS algorithm with a tolerance of ε.

Initialization: κ(s)
L =

{
κb if s = 1,

κ
(s−1)
Ls−1

otherwise.
Expand the coefficient in the space spanned by the L first eigenfunctions of the
elliptic operator (associated with Step s).

At each iteration n:
Solve M forward problems in parallel.
Solve M adjoint problems in parallel.
Compute the gradient (3.10) of the cost functional JM .

12



∗ Increase L = L+ 10.

– Set Ls = L.

• Output: κ(4)
L4

.

5.2 Coefficient parametrization: P1 versus eigenspace method
In this section, we numerically compare the parametrizations (4.1) and (4.2) in the configuration
where the exact coefficient is defined by

κex(x) =

{
2 + 2i if x ∈ ω0,
1 + i otherwise, (5.5)

with the ellipse ω0 := {(x1, x2) ∈ R2|(x1 − 0.2)2 + 0.7(x2 + 0.1)2 ≤ 0.09}. Dielectrical permittivity
ε and electric conductivity σ are given by piecewise constant functions with the same support but
different values, namely

ε(x) =

{
2ε0 if x ∈ ω0,
ε0 otherwise, and σ(x) =

{
2ωε0 if x ∈ ω0,
ωε0 otherwise.

To carry out the comparison, we perform only the Step 1 of the method by varying different
parameters (such as the number of observations, the boundary Γ0 of observation, etc). The relative
error in L2−norm on the exact coefficient κex is defined by∫

Ω
|κex − κ(1)

L1
|2dΩ∫

Ω
|κex|2dΩ

,

where κ(1)
L1

is the numerical reconstructed coefficient at the end of Step 1.

Projection error

First, we compare the projection error on the coefficient κex (5.5) using the parametrizations (4.1)
and (4.2) with respect to the dimension, setting L = N . Results are reported on Figures 5 and
6. The two methods allow a good representation of the exact coefficient and the projection error
decreases with the dimension. We obtain errors equal to 0.22% and 0.07% taking L = N = 1688
respectively for the P1 and the eigenspace basis (cf. Figure 5). Thus, the eigenspace approach
provides more accurate contours of the inclusion than the P1 basis (cf. Figure 6).

Convergence of the BFGS algorithm

We study the convergence of the BFGS algorithm for the minimization of the functional JM
(cf. (3.8)). We consider the same number of degrees of freedom in both parametrizations. We
fix N internal mesh nodes for the classical P1 basis and L1 eigenvectors for the eigenspace method,
with L1 = N = 49. The BFGS tolerance is fixed equal to ε = 10−4. We report on Figure 7 the
history of the relative norm r := ‖DκJ

M (κ)‖l2/‖DκJ
M (κb)‖l2 in logarithm scale with respect to

the number n of iterations. Here, κ is the approximate coefficient at iteration n. The convergence
is faster for the eigenspace approach than for the P1 basis (135 iterations against 260).
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Figure 5 – Comparison of two parametrizations to represent the unknown coefficient κex. Projection
error in L2-norm with respect to the dimension.

Influence of the parameter set: full or limited-view data, number of observations, level
of noise.

We apply the Step 1 of the method for different configurations. We study the influence of the
parameter set on the relative error between the exact and reconstructed coefficients. Results are
reported in Table 2. Recall that the fixed values are given in Table 1. First, we vary the length of
the boundary Γ0 on which the observations are recorded: full-data (γ = 0, i.e. Γ0 = Γ) to limited-
view data (γ = 1.75, i.e. Γ0 := {(cos(t), sin(t)), t ∈ [1.75π, 2π]}). As expected, errors increase
with partial boundary measurements and remain under 3.29%. Then, we change the number of
observations. Performance of Step 1 is not very sensitive to this parameter. The value M = 16
seems to be quasi-optimal for the eigenspace approach and taking M superior to 16 does not really
improve accuracy. The P1 basis is slightly unstable with respect to this parameter. Finally, we
add a Gaussian noise of level α, where α is varying between 0.005 and 0.05 (i.e. 0.5% to 5%). The
approximation of the coefficient κex is less precise when the level of noise increases. But here again,
the inclusion ω0 is localized in each case.

γ P1 Eigenspace M P1 Eigenspace α P1 Eigenspace
0 1.58% 1.39% 4 1.37% 1.55% 0.005 1.47% 1.45%

0.25 1.4% 1.69% 8 1.33% 1.43% 0.01 1.62% 1.34%
1 2% 1.98% 16 1.46% 1.39% 0.02 1.77% 1.35%

1.75 3.29% 2.97% 32 1.61% 1.38% 0.05 2.7% 2.62%

Table 2 – Relative errors in L2 norm between the exact and reconstructed coefficients with respect
to different parameters: full or limited-view data (parameter γ), the number of observations M ,
and the level of noise (parameter α). N = L1 = 49.

Now, we test the effect of the frequency and also of the dimension of the minimization space.
In the latter comparison, we fix L1 = N . Errors are reported in Table 3. Whatever the frequency
and the dimension are, errors are similar. They are under 2%.

We can conclude that the Step 1 of the AEI method provides a first reasonable approximation
of the exact coefficient κex independently of the data set and with a slight advantage for the
eigenspace approach. In the considered example, it allows the localization of the zone where the
electromagnetic coefficients vary. These approximate coefficients are very good initial guesses for
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(a) Real part of the exact coefficient κex (5.5), (center) 2D view, (right) 3D
view.

(b) Parametrization using P1 Lagrange finite elements: (left) a mesh
with 107 interior nodes, (center) the projection of <(κex) in 2D view,
(right) corresponding 3D view. Relative projection error in L2-norm
= 1.0%.

(c) Parametrization using the 107 first eigenfunctions of the Laplacian operator:
(center) projection of <(κex) in 2D view, (right) corresponding 3D view. Relative
projection error in L2-norm = 0.6%.

Figure 6 – Comparison of the two parametrizations to represent the coefficient κex.

ω P1 Eigenspace L1 P1 Eigenspace
18π107 Hz 1.3% 1.44% 49 1.46% 1.4%
2π108 Hz 1.46% 1.4% 228 1.72% 1.54%
4π108 Hz 1.54% 1.35% 516 1.85% 1.61%
8π108 Hz 1.42% 1.64% 925 1.82% 1.78%

Table 3 – Relative errors in L2 norm between the exact and reconstructed coefficients with respect
to the frequency and to the dimension L1 (L1 = N) of the minimization space.

the iterative process. We will see in the next section that the further steps of the AEI method
perform an accurate reconstruction in both form and values.

15



0 50 100 150 200 250 300
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iteration n

lo
g
1
0
(r

)

 

 

P1
Eigenfunctions

Figure 7 – Convergence of the BFGS minimization algorithm (Step 1 of the AEI method): decrease
of the gradient norm.

5.3 Numerical reconstruction by the Adaptive Eigenspace Method
In this section, we present the numerical reconstruction for various configurations. The inhomoge-
neous medium is first described as a space continuous function. Then, we consider functions having
some discontinuities, namely the case of piecewise constant functions. In all the figures except
Figure 16, the color scale is the same: the color blue stands for value 1 and the color red represents
value 2.

Figure 8 – Color scale for all the figures.

5.3.1 Continuous functions

We first try to recover the following exact coefficient, given as a continuous function of x = (x1, x2):

κex(x) =
6 + cos(3(x1 + x2)) + cos(5x1)

4
. (5.6)

Remember that in our approach we assume that the exact coefficient is known on the boundary
of the domain. We can then easily compute the lifting function κb as the solution of the following
problem: {

−∆κb = 0, in Ω,

κb = κex, on Γ.
(5.7)

Both functions κex and κb are plotted in Figure 9, on the left and in the center respectively. As
already mentioned in Section 4.2, the AEI method allows to better capture some discontinuity
lines in the coefficient and is particularly efficient in that case. Here, the first step already gives
satisfactory results (see Figure 9 on the right) and the following steps do not add further information.
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Figure 9 – Exact coefficient <(κex) (left). Lifting κb from the known boundary value (center).
Reconstructed coefficient <(κ

(1)
L1

) at Step 1 with L1 = 51. No noise data (right).

5.3.2 Piecewise constant coefficients

A reference test-case: one ellipse.

We adopt the adaptive process to retrieve the exact coefficient κex (5.5) defined in Section 5.2,
namely

κex(x) =

{
2 + 2i if x ∈ ω0,
1 + i otherwise,

with the ellipse ω0 := {(x1, x2) ∈ R2|(x1 − 0.2)2 + 0.7(x2 + 0.1)2 ≤ 0.09}. We report on Figure 10
the successive reconstructed coefficients κ(s)

Ls
, s ∈ J1, 4K. The relative L2-error decreases at each step

of the process to reach a final value equal to 0.39%. This example illustrates how each step uses
information on the coefficient obtained in the previous step to improve the reconstruction. The first
step of the AEI method allows to localize the perturbations in the electromagnetic coefficients, and
the others to retrieve their shapes and values. For Step 1 to 4, the dimension Ls of the eigenspace
is 71, 41, 51 and 51, and the corresponding number of BFGS iterations is 100, 34, 13 and 7. The
total computational time is 5592, 1840, 831 and 578 seconds, including the iterative research of
Ls. The number of vertices of each adapted mesh is around 30000. In Figure 11, we represent the
results obtained at Step 4 from noisy observation data with different levels of noise according to
the formula (5.2). As expected, the reconstruction error increases with the noise level but remains
stable. The results are satisfactory even with 10% noise.

Multiple inhomogeneities.

We consider the following coefficient

κex(x) =

{
2 + 2i if x ∈ ω1 ∪ ω2,
1 + i otherwise. (5.8)

The inhomogeneities of the medium are represented by two ellipses ω1 := ω0 and ω2 := {(x1, x2) ∈
R2|(x1 +0.5)2 +0.4(x2−0.2)2 ≤ (0.15)2} of different size. The final reconstructed coefficient is given
in Figure 12. For steps s ∈ J1, 4K, the dimension Ls of the eigenspace is 71, 51, 61 and 11, and the
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Step 1 Step 2 Step 3 Step 4

Rel. L2 error 1.61% 1.15% 0.5% 0.39%

Mesh

<(κ(s)
Ls

) in 2D

<(κ(s)
Ls

) in 3D

Figure 10 – The AEI method for the recovery of piecewise constant functions. No noise data.

number of BFGS iterations is 113, 40, 16 and 17 respectively. The relative reconstruction error at
the last step is 0.93%. The AEI method performs very well the separation and the reconstruction
of multiple inhomogeneities, even when their sizes and the distance between them are smaller than
the wavelength. Indeed, in that case for example, the incident wavelength is λ = k/2π = 3 whereas
the diameter of the domain Ω is only 2.

Square and star.

We further test the reconstruction of inhomogeneities with irregular contour, namely

κex(x) =

{
2 + 2i if x ∈ ω,
1 + i otherwise, (5.9)

where the subdomain ω is a square centered at the origin of side 0.4, or a star delimited by the
curve t 7→ (0.1 + c(t) cos(t), 0.1 + c(t) sin(t), with c(t) = (20 + 3 sin(5t) − 2 sin(15t) + sin(25t))/50.
The AEI method still gives accurate results. The relative reconstruction error on the coefficient
at the last step is 0.48% in the case of the square, and 1.03% for the star. As a comparison to
highlight the efficiency of the AEI process, we have reported the reconstructed coefficients at the
Steps 1 and 4 (cf. Figures 13 and 14).
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(a) (b) error = 0.34% (c) error = 0.55% (d) error = 1.99%

Figure 11 – Reconstruction of an ellipse by using the AEI method: (a) Exact coefficient <(κex).
(b) Reconstructed permittivity <(κ

(4)
L4

) with 2%-noisy data and δ = 5.10−3. (c) Reconstructed
permittivity <(κ

(4)
L4

) with 5%-noisy data and δ = 1.10−2. (d) Reconstructed permittivity <(κ
(4)
L4

)

with 10%-noisy data and δ = 5.10−2.

(a) Exact coefficient <(κex) (b) Reconstructed permittivity <(κ
(4)
L4

)

Figure 12 – Reconstruction of two ellipses by using the AEI method. No noise data.

Different dielectric permittivity and electrical conductivity.

The exact coefficient is given by

κex(x) =

{
21ω1

(x) + 2i1ω2
(x) if x ∈ ω1 ∪ ω2,

1 + i otherwise. (5.10)

The inhomogeneity in the dielectric permittivity ε (resp. in the conductivity σ) is represented by the
ellipse ω1 := ω0 (resp. the ellipse ω2 := {(x1, x2) ∈ R2|(x1+0.5)2+0.4(x2−0.2)2 ≤ (0.15)2}). Notice
that the inhomogeneity ω2 is small and close to the boundary. The final reconstructed coefficient is
given in Figure 15. For steps s ∈ J1, 4K, the dimension Ls of the eigenspace is 71, 41, 61 and 11, and
the number of BFGS iterations is 97, 34, 21 and 8 respectively. The relative reconstruction error on
the permittivity and the conductivity at the last step are 1.05% and 0.81% respectively.
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(a) (b) (c)

Figure 13 – Reconstruction of a square by using the AEI method. No noise data. (a) Exact
coefficient <(κex). (b) Reconstructed permittivity <(κ

(1)
L1

) at Step 1. (c) Reconstructed permittivity
<(κ

(4)
L4

) at Step 4.

(a) (b) (c)

Figure 14 – Reconstruction of a star by using the AEI method. No noise data. (a) Exact coefficient
<(κex). (b) Reconstructed permittivity <(κ

(1)
L1

) at Step 1. (c) Reconstructed permittivity <(κ
(4)
L4

)
at Step 4.

Small constrast.

We are interested finally in determining an inhomogeneity with a small contrast, modeled by the
coefficient

κex(x) =

{
1.1 + 1.1i if x ∈ ω0,

1 + i otherwise, (5.11)
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(a) Exact coefficient <(κex) (b) Reconstructed permittivity <(κ
(4)
L4

)

(c) Exact coefficient =(κex) (d) Reconstructed conductivity =(κ
(4)
L4

)

Figure 15 – Different dielectric permittivity and electrical conductivity: numerical reconstruction
using the AEI method. No noise data.

with the ellipse ω0 := {(x1, x2) ∈ R2|(x1−0.2)2 +0.7(x2 +0.1)2 ≤ 0.09}. We report in Figure 16 the
exact (left) and the reconstructed coefficient at Step 4 (right). For s from 1 to 4, the dimension Ls of
the eigenspace is 31, 31, 21 and 31, and the number of BFGS iterations is 29, 9, 3 and 5 respectively.
The method gives a very accurate result. This enables us to envisage applications in real biomedical
situations where the discrepancy between the properties of healthy and sick tissues is small. We
also show the results for the square and star defined previously (cf. Figure 17).

(a) Exact coefficient <(κex) (b) Reconstructed permittivity <(κ
(4)
L4

)

Figure 16 – Reconstruction of a flat ellipse by using the AEI method. No noise data.

6 Concluding remarks and prospects
We have considered the problem of determining some of the electromagnetic properties (dielec-
tric permittivity and electrical conductivity) of a medium in a two-dimensional bounded domain
from boundary measurements at a fixed frequency. We have formulated this inverse problem as a
minimization problem where the functional to be minimized represents the difference between the
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(a) Reconstruction of a square (b) Reconstruction of a star

Figure 17 – Reconstructed permittivity <(κ
(4)
L4

) in the case of a small contrast. No noise data.

measured and predicted electric fields. The electromagnetic wave propagation is governed by the
time-harmonic Maxwell equations.

We have presented a reconstruction procedure, called Adaptive Eigenspace Inversion (AEI)
method, to solve this problem efficiently. A standard gradient-based quasi-Newton algorithm is
applied to deal with the minimization problem. The originality and specificity of our approach are
based on the discrete representation of the unknown complex coefficient (i.e. the refractive index
of the medium). The basis composed by eigenvectors of the Laplacian operator is preferred to the
more classical choice of P1 functions. Then, during the minimization process, both the mesh and
the basis are iteratively adapted. A method is proposed to compute the dimension of the successive
eigenspaces automatically, which is generally very small compared to the mesh dimension. The
AEI method is able to characterize simultaneously the dielectric permittivity (real part of the
coefficient) and the electrical conductivity (imaginary part of the coefficient) of a medium from
partial boundary measurements of electric fields. Its performance is illustrated in several examples,
and in particular in the case of discontinuous functions. An attractive feature of the method is to
yield accurate reconstructions both qualitatively and quantitatively even from noisy data.

This work has been motivated by biomedical applications, and in particular by the microwave
imaging of cerebrovascular accidents [32, 33]. Strokes are characterized by dielectric properties
which are slightly altered (±10%) from that of a healthy brain. The AEI algorithm allows to
capture small perturbations in the electromagnetic coefficients (see Figure 16 and 17) and should
be a promising method to detect strokes. It has to be extended to the three-dimensional case to
deal with this application.
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