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Introduction

In common binary classification tasks, learning algorithms assume the presence of both positive and negative examples. Sometimes this is a strong requirement that does not fit real application scenarios. In fact, the process of labeling data is a money-and time-consuming activity that needs high-level domain expertise. In some cases this operation is quick, but usually, definining reliable labels for each data example is a hard task. In the worst case, extracting examples from one or more classes is simply impossible [START_REF] Calvo | A partially supervised classification approach to dominant and recessive human disease gene prediction[END_REF]. As a consequence, only a small portion of a so-constituted training set is labeled. As a practical example of this phenomenon, let us consider a company that aims at creating an archive of researchers' home pages, using web-crawling techniques. Once downloaded, a web page should be classified to decide whether it is a researcher's home page or not. In such a context, the concept of positive example is well defined (the researcher's home page) while the idea of negative example is not well-established [START_REF] Yu | Pebl: positive example based learning for web page classification using svm[END_REF] because no real characterization of what is not a home page is supplied. The same problem occurs when trying to classify biological/medical data. Usually a biologist (or a doctor) can comfortably supply positive evidences of what she wants to identify but she is not able to provide negative examples. A known example of this scenario is the classification of vascular lesions starting from medical images [START_REF] Zuluaga | Learning from only positive and unlabeled data to detect lesions in vascular ct images[END_REF], where labeling vascular lesions accurately could take more than one year, while it is relatively easy to recognize healthy individuals. In these scenarios, defining a method to exploit both positive and unlabeled examples could save precious material and human resources and the expert may focus her effort to only define what is good, skipping the ungrateful task of recognizing what is not good.

To deal with this setting, the Positive Unlabeled (PU) learning task has been introduced [START_REF] Comité | Positive and unlabeled examples help learning[END_REF]. Roughly speaking, PU learning is a binary classification task where no negative examples are available. Most research works in this area are devoted to the classification of unstructured datasets such as documents represented by bag-of-words, but similar scenarios may occur with categorical data as well. Imagine, for instance, a dataset representing census records on a population. An analyst can comfortably provide reliable positive examples of a targeted class of people (e.g., unmarried young professional interested in adventure sports), but identifying plausible counterexamples is not as easy. However, very few PU learning approaches are designed to work on attribute-relation data (such as categorical datasets). Unfortunately the techniques proposed in text classification are not directly applicable to the context of attribute-relation datasets. These approaches, in fact, employ metrics, such as the cosine distance, that are not well suited for categorical data where, in addition, there is no standard definition of distance [START_REF] Boriah | Similarity measures for categorical data: A comparative evaluation[END_REF]. This limitation makes it impossible to apply works on document classification to categorical data directly. The few works that deal with PU learning in attribute-relation domains are principally based on Naive Bayes classifiers. The major limitation of this kind of approaches is that algorithms based on Naive Bayes assume that attributes are mutually independent. To the best of our knowledge, no effort was devoted to the implementation of other models or the extension of previously defined models from document analysis.

In this paper we introduce a new distance-based algorithm, named Positive Unlabeled Learning for Categorical datasEt (Pulce). Our work aims at filling the gap between the recent and well-established advances in document classification and the preliminary status of works existing for attribute-relation data. In particular, we address the problem of classifying data described by categorical attributes, which also includes the case of discretized numerical attributes, leading to a general framework for attribute-relation data. The core part of our approach is an original distance-based classification method which employs a distance metric learnt directly from data thanks to a technique recently presented by Ienco et al. [START_REF] Ienco | From context to distance: Learning dissimilarity for categorical data clustering[END_REF]. Originally, this technique was designed to exploit attribute dependencies in an unsupervised (clustering) scenario. Its key intuition is that the distance between two values of a categorical attribute X i can be determined by the way in which they co-occur with the values of other attributes in the dataset: if two values of X i are similarly distributed w.r.t. other attributes X j (with i = j), the distance is low. The added value of this proximity definition is that it takes into consideration the context of the categorical attribute, defined as the set of the other attributes that are relevant and non redundant for the determination of the categorical values. Relevancy and redundancy are determined by the symmetric uncertainty measure that is shown to be a good estimate of the correlation between attributes [START_REF] Yu | Feature selection for high-dimensional data: A fast correlation-based filter solution[END_REF].

Our PU learning approach uses this metric to train two discriminative models: one for the positive class, the other for the negative one. These two models take intrinsically into account the existing attribute relationships, thus overcoming the major limitation given by the independence assumption explicitly made by Naive Bayes-based methods. We provide the empirical evidence of this property, showing that our method outperforms state-of-theart competitors and assessing the statistical significance of the results. In a nutshell, our contributions can be summarized as follows:

• we introduce a distance learning approach to detect reliable negative examples in datasets described by categorical attributes;

• we leverage the same distance learning approach to build two distance models: one for the positive examples, one for the negative ones;

• we define a k-NN classifier to predict the positive/negative label of the unseen examples: each example is assigned the class label of the distance model (positive/negative) it fits better.

• we compare our approach to other recent state-of-the-art PU classification methods and show a statistically significant improvement in terms of prediction rates.

The remainder of this paper is organized as follows: Section 2 briefly explores the state of the art in PU learning and other close research areas. The problem formulation, a brief overview of the distance learning algorithm, and the full description of the proposed method are supplied in Section 3. In Section 4 we provide our empirical study and analyze its statistical significance. Finally, Section 5 concludes.

Related Work

Positive Unlabeled learning was originally studied by De Comité et al. [START_REF] Comité | Positive and unlabeled examples help learning[END_REF] who achieved the first theoretical results. The authors showed that under the PAC (Probably Approximately Correct) learning model, the k-DNF (k-Disjunction Normal Form) approach is able to learn from positive and unlabeled examples. Following these preliminaries results, PU learning was first applied to text document classification [START_REF] Yu | Pebl: positive example based learning for web page classification using svm[END_REF]. In this work the authors design a method that uses 1-DNF rules to extract a set of reliable negative examples. Then, they use an approach based on support vector machines to learn a classification model over the set of positive and reliable negative examples. The proposed technique achieves the same performances as classical SVMs do for the web page classification task.

Other approaches dealing with PU classifiers in the context of text classification have been presented in more recent years [START_REF] Elkan | Learning classifiers from only positive and unlabeled data[END_REF][START_REF] Xiao | Similarity-based approach for positive and unlabeled learning[END_REF][START_REF] Zhou | Learning with positive and unlabeled examples using topicsensitive plsa[END_REF]. Elkan et al. [START_REF] Elkan | Learning classifiers from only positive and unlabeled data[END_REF] introduce a method to assign weights to the examples belonging to the unlabeled set. The whole set of weighted unlabeled examples is then used to build the final SVM-based classifier. Also Xiao et al. [START_REF] Xiao | Similarity-based approach for positive and unlabeled learning[END_REF] present an approach based on SVMs. The authors combine two techniques borrowed from information retrieval (Rocchio and Spy-EM) to extract a set of reliable negative examples. Then a weighting schema is applied on the remaining unlabeled examples. To exploit these three sources of information (positive, reliable negative and weighted unknown examples) the authors adapt standard SVMs. Finally, Zhou et al. [START_REF] Zhou | Learning with positive and unlabeled examples using topicsensitive plsa[END_REF] tackle the problem from a different point of view: they modify the standard Topic-Sensitive probabilistic Latent Semantic Analysis (pLSA) approach to perform classification with a small set of positive labeled examples. The information carried by the positive class is used to constrain the unsupervised process usually adopted by pLSA. Because of that, the developed method is more similar to constrained clustering techniques rather than standard PU learning. In fact, no real learning algorithm is involved and the final result is not a classifier.

Recently, the scientific literature concerning PU learning systems has been enriched of some new theoretical results [START_REF] Mordelet | A bagging SVM to learn from positive and unlabeled examples[END_REF][START_REF] Wu | Multi-instance learning from positive and unlabeled bags[END_REF] and new successful applications [START_REF] Li | Spotting fake reviews via collective positive-unlabeled learning[END_REF][START_REF] Yang | Ensemble positive unlabeled learning for disease gene identification[END_REF]. Mordelet et al. [START_REF] Mordelet | A bagging SVM to learn from positive and unlabeled examples[END_REF] propose a new method for PU learning based on bagging techniques, while Wu et al. [START_REF] Wu | Multi-instance learning from positive and unlabeled bags[END_REF] propose a SVM-based solution to the problem of positive and unlabeled multiinstance learning. Li et al. [START_REF] Li | Spotting fake reviews via collective positive-unlabeled learning[END_REF] propose a collective classification approach from positive and unlabeled examples to identify fake reviews. In a completely different domain, Yang et al. [START_REF] Yang | Ensemble positive unlabeled learning for disease gene identification[END_REF] use a similar approach to identify causative genes to various human diseases.

Differently from document classification, the literature on PU learning for categorical data is not as rich. This is due to the fact that no consensus on how to evaluate distances in categorical data has been reached yet. In fact, while in document classification standard objective measures as cosine or euclidean distance are widely employed, this is not the case for categorical data, where distance measures are mainly based on extracted statistics depending on the specific dataset [START_REF] Boriah | Similarity measures for categorical data: A comparative evaluation[END_REF].

Calvo et al. [START_REF] Calvo | Learning bayesian classifiers from positive and unlabeled examples[END_REF] first attempted to deal with the PU learning setting in attribute-relation datasets. Their paper introduces four methods based on Naive Bayes for categorical data. In particular the authors modify classic and Tree Augmented Naive Bayes [START_REF] Friedman | Bayesian network classifiers[END_REF] approaches to work with positive and unlabeled examples. They supply two ways to estimate the prior probability of the negative class: the first one takes into consideration the whole set of unlabeled examples to derive this probability, while the second one considers a Beta distribution to model the uncertainty. These methods are substantially limited by two aspects: the strong (and often wrong) assumption of attribute independency adopted by Naive Bayes and the use of the whole set of unlabeled examples to estimate a model for the negative class. This work is extended by He et al. [START_REF] He | Naive bayes classifier for positive unlabeled learning with uncertainty[END_REF] to deal with uncertainty data. Another attempt aiming at bringing the PU learning problem outside text document classification has been presented by Zhao et al. [START_REF] Zhao | Positive and unlabeled learning for graph classification[END_REF]. Their work provides a formalization of PU learning for classifying graphs via an optimization strategy that tries to learn a good classifier and a good set of discriminant graph features from both positive and unlabeled examples. Though effective on graphs, unfortunately, this method can not be adapted to other data types. Very recently, Shao et al. [START_REF] Shao | Laplacian unit-hyperplane learning from positive and unlabeled examples[END_REF] proposed a novel PU learning approach called Laplacian Unit-Hyperplane Classifier (LUHC), which determines a decision unit-hyperplane by solving a quadratic programming problem. It exploits both geometrical and discriminant properties of the examples. The authors show that LUHC is superior to some classification approaches, including Naive Bayes in terms of prediction rates. In the experimental section, we compare our approach to Naive Bayes [START_REF] Calvo | Learning bayesian classifiers from positive and unlabeled examples[END_REF], Tree Augmented Naive Bayes [START_REF] Friedman | Bayesian network classifiers[END_REF] and LUHC [START_REF] Shao | Laplacian unit-hyperplane learning from positive and unlabeled examples[END_REF].

Handling labeled and unlabeled data correctly is a challenging problem that attracts many contributions in an active field of research known as "partially supervised learning" [START_REF] Liu | Partially supervised classification of text documents[END_REF]. Other examples of approaches in which machine learning deals with partially labeled data are those addressing the problem of semi-supervised anomaly detection [START_REF] Chandola | Anomaly detection: A survey[END_REF], among which OSVM (One-Class SVM) is one of the most popular algorithms [START_REF] John | Estimating the support of a high-dimensional distribution[END_REF]. In this setting, a positive model is learnt over a set of positive (normal) examples to decide whether un unlabeled example is normal or abnormal by assigning either an explicit label or a score. The learning process is performed in a transductive way, i.e., the learnt model can not be used to label unseen test examples. The main difference between this class of approaches and the PU learning framework is that in the former no effort to learn a model for the negative class is done, while in the latter the goal is to label unseen examples that come that are not supplied at the same time of the training set.

Semi-supervised learning [START_REF] Blum | Combining labeled and unlabeled sata with co-training[END_REF][START_REF] Du Plessis | Semi-supervised learning of class balance under class-prior change by distribution matching[END_REF][START_REF] Gan | Towards a probabilistic semi-supervised kernel minimum squared error algorithm[END_REF] and constrained clustering [? ? ] are also strictly related to the PU learning task, since they also deal with the problem of datasets containing small portions of labeled examples. However, in this case, existing labels are from all classes, and they are used to seed [START_REF] Basu | Semi-supervised clustering by seeding[END_REF] or constrain [START_REF] Davidson | The complexity of non-hierarchical clustering with instance and cluster level constraints[END_REF] a standard clustering algorithm (like k-means), or to learn a distance metric for clustering [START_REF] Bilenko | Integrating constraints and metric learning in semi-supervised clustering[END_REF]. These approaches differ from PU learning ones in that they are transductive and assume that all class labels are given, even though for a small portion of the training set only. Hence, all classes are represented by at least one example in in the training set, contrary to PU learning problems where the only represented class is the positive one. It is worth noting that distance metric learning is also an active field of research, especially in image processing and classification [START_REF] Ma | Person re-identification over camera networks using multi-task distance metric learning[END_REF][START_REF] Luo | Decomposition-based transfer distance metric learning for image classification[END_REF][START_REF] Yu | Semantic preserving distance metric learning and applications[END_REF]. Instead, the most recent result in distance learning for categorical data is by Ring et al. [START_REF] Ring | Condist: A context-driven categorical distance measure[END_REF]: it also leverages attribute context as the approach we use here. However, compared to [START_REF] Ienco | From context to distance: Learning dissimilarity for categorical data clustering[END_REF], its performances are not statistically different.

In conclusion, even though much work has been devoted to document classification, and some effort exists for specific kinds of applications, very few researches address the problem of building reliable classifiers over positive and unlabeled examples in attribute-relation data.

To the best of our knowledge, our work is the first one trying to cope with PU learning outside the document classification domain without any strong (and often wrong) attribute independency assumption.

A distance-based method for categorical data

In this section we introduce PU learning and describe Pulce, a new distance based PU learning schema for categorical data. After some general definitions, we briefly describe The key intuition behind our approach is that, if we learn a distance based on positive examples only, negative examples will be differently distributed w.r.t. this metric. In other terms, negative examples would not fit the learnt distance model, and they will be easily detected and labeled as reliable negative examples. Following this preamble, we employ the distance learning framework for categorical data presented by Ienco et al. [START_REF] Ienco | From context to distance: Learning dissimilarity for categorical data clustering[END_REF] to learn a distance model for the attributes in F on the sole set of positive example P . This distance model is used to weight each unlabeled example in U . A cut-off threshold is then automatically computed, and a set RN of reliable negative examples is generated. Then, two distance (c) Product-Sales dep. contingency table models are generated: the first (positive model) from P , the second (negative model) from RN . These two models are used by a distance-based classifier to decide whether a test instance is positive or negative. In particular, we adopt a modified version of k-NN that assigns the test example to the class whose distance model minimizes the sum of distances w.r.t. its k nearest neighbors. A workflow of the overall classification process is given in Figure 1.

In the following, we will first recall briefly the distance learning method adopted in our framework. Then, we describe the ranking strategy used to identify a reliable set of negative examples. Finally, we introduce the classification algorithm.

Computing the distance model

Here we briefly summarize DILCA (DIstance Learning for Categorical Attributes), a framework for computing distances between any pair of values of a categorical attribute. DILCA was introduced by Ienco et al. [START_REF] Ienco | From context to distance: Learning dissimilarity for categorical data clustering[END_REF], but was limited to a clustering scenario.

To illustrate this framework, we consider the dataset described in figure 2 From this distribution of data, we infer that, in this particular context, tablet is more similar to smartphone than to mobile because the probability to observe a sale in the same department is closer. However, if we take into account the co-occurrences of Product values and Profession values (Figure 2(b)), we may notice that Product=mobile and Product=tablet are closer to each-other rather than to Product=smartphone, since they are bought by the same professional categories of customers to a similar extent.

This example shows that the distribution of the values in the contingency table may help to define a distance between the values of a categorical attribute, but also that the context matters. Let us now consider the set F = {X 1 , X 2 , . . . , X m } of m categorical attributes and dataset D in which the instances are defined over F . We denote by Y ∈ F the target attribute, which is a specific attribute in F that is the target of the method, i.e., the attribute on whose values we compute the distances. DILCA allows to compute a context-based distance between any pair of values (y i , y j ) of the target attribute Y on the basis of the similarity between the probability distributions of y i and y j given the context attributes, called C(Y ) ⊆ F \ Y . For each context attribute X i ∈ C(Y ) DILCA computes the conditional probability for both the values y i and y j given the values x k ∈ X i and then it applies the Euclidean distance. The Euclidean distance is normalized by the total number of considered values:

d(y i , y j ) = X∈C(Y ) x k ∈X (P (y i |x k ) -P (y j |x k )) 2 X∈C(Y ) |X| (1)
The selection of a good context is not trivial, particularly when data is high-dimensional. In order to select a relevant and non redundant set of features w.r.t. a target one, we adopt the FCBF method: a feature-selection approach originally presented by Yu and Liu [START_REF] Yu | Feature selection for high-dimensional data: A fast correlation-based filter solution[END_REF] exploited in [START_REF] Ienco | From context to distance: Learning dissimilarity for categorical data clustering[END_REF] as well. The FCBF algorithm has been shown to perform better than other approaches and its parameter-free nature avoids the tuning step generally needed by other similar approaches. It takes into account the relevance and the redundancy criteria between attributes. The correlation for both criteria is evaluated through the Symmetric Uncertainty measure (SU). SU is a normalized version of the Information Gain [START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF] and it ranges between 0 and 1. Given two variables X and Y , SU=1 indicates that the knowledge of the value of either Y or X completely predicts the value of the other variable; 0 indicates that Y and X are independent.

During the step of context selection, a set of context attributes C(Y ) for a given target attribute Y is selected. Informally, these attributes X i ∈ C(Y ) should have a high value of the Symmetric Uncertainty and are not redundant. SU Y (X i ) denotes the Symmetric Uncertainty between X i and the target Y . DILCA first produces a ranking of the attribute X i in descending order w.r.t. SU Y (X i ). This operation implements the relevance step. Starting from the ranking, it compares each pairs of ranked attributes X i and X j . One of them is considered redundant if the Symmetrical Uncertainty between them is higher than the Symmetrical Uncertainty that relates each of them to the target. In particular, X j is removed if X i is in higher position of the ranking and the SU that relates them is higher than the SU that relates each of them to the target (SU X j (X i ) > SU Y (X i ) and SU X j (X i ) > SU Y (X j )). This second part of the approach implements the redundancy step. The results of the whole procedure is the set of attributes that compose the context C(Y ).

At the end of the process, DILCA returns a distance model

M = {M X i | i = 1, . . . , m},
where each M X i is the matrix containing the distances between any pair of values of attribute X i , computed using Eq. 1.

Detecting reliable negative examples

Algorithm 1: P ulce(P ,U )

M P ← DILCA(P ); τ ← 2 |P |(|P |-1) |P |-1 i=1 |P | j=i+1 dist(M P , p i , p j ); RN ← {∅}; forall the u ∈ U do if (score(u, P, M P ) > τ ) then RN ← RN ∪ u; end end M RN ← DILCA(RN ); return M P , M RN , RN ;
Here we present our solution to the problem of extracting a set of reliable negative examples from U . The whole procedure is sketched in Algorithm 1. As first step, we learn a distance model M P , using DILCA on P (see Section 3.1). M P summarizes the relationships between attributes in P in such a way that new examples drawn from the same distribution will be closer to P than new examples drawn from a different distribution.

Using the model M P , for each example u ∈ U , we compute a score based on the average distance between u and all examples p ∈ P . The score is computed as follows:

score(u, P, M P ) = p∈P dist(M P , u, p) |P | (2) 
where the function dist(M P , u, p) could be any distance function that uses only the distance between two values of the same attribute. In our case we use the Euclidean distance:

dist(M P , u, p) = M X i ∈M P M X i (u[X i ], p[X i ]) 2 (3) 
where u[X i ] and p[X i ] are the values the attribute X i takes in examples u and p respectively, so that

M X i (u[X i ], p[X i ]) is the distance between values u[X i ] and p[X i ] of attribute X i .
Multiple different choices can be adopted for the selection of a reliable set of negative examples given this score. A first possibility is to rank all examples u ∈ U in decreasing order of score. Hence, examples from the negative class are likely to be on top of the ranking and the user may decide to label the first n examples as reliable negative. Instead, we provide a strategy to select a reliable set RN of negative examples automatically: we mark as reliable negative all examples u ∈ U such that the score(u, P, M P ) is greater than a threshold τ , i.e., RN = {u ∈ U s.t. score(u, P, M P ) > τ }. The problem now is how to tune correctly the value of τ in order to detect reliable negative examples. Even though sophisticated strategies could be adopted, here we consider a simple solution: we employ the mean of all distances within the set P :

τ = 2 |P |(|P | -1) |P |-1 i=1 |P | j=i+1 dist(M P , p i , p j ) ( 4 
)
where |P | is the cardinality of the set P of positive examples. As we will show in Section 4.5, this simple choice is indeed satisfactory in our experiments. We will show that even important variations of the threshold around the average do not influence the final results significantly.

Classifying positive and reliable negative examples

We now dispose of the set P of positive examples and the set RN of reliable negative examples, and we are able to build a discriminative model to recognize and label new unseen examples. To perform our classification task we use a revised k-NN (k nearest neighbors) approach. In particular, the major difference with standard k nearest neighbors approaches consists in the adoption of two different distances, one for the positive class and one for the negative class. Each distance learnt by DILCA constitutes a way to summarize the attribute dependencies within each class. This enables Pulce to build a specific model for each class. Concerning the positive class, we use distance model M P . For the negative class, we learn a distance model M RN by applying DILCA on the set RN of reliable negative examples. The key intuition behind our classification method is the following: if a new, unseen example t comes from a specific class, the corresponding distance model should produce small distances with other examples from its class w.r.t. other distance models learnt from other classes. The classifier then considers the k examples from each class that are closest to t. Finally, for each class, it sums the distances between the unseen example t and its k nearest neighbors and assign it the class that minimizes this value. The advantage of learning two distance models is now clear. A classifier based on a unique model requires the definition of a threshold (or other more sophisticated strategies) to decide whether an example can be considered positive or negative. The use of a distance model for each class makes this complex step unnecessary. Notice that, as DILCA provides values that are bounded between 0 and 1, the two distances are comparable.

We formalize our nearest neighbors approach as follows. Given an unseen example t, we call N N P (t) = {nn P 1 (t), . . . , nn P k (t)} the set of k nearest neighbors of t in P under the distance model M P , and N N RN (t) = {nn RN 1 (t), . . . , nn RN k (t)} the set of k nearest neighbors of t in RN under the distance model M RN . Then, the class of t is given by:

class(t) = argmin c∈{P,RN } k i dist(M c , nn c i (t), t) (5) 
Notice that k is the only parameter of the whole PU learning approach, as in many instance-based classifiers. In this section we provide an exhaustive set of experiments to show the effectiveness of our PU learning approach in categorical data. The experiments are performed over 48 samples derived from 16 datasets, publicly available on the UCI machine learning repository 1 . For each dataset we produce three different samples that differ from each other in the number of examples labeled as positive, respectively 30%, 40%, and 50% of the positive class. The remaining positive examples plus all the negative examples are considered as unlabeled instances. We assume the majority class as positive, the other one as negative. If the dataset does not describe a binary classification problem we select the two biggest classes (in the number of instances) to reduce the problem to a binary classification task. Finally, as further pre-processing, all numerical attributes are discretized into 10 bins with equal width. The details on all the 48 samples are presented in Table 1.

Experimental results

To evaluate the results of the different PU classifiers we use the F-Measure as performance indicator. The F-Measure [START_REF] Van Rijsbergen | Information Retrieval[END_REF] is defined as:

F-Measure = 2 • precision • recall precision + recall
while the precision is equal to: precision = T P T P + F P and the recall is equal to: recall = T P T P + F N where T P is the number of positive examples classified as positive, F P is the number of the negative examples classified as positive and F N is the number of positive examples classified as negative. The F-measure allows for a better evaluation in unbalanced datasets; for this reason we prefer using this metrics rather than accuracy. F-measure values are computed and averaged on a 10-fold cross-validation schema. Notice that, contrary to other partially supervised settings, such as anomaly detection, the purpose of PU learning is to build a binary classifier that should discriminate well both positive and negative examples. This explains why, similarly to Xiao et al. [START_REF] Xiao | Similarity-based approach for positive and unlabeled learning[END_REF], we conduct our experiments as in a classical binary classification scenario, using F-Measure as performance indicator, rather than the AUC or other metrics commonly adopted in anomaly detection tasks.

The rest of this section is organized as follows: Section 4.1 reports the comparison with other state-of-the-art approaches; in Section 4.2 we measure the impact of the distance measure on classification results; the statistical significance of these results are shown in Section 4.3; in Section 4.4 we perform a deep study on the sensibility of our approach w.r.t. parameter k; finally, in Section 4.5, we study the impact that the cut-off threshold has on classification results. 

Comparative results

We choose to compare Pulce with the approaches based on Naive Bayes proposed by Calvo et al. [START_REF] Calvo | Learning bayesian classifiers from positive and unlabeled examples[END_REF]: Positive Naive Bayes PNB, Average Positive Naive Bayes APNB (both based on classic Naive Bayes), Positive TAN (PTAN) and Average Positive TAN (APTAN), two variants of the tree augmented Naive Bayes model [START_REF] Friedman | Bayesian network classifiers[END_REF]. The difference between PNB (resp. PTAN) and APNB (resp. APTAN) lies in the way the prior probability for the negative class is estimated. For PNB and PTAN this probability is derived directly from the unlabeled set of examples while for APNB and APTAN the uncertainty is modeled by a Beta distribution. In our experiments, we also include LUHC (Laplacian unit-hyperplane classifier), which determines a decision unit-hyperplane exploiting the geometrical properties of the data [START_REF] Shao | Laplacian unit-hyperplane learning from positive and unlabeled examples[END_REF]. In this case, numerical attributes have been processed as such, while categorical attributes have been binarized by creating one boolean attribute for each attribute-value pair. For the competing approaches, we use the standard parameter settings as suggested by the original authors [START_REF] Calvo | Learning bayesian classifiers from positive and unlabeled examples[END_REF][START_REF] Shao | Laplacian unit-hyperplane learning from positive and unlabeled examples[END_REF]. For Pulce we vary the parameter k over the set of values {1, 3, 7, 11, 13}.

The results are reported in Tables 2 to 4 (because of space limitations, detailed tables for k = 3 and k = 11 are omitted here), where we can observe the performances of Pulce in comparison with those of the competitors. In general, the first remarkable result is that Pulce outperforms the other methods both in terms of average F-Measure and in terms of number of wins, independently of the value of k. In detail, it wins 25 times (for k = 1), 25 times (k = 3), 29 times (k = 7), 22 (k = 11) and 28 times (when k = 13). The best competitors (PNB and APNB) win 11 and 13 times when compared to Pulce with k = 7. The win ratio decreases when other values of k are considered. Furthermore, Pulce's average F-Measure (always around 0.75, for any value of k) is sensibly higher than competitors' one: APNB and PNB do not go above 0.68. Notice also that, when Pulce is not the best PU method, in general its results are in line with the ones achieved by the competitors. There are some exceptions to this observation. LUHC, in some cases, is by far the best methods. However, it can be explained by the fact that, in these three cases the original datasets are numeric (pima and spambase) or ordinal (breast-cancer): this situation plays in favor of LUHC for the geometrical nature of its approach.

We may also observe that in audiology, credit-a, dermatology, iris, mushroom, nursery and vote the improvements w.r.t. the F-Measure evaluated for the competitors are clearly visible. This result is somehow expected and it is due to the fact that these datasets are dense and correlated. Pulce exploits the dependencies among attributes and overcomes the limitation of the Naive Bayes model, which is funded on the independence assumption. In general, this assumption is wrong, especially in the dataset listed above. The results on audiology deserve an additional comment. This dataset is relatively high-dimensional. Few data instances (226) are described by an high number of attributes (69). This is also a limitation for Naive Bayes approaches, but not for Pulce, that is able to exploit attribute dependency and, in this case, outperforms all other competitors by far.

Finally, let us make some comments concerning the number of positive examples involved in the learning step. The accuracy of this kind of approaches should improve as the number of available positive examples grows, according to the theory that, with a large enough set of positive examples the performance of PU classifiers could be the same of standard binary classifiers learnt over both positive and negative examples [START_REF] Comité | Positive and unlabeled examples help learning[END_REF]. From Tables 2 to 4 it turns out that this is not always the case in our experiments. This is the case of chess, a classification task that involves a strategy game, where good and bad strategies often differ only because of few specific movements. This behavior clearly affects the neighborhood function adopted in our approach. This explains why low values of k give better results but it justifies also Other factors that should be taken into account are related to under/overfitting phenomena. Our approach has two learning phases: the distance learning step and the k-NN step. Each of these steps suffers from typical (and sometimes unpredictable) classification biases. In some cases, too many positive examples may bias the classification task towards a major accuracy for the positive class. In some other cases, the problem is inverted. However, it can be noticed that when the number of positive examples is low (30%) our approach wins 9 times over 16 for k = {7, 11, 13} and 8 times over 16 for k = {1, 3}, for a win-ratio which is always higher than the overall win-ratio.

Impact of distance measure on Pulce

So far, we have considered the Euclidean distance as the standard metric to derive the distance model, as suggested by Ienco et al. [START_REF] Ienco | From context to distance: Learning dissimilarity for categorical data clustering[END_REF]. However, alternative distance metrics may be employed as well. Here, we measure the impact of choosing another distance measure on classification results. In particular, we adopt the symmetric version of the Kullback-Leibler (KL) divergence [START_REF] Kullback | On information and sufficiency[END_REF], which measures the relative entropy between vectors representing probability distributions. In data mining, this measure is usually employed to quantify the divergence between two distributions defined over the same space. As such, it could be a good candidate metric for our framework. The Kullback-Leibler divergence is defined as follows:

D KL (P ||Q) = P (i) × log P (i) Q(i)
where P and Q are two different discrete distributions. In our framework, the Kullback-Liebler is used to quantify the difference between the distributions of two values y i and y j of an attribute Y , for the given context C(Y), as described in Section 3.1. The KL divergence is then computed as follows:

D KL (y i ||y j ) = X∈C(Y ) x k ∈X P (y i |x k ) × log P (y i |x k ) P (y j |x k )
This measure is asymmetrical in nature, i.e., D KL (y i ||y j ) = D KL (y j ||y i ), hence we employ a symmetric version of the KL divergence:

D sym KL (y i ||y j ) = D sym KL (y j ||y i ) = D KL (y i ||y j ) + D KL (y j ||y i ) 2 
In Figure 3 we report the results obtained by combining Pulce with the Euclidean distance and the symmetric KL divergence. The F-Measure is averaged on all datasets for a given percentage of positive examples. Thus, we plotted three curves corresponding to 30%, 40% and 50% of positive examples for each distance metric and increasing values of k. Figure 3 clearly shows that the Euclidean distance always performs better than the Kullback-Leibler divergence, in these experiments, no matter the percentage of positive examples.

A possible explanation for this phenomenon lies in the way the Euclidean distance is computed. The distance between two values y i and y j of the same attribute Y is bounded and normalized to take values in the range [0, 1] (see Eq. 1). On the contrary, the D sym KL distance is unbounded (it ranges between 0 and infinite), and it cannot be easily normalized. This may introduce scale errors in the computation of the distance between two examples (see Eq. 3), leading to biased models for both positive class and reliable negative examples.

Statistical significance of the results

To asses the statistical quality of our approach we use the Friedman statistics and the Nemenyi test [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF]. These techniques are usually employed to deal with the problem of evaluating the statistical relevance of results of different classifiers over multiple datasets. We briefly summarize the Friedman test:

1. the performance of each method on a certain issue (F-Measure, accuracy, etc) is determined on each data-set; 2. the methods are ranked for each dataset according to the results; 3. for each method, its average position R j w.r.t. the datasets is computed; 4. finally, to compute the Friedman statistics the following formula is employed:

χ 2 F = 12N k(k + 1) j R j - k(k + 1) 2 4 
where N is the number of datasets, k is the total number of methods and it is distributed according to χ 2 F with k -1 degrees of freedom. We compare Pulce with all the competitors (PNB, APNB, PTAN, APTAN over 16 datasets with 3 different percentage of labeled positive examples, for a total of 48 datasets. In this statistical test the null hypothesis is that all the methods obtains similar performances, i.e., the χ 2 F value is similar to the critical value for the chi-square distribution with k -1 degrees of freedom. At significance level of α = 0.001, the critical values of the chisquare is equal to 20.52. In our test we obtain values from 38.8869 to 51.1875 for the χ 2 F statistics (see captions of Tables 2 to 4), hence the null hypothesis of the Friedman test is comfortably rejected and we can now proceed with the post-hoc Nemenyi test. According to this test, the performance of two classifiers is significantly different if the corresponding average ranks differ by at least the critical difference:

CD = q α k(k + 1) 6N
where α is the significance level and q α is the critical value for the two tailed Nemenyi test [START_REF] Demsar | Statistical comparisons of classifiers over multiple data sets[END_REF] which is based on the Studentized range statistic divided by √ 2. Then, we compare the five methods at the critical value of q 0.05 = 2.9677. The ranking table is shown on bottom of Tables 2, 3 and 4. The critical difference is CD = 1.1333 (at significance level α = 0.05). We observe that, for k = 7 and k = 13, Pulce brings a statistically significant improvement w.r.t. all the four competitors, with an average rank of 2.00 and 2.09 respectively. For k = 1, Pulce's average rank is also sensibly better than PNB's, but, in these case, the difference is not statistically significant, even if only slightly. Notice also that the differences between the averaged version and the non averaged version of PNB and PTAN do not pass the Nemenyi test, i.e., these differences are not statistically significant.

Sensitivity analysis of the parameter k

We now evaluate the sensitivity of Pulce to the variation of the parameter k. Due to space limitations, we can not show the complete set of results, hence we focus on the six datasets in which our method has the highest change in performance while varying the value of k: iris, soybean, audiology, breast-cancer, lymph and hepatitis. The results are reported in Figure 4. We observe that lymph and iris are the only datasets in which the highest variation is observed for the highest percentage of positive examples (50%) over which the classifier is learnt. For iris, one explanation for this apparently strange phenomenon is that, since the number of examples is low and the classes are not well separated, higher values of k are likely to introduce noise in the decision process of the k-NN classifier. This behavior, however, is observed for all percentages of positive examples, but is emphasized when the number of positive examples is large, since misclassified examples in the first step of Pulce have a major impact. Regarding lymph, with 30% and 40% of positive examples, we observe the classic learning curve: initially, it grows with k; then it remains stable; finally it starts to decrease slightly. With 50% of positive examples, the overall variation do not exceed 0.11. (f) hepatitis In conclusion, Pulce's results are reasonably stable w.r.t. the setting of parameter k: in most cases the maximum variation of the F-Measure is below 0.1, and it never exceeds 0.2. Furthermore, we notice that the highest F-measure values have been observed for small values of k (k < 15 in these experiments).

Shifting the threshold to asses the average-based criteria

In all the experiments we have reported above, the threshold for the selection of a set of reliable negative examples was set to the average distance computed between each pair of positive examples, as specified in Section 3.2. However, one can argue that this is not the optimal choice. Thus, in this section, we study the behavior of our classifier when the cut-off threshold varies between -20% and +20% of the average. We fix the value of k equal to 1, which is the most unstable setting for a k-NN classifier. This choice is justified by the fact that a worst case situation should stress any minimal change of the threshold value and, consequently, it should influence the results of Pulce maximally. To this purpose, we conduct these experiments on the six datasets reported in Section 4.4, due to the relative instability of their behavior. The results of this experiment are summarized in Figure 5. The six plots clearly show that there are no significant variations of the F-Measure except for heptatitis with 30% of positive labeled examples. This behavior can be explained by the low number of instances this dataset consists of and, in particular, by the small absolute number of positive labeled examples (only 9 data examples, as specified in Table 1). The most significant result that we can carry out from this experiment is that, even though the average value is not always the best choice, it represents a good trade-off if a user does not want to be concerned by complex parameter tuning. Otherwise, a classic training-validation-test model selection process can be employed to select an optimal cut-off threshold for each dataset.

Conclusion and future work

The presence of both positive and negative examples in training data is needed to build an efficient classifier, but this requirement is not always satisfied and in many domains only one class of samples is available. We have introduced Pulce, a distance based approach for Positive Unlabeled learning (PU) in categorical data. Unlike the few existing approaches based on Naive Bayes, it takes into account data dependencies and learns a distance model from attribute relationships to train a k-NN-like classifier. Statistically significant classification results on real world datasets have validated our strategy, also comparing to state-of-the-art approaches. Finally, the sensibility analysis on the only required parameter and the study on variations of the proposed threshold for selecting a good example-set for the negative class and have shown that Pulce is stable and robust.

It is worth noting that, when the dataset contains numerical attributes, Pulce is not always the best choice: it requires a discretization step that is not straightforward. As shown in our experiments, a numerical approach is preferable in those cases. However, compared to PU learning algorithms based on Naive Bayes, our method achieve better prediction performances.

As future work, we plan to investigate the extension of the binary PU learning task for categorical data to multiclass problems, and to embed our approach in an active-learning framework so as to involve users' feedback along the learning phase.

Figure 1 :

 1 Figure 1: The overall workflow of Pulce: detection of reliable negative examples from training data (1), definition of the positive and negative distance models (2) and k-NN classification leveraging positive and negative distance models (3).

Figure 2 :

 2 Figure 2: Sales: a sample dataset with categorical attributes (a) and two related contingency tables (b and c).

  (a), representing the set Sales. It has five categorical attributes: Age{young, adult, senior}, Gender{M,F}, Profession{student,unemployed,businessman,retired}, Product{mobile,smartphone,tablet} and Sales department{center,suburbia}. The contingency tables in Figure 2(b) and Figure 2(c) show how the values of attribute Product are distributed w.r.t. the two attributes Profession and Sales department. From Figure 2(c), we observe that Product=tablet occurs only with Sales dep.=suburbia and Product=mobile occurs only with Sales dep.=center. Conversely, Product=smartphone is satisfied both when Sales dep.=center and Sales dep.=suburbia.

Figure 3 :

 3 Figure 3: Average F-Measure using the Euclidean distance and the Kullback-Leibler divergence.

Figure 5 :

 5 Figure 5: Assessment of the influence of the threshold in selecting reliable negative examples for Pulce

Table 1 :

 1 Datasets characteristics with a 10-folds cross validation

	Dataset	Attributes % of Pos. N. of Pos. N. of Unlabeled Test Inst.
			30%	15	79	11
	audiology	69	40%	20	74	11
			50%	26	68	11
			30%	54	203	29
	breast-cancer	9	40%	72	185	29
			50%	91	166	29
			30%	451	2425	320
	chess	36	40%	601	2275	320
			50%	751	2125	320
			30%	92	529	69
	credit-a	15	40%	122	499	69
			50%	153	468	69
			30%	30	136	19
	dermatology	34	40%	40	126	19
			50%	50	116	19
			30%	45	228	30
	heart-c	13	40%	60	213	30
			50%	75	198	30
			30%	9	130	16
	hepatitis	19	40%	12	127	16
			50%	15	124	16
			30%	15	75	10
	iris	4	40%	20	70	10
			50%	25	65	10
			30%	17	111	14
	lymph	18	40%	22	106	14
			50%	28	100	14
			30%	390	1950	260
	madelon	500	40%	520	1820	260
			50%	650	1690	260
			30%	1136	6176	812
	mushroom	22	40%	1515	5797	812
			50%	1894	5418	812
			30%	1166	6562	859
	nursery	8	40%	1555	6173	859
			50%	1944	5784	859
			30%	135	556	77
	pima	8	40%	180	511	77
			50%	225	466	77
			30%	25	140	18
	soybean	35	40%	33	132	18
			50%	42	123	18
			30%	836	3305	460
	spambase	57	40%	1115	3026	460
			50%	1394	2747	460
			30%	72	319	44
	vote	16	40%	96	295	44
			50%	120	271	44

Table 2 :

 2 F-Measure results over the 48 samples with k = 1 (χ 2 F = 38.8869)

	pos.	Dataset	PNB PTAN APNB	APTAN Pulce	LUHC
	30% audiology	0.68	0.66	0.70	0.66	0.74	0.14
	40% audiology	0.75	0.71	0.74	0.66	0.82	0.50
	50% audiology	0.80	0.78	0.80	0.71	0.89	0.70
	30% breast-cancer	0.40	0.43	0.39	0.43	0.46	0.83
	40% breast-cancer	0.42	0.43	0.40	0.45	0.47	0.83
	50% breast-cancer	0.42	0.44	0.41	0.44	0.47	0.83
	30% chess	0.58	0.59	0.64	0.64	0.70	0.69
	40% chess	0.58	0.60	0.64	0.64	0.70	0.69
	50% chess	0.58	0.60	0.64	0.64	0.66	0.69
	30% credit-a	0.73	0.72	0.73	0.72	0.83	0.62
	40% credit-a	0.73	0.72	0.72	0.72	0.83	0.62
	50% credit-a	0.73	0.72	0.72	0.72	0.82	0.62
	30% dermatology	0.57	0.57	0.57	0.56	0.97	0.75
	40% dermatology	0.57	0.57	0.58	0.57	0.98	0.75
	50% dermatology	0.59	0.57	0.60	0.58	0.99	0.75
	30% heart-c	0.73	0.63	0.70	0.64	0.69	0.71
	40% heart-c	0.77	0.63	0.78	0.70	0.74	0.71
	50% heart-c	0.77	0.63	0.77	0.68	0.75	0.71
	30% hepatitis	0.87	0.85	0.87	0.86	0.76	0.04
	40% hepatitis	0.88	0.85	0.88	0.85	0.77	0.04
	50% hepatitis	0.88	0.86	0.88	0.85	0.81	0.04
	30% iris	0.66	0.65	0.64	0.64	0.83	0.67
	40% iris	0.68	0.67	0.66	0.65	0.92	0.67
	50% iris	0.70	0.68	0.68	0.68	0.97	0.67
	30% lymph	0.84	0.79	0.85	0.84	0.81	0
	40% lymph	0.84	0.79	0.83	0.81	0.74	0.60
	50% lymph	0.86	0.81	0.87	0.82	0.85	0.60
	30% madelon	0.67	0.67	0.67	0.67	0.67	0.67
	40% madelon	0.67	0.67	0.67	0.67	0.67	0.67
	50% madelon	0.67	0.67	0.67	0.67	0.67	0.67
	30% mushroom	0.72	0.68	0.67	0.67	0.72	0.68
	40% mushroom	0.75	0.73	0.67	0.68	0.76	0.68
	50% mushroom	0.75	0.74	0.68	0.69	0.81	0.68
	30% nursery	0.65	0.56	0.65	0.50	0.74	0.67
	40% nursery	0.69	0.61	0.69	0.56	0.77	0.67
	50% nursery	0.69	0.74	0.70	0.44	0.81	0.67
	30% pima	0.49	0.50	0.50	0.50	0.51	0.79
	40% pima	0.49	0.50	0.50	0.51	0.53	0.79
	50% pima	0.49	0.50	0.51	0.52	0.50	0.79
	30% soybean	0.81	0.80	0.86	0.81	0.76	0.67
	40% soybean	0.86	0.84	0.86	0.83	0.79	0.67
	50% soybean	0.92	0.88	0.92	0.86	0.82	0.67
	30% spambase	0.57	0.57	0.57	0.57	0.64	0.75
	40% spambase	0.57	0.57	0.57	0.57	0.66	0.75
	50% spambase	0.57	0.57	0.57	0.57	0.66	0.75
	30% vote	0.62	0.56	0.62	0.55	0.70	0.76
	40% vote	0.71	0.58	0.71	0.54	0.79	0.76
	50% vote	0.77	0.61	0.77	0.56	0.81	0.76
		N. of wins	11	3	13	3	25	14
		Avg. F-Meas.	0.68	0.65	0.68	0.65	0.74	0.63
		Avg. ranking	3.21	4.24	3.33	4.32	2.28	3.61

Table 3 :

 3 F-Measure results over the 48 samples with k = 7 (χ 2 F = 51.1875)

	% pos. Dataset	PNB	PTAN APNB	APTAN Pulce	LUHC
	30%	audiology	0.68	0.66	0.70	0.66	0.74	0.14
	40%	audiology	0.75	0.71	0.74	0.66	0.85	0.50
	50%	audiology	0.80	0.78	0.80	0.71	0.90	0.70
	30%	breast-cancer	0.40	0.43	0.39	0.43	0.53	0.83
	40%	breast-cancer	0.42	0.43	0.40	0.45	0.44	0.83
	50%	breast-cancer	0.42	0.44	0.41	0.44	0.44	0.83
	30%	chess	0.58	0.59	0.64	0.64	0.70	0.69
	40%	chess	0.58	0.60	0.64	0.64	0.69	0.69
	50%	chess	0.58	0.60	0.64	0.64	0.66	0.69
	30%	credit-a	0.73	0.72	0.73	0.72	0.84	0.62
	40%	credit-a	0.73	0.72	0.72	0.72	0.84	0.62
	50%	credit-a	0.73	0.72	0.72	0.72	0.87	0.62
	30%	dermatology	0.57	0.57	0.57	0.56	0.99	0.75
	40%	dermatology	0.57	0.57	0.58	0.57	0.99	0.75
	50%	dermatology	0.59	0.57	0.60	0.58	0.99	0.75
	30%	heart-c	0.73	0.63	0.70	0.64	0.72	0.71
	40%	heart-c	0.77	0.63	0.78	0.70	0.75	0.71
	50%	heart-c	0.77	0.63	0.77	0.68	0.77	0.71
	30%	hepatitis	0.87	0.85	0.87	0.86	0.87	0.04
	40%	hepatitis	0.88	0.85	0.88	0.85	0.88	0.04
	50%	hepatitis	0.88	0.86	0.88	0.85	0.88	0.04
	30%	iris	0.66	0.65	0.64	0.64	0.72	0.67
	40%	iris	0.68	0.67	0.66	0.65	0.86	0.67
	50%	iris	0.70	0.68	0.68	0.68	0.93	0.67
	30%	lymph	0.84	0.79	0.85	0.84	0.84	0.00
	40%	lymph	0.84	0.79	0.83	0.81	0.83	0.60
	50%	lymph	0.86	0.81	0.87	0.82	0.80	0.60
	30%	madelon	0.67	0.67	0.67	0.67	0.67	0.67
	40%	madelon	0.67	0.67	0.67	0.67	0.67	0.67
	50%	madelon	0.67	0.67	0.67	0.67	0.67	0.67
	30%	mushroom	0.72	0.68	0.67	0.67	0.74	0.68
	40%	mushroom	0.75	0.73	0.67	0.68	0.76	0.68
	50%	mushroom	0.75	0.74	0.68	0.69	0.82	0.68
	30%	nursery	0.65	0.56	0.65	0.50	0.74	0.67
	40%	nursery	0.69	0.61	0.69	0.56	0.77	0.67
	50%	nursery	0.69	0.74	0.70	0.44	0.81	0.67
	30%	pima	0.49	0.50	0.50	0.50	0.53	0.79
	40%	pima	0.49	0.50	0.50	0.51	0.55	0.79
	50%	pima	0.49	0.50	0.51	0.52	0.52	0.79
	30%	soybean	0.81	0.80	0.86	0.81	0.73	0.67
	40%	soybean	0.86	0.84	0.86	0.83	0.76	0.67
	50%	soybean	0.92	0.88	0.92	0.86	0.83	0.67
	30%	spambase	0.57	0.57	0.57	0.57	0.64	0.75
	40%	spambase	0.57	0.57	0.57	0.57	0.66	0.75
	50%	spambase	0.57	0.57	0.57	0.57	0.66	0.75
	30%	vote	0.62	0.56	0.62	0.55	0.68	0.76
	40%	vote	0.71	0.58	0.71	0.54	0.80	0.76
	50%	vote	0.77	0.61	0.77	0.56	0.82	0.76
		N. of wins	11	3	13	3	29	15
		Avg. F-Meas.	0.68	0.65	0.68	0.65	0.75	0.63
		Avg. ranking	3.27	4.30	3.42	4.37	2.00	3.63

Table 4 :

 4 F-Measure results over the 48 samples with k = 13 (χ 2 F = 46.8155)

	% pos. Dataset	PNB	PTAN APNB	APTAN Pulce	LUHC
	30%	audiology	0.68	0.66	0.70	0.66	0.75	0.14
	40%	audiology	0.75	0.71	0.74	0.66	0.87	0.50
	50%	audiology	0.80	0.78	0.80	0.71	0.94	0.70
	30%	breast-cancer	0.40	0.43	0.39	0.43	0.55	0.83
	40%	breast-cancer	0.42	0.43	0.40	0.45	0.41	0.83
	50%	breast-cancer	0.42	0.44	0.41	0.44	0.42	0.83
	30%	chess	0.58	0.59	0.64	0.64	0.69	0.69
	40%	chess	0.58	0.60	0.64	0.64	0.68	0.69
	50%	chess	0.58	0.60	0.64	0.64	0.64	0.69
	30%	credit-a	0.73	0.72	0.73	0.72	0.83	0.62
	40%	credit-a	0.73	0.72	0.72	0.72	0.85	0.62
	50%	credit-a	0.73	0.72	0.72	0.72	0.87	0.62
	30%	dermatology	0.57	0.57	0.57	0.56	0.99	0.75
	40%	dermatology	0.57	0.57	0.58	0.57	0.99	0.75
	50%	dermatology	0.59	0.57	0.60	0.58	0.99	0.75
	30%	heart-c	0.73	0.63	0.70	0.64	0.72	0.71
	40%	heart-c	0.77	0.63	0.78	0.70	0.76	0.71
	50%	heart-c	0.77	0.63	0.77	0.68	0.78	0.71
	30%	hepatitis	0.87	0.85	0.87	0.86	0.87	0.04
	40%	hepatitis	0.88	0.85	0.88	0.85	0.88	0.04
	50%	hepatitis	0.88	0.86	0.88	0.85	0.88	0.04
	30%	iris	0.66	0.65	0.64	0.64	0.67	0.67
	40%	iris	0.68	0.67	0.66	0.65	0.77	0.67
	50%	iris	0.70	0.68	0.68	0.68	0.90	0.67
	30%	lymph	0.84	0.79	0.85	0.84	0.84	0.0
	40%	lymph	0.84	0.79	0.83	0.81	0.82	0.60
	50%	lymph	0.86	0.81	0.87	0.82	0.81	0.60
	30%	madelon	0.67	0.67	0.67	0.67	0.67	0.67
	40%	madelon	0.67	0.67	0.67	0.67	0.67	0.67
	50%	madelon	0.67	0.67	0.67	0.67	0.67	0.67
	30%	mushroom	0.72	0.68	0.67	0.67	0.74	0.68
	40%	mushroom	0.75	0.73	0.67	0.68	0.76	0.68
	50%	mushroom	0.75	0.74	0.68	0.69	0.82	0.68
	30%	nursery	0.65	0.56	0.65	0.50	0.74	0.67
	40%	nursery	0.69	0.61	0.69	0.56	0.77	0.67
	50%	nursery	0.69	0.74	0.70	0.44	0.81	0.67
	30%	pima	0.49	0.50	0.50	0.50	0.52	0.79
	40%	pima	0.49	0.50	0.50	0.51	0.55	0.79
	50%	pima	0.49	0.50	0.51	0.52	0.53	0.79
	30%	soybean	0.81	0.80	0.86	0.81	0.73	0.67
	40%	soybean	0.86	0.84	0.86	0.83	0.76	0.67
	50%	soybean	0.92	0.88	0.92	0.86	0.85	0.67
	30%	spambase	0.57	0.57	0.57	0.57	0.61	0.75
	40%	spambase	0.57	0.57	0.57	0.57	0.66	0.75
	50%	spambase	0.57	0.57	0.57	0.57	0.66	0.75
	30%	vote	0.62	0.56	0.62	0.55	0.68	0.76
	40%	vote	0.71	0.58	0.71	0.54	0.80	0.76
	50%	vote	0.77	0.61	0.77	0.56	0.82	0.76
		N. of wins	10	3	12	3	28	17
		Avg. F-Meas.	0.68	0.65	0.68	0.65	0.75	0.63
		Avg. ranking	3.25	4.28	3.42	4.36	2.09	3.59
	the decrease of F-Measure for increasing percentage of positive examples. Notice also that
	learning good models in strategy games does not require a high quantity of examples, but
	that the few employed examples are of good quality.			

  Sensitivity analysis of parameter k for PulceIn soybean we measure a variation of 0.10 for low percentage of positive examples (30%) while for higher percentage of positive examples the results are quite stable, as expected. For both breast-cancer and hepatitis the maximum variation is below 0.11 for the lowest
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