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Abstract

The 1-2 Conjecture raised by Przyby lo and Woźniak in 2010 asserts that every undirected
graph admits a 2-total-weighting such that the sums of weights “incident” to the vertices
yield a proper vertex-colouring. Following several recent works bringing related problems
and notions (such as the well-known 1-2-3 Conjecture, and the notion of locally irregular
decompositions) to digraphs, we here introduce and study several variants of the 1-2 Con-
jecture for digraphs. For every such variant, we raise conjectures concerning the number of
weights necessary to obtain a desired total-weighting in any digraph. We verify some of these
conjectures, while we obtain close results towards the ones that are still open.

1. Introduction

An edge-weighting w : E(G) → N∗ of an undirected graph G is called sum-colouring if
the sums of weights “incident” to the vertices yield a proper vertex-colouring of G. More
precisely, for each vertex v of G one can compute

σe(v) :=
∑

u∈N(v)

w(vu)

and we require σe to be a proper vertex-colouring. The smallest k ≥ 1 such that G admits a
sum-colouring k-edge-weighting (if any) is denoted χeσ(G).1

The 1-2-3 Conjecture, posed by Karonski,  Luczak and Thomason [9] in 2004, reads as
follows (where an isolated edge refers to a connected component isomorphic to K2).

IThe first, third and fourth authors were supported by CNRS-PICS Project no. 6367 “GraphPar”. The
second author was supported by ANR grant no. ANR-13-BS02-0007 “STINT”, ERC Advanced Grant GRA-
COL, project no. 320812, and PEPS grant POCODIS. The third author was supported by the National
Science Centre, Poland, grant no. 2014/13/B/ST1/01855. The third and fourth authors were partly sup-
ported by the Polish Ministry of Science and Higher Education. The fourth author was supported by the
National Science Centre, Poland, grant no. DEC- 2013/09/B/ST1/01772.

1This notation and its variants should be understood as follows throughout: χ is a chromatic parameter;
the superscript refers to the elements to be weighted or coloured; the subscript refers to the aggregate,
computed from the weighting or colouring, to be distinguished on the adjacent vertices.

Preprint submitted to ... September 11, 2018



Conjecture 1.1 (Karonski,  Luczak, Thomason [9]). For every graph G with no isolated edge,
we have χeσ(G) ≤ 3.

Since its introduction, the 1-2-3 Conjecture has been attracting growing attention, resulting
in many research works considering either the conjecture itself or variants of it. As a best
result towards it, it was proved by Kalkowski, Karoński and Pfender that χeσ(G) ≤ 5 holds
for every graph G with no isolated edge [8]. For more information, we refer the interested
reader to [14] for a survey by Seamone on this wide topic.

In this paper, we mainly focus on two notions related to the 1-2-3 Conjecture. The
first one is the total version of the 1-2-3 Conjecture, called the 1-2 Conjecture, which was
introduced by Przyby lo and Woźniak in [12]. Quite similarly as in the context of weighting
edges only, we say that a total-weighting w : V (G)∪E(G)→ N∗ of G is sum-colouring if the
vertex-colouring σt defined as

σt(v) := w(v) +
∑

u∈N(v)

w(vu)

for every vertex v is a proper vertex-colouring. We then denote by χtσ(G) the least k ≥ 1
such that G admits a sum-colouring k-total-weighing. It is believed that being granted the
possibility to “locally” modify the sums of weights incident to the vertices (by altering the
vertex weights) should, compared to the original edge version, reduce the number of needed
weights.

Conjecture 1.2 (Przyby lo, Woźniak [12]). For every graph G, we have χtσ(G) ≤ 2.

The 1-2 Conjecture is known to hold for several families of graphs, such as 3-colourable
graphs, complete graphs, and 4-regular graphs [12]. As for upper bounds on χtσ, the best
known one is due to Kalkowski [7], who proved that χtσ(G) ≤ 3 holds for every graph G.
Actually, Kalkowski even proved that stronger sum-colouring 3-total-weightings, assigning
weights in {1, 2} to the vertices and in {1, 2, 3} to the edges, exist for all graphs.

It is worthwhile mentioning that both the 1-2-3 Conjecture and the 1-2 Conjecture were
considered in the more general list context. In that context, instead of weighting all the graph
elements (edges and possibly vertices) with values from the same list ({1, 2, 3} for the 1-2-3
Conjecture, {1, 2} for the 1-2 Conjecture), each element now has a private list from which a
weight must be chosen. Given a list assignment to the elements we want to weight, the goal
is then to design a sum-colouring weighting where the weights are picked from the assigned
lists. The list version of the 1-2-3 Conjecture, posed by Bartnicki, Grytczuk and Niwcyk [1],
asserts that such sum-colouring edge-weightings can be constructed for every assignment of
lists of size 3 to the edges. The list version of the 1-2 Conjecture, posed by Przyby lo and
Woźniak [13], asserts that such sum-colouring total-weightings can be constructed for every
assignment of lists of size 2 to the vertices and edges. Again, we refer the interested reader
to [14] for more details on these two list variants. A remarkable result we should mention,
however, is one due to Wong and Zhu [15], who proved that sum-colouring total-weightings
can be constructed for every assignment of lists of size 3 to the edges and lists of size 2 to
the vertices. In contrast, it is still not known whether there is a constant k ≥ 3 such that
sum-colouring edge-weightings can be constructed for every assignment of lists of size k to
the edges.
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The second notion considered in this paper is the one of locally irregular decompositions.
We say that a graph G is locally irregular if every two of its adjacent vertices have distinct
degrees. A locally irregular edge-colouring of G is then an edge-colouring where each colour
induces a locally irregular subgraph. We denote by χeirr(G) the least number of colours in a
locally irregular edge-colouring of G (if any). Intuitively, the parameter χeirr can be seen as
a measure of how “far” from (locally) irregular a graph is. This parameter was introduced
and studied by the current authors in [2] mainly because of its link to the 1-2-3 Conjecture
and some of its variants. In particular, let us mention that in very particular settings, such
as when dealing with regular graphs and only two colours, finding a sum-colouring edge-
weighting is equivalent to finding a locally irregular edge-colouring.

Since their introduction, locally irregular edge-colourings gave birth to several investiga-
tions. An important first result to have in hand is the exhaustive list of those exceptional
graphs for which the parameter χeirr is not defined at all. In [2], it was proved that these
exceptional graphs are exactly those in the family P ∪ C ∪ T , where P is the class of all
odd-length paths, C is the class of all odd-length cycles, and T is a peculiar class of graphs
obtained by joining, via disjoint paths with particular lengths, disjoint triangles in a tree-like
fashion (refer to [2] for the exact definition). For graphs not in P ∪ C ∪ T , hence when χeirr
is defined, the following conjecture was raised.

Conjecture 1.3 (Baudon, Bensmail, Przyby lo, Woźniak [2]). For every graph G not in
P ∪ C ∪ T , we have χeirr(G) ≤ 3.

Conjecture 1.3 has been mainly verified for several families of graphs, including regular graphs
of large degree [2] and graphs of large minimum degree [11]. It should be noted that it is NP-
complete in general to compute the exact value of χeirr(G) for a given graph G, as shown in [3]
by Baudon, Bensmail and Sopena. In a recent work [5], Bensmail, Merker and Thomassen
provided the first constant upper bound on χeirr, showing that χeirr(G) ≤ 328 holds for every
graph G admitting locally irregular decompositions. Later on [10], Lužar, Przyby lo and Soták
proved that χeirr(G) ≤ 220 always holds.

This paper is mainly inspired by two papers, namely [4] (authored by Baudon, Bensmail
and Sopena) and [6] (authored by Bensmail and Renault), which brought Conjectures 1.1
and 1.3 in the context of digraphs in the particular setting where all notions of “incident
weights” and “locally irregular graphs” are with respect to the outdegree parameter. So
that we avoid any confusion, we omit the formal definitions and statements here and will
rather recall them in the corresponding upcoming sections. Let us just mention that the
directed version of Conjecture 1.1 from [4] was completely verified in the same paper, while,
towards the directed version of Conjecture 1.3 from [6], only partial results, proved in that
same paper, are known to date. To the best of our knowledge, nothing was known for total
variants of these problems.

Section 2 is dedicated to sum-colouring edge-weightings and total-weightings in digraphs,
while Section 3 is devoted to irregular decompositions in digraphs. The three series of results
from these sections are comparable, and should hence be regarded in parallel. We start, in
Section 2, by filling in the space showing that the directed version of the 1-2 Conjecture in
the setting of [4] is false in a strong sense, and introduce a holding variant. In Section 3,
we start by improving the main result of [6], going one step closer to the main conjecture in

3



that paper. We then investigate two total versions of the same problem inspired by the 1-2
Conjecture. For these two versions, we provide bounds which are close to what we conjecture
to be optimal. Some conclusions are gathered in Section 4.

Notation and terminology: Throughout this paper, we focus on simple digraphs, i.e.
loopless digraphs with no two arcs directed in the same direction between any pair of distinct
vertices. Note that this definition allows our digraphs to have digons, i.e. directed cycles of
length 2. Any arc (u, v) of a digraph D will be denoted −→uv to lighten the notation and make
the arc’s direction apparent. The outdegree (resp. indegree) of a vertex v of D is its number
d+D(v) (resp. d−D(v)) of outgoing (resp. incoming) incident arcs. In case no ambiguity is
possible, the subscript in this notation will be freely omitted. The maximum outdegree (resp.
maximum indegree) of D, denoted ∆+(D) (resp. ∆−(D)) refers to the maximum outdegree
(resp. indegree) over the vertices of D.

2. Sum-colouring arc- and total-weightings in digraphs

In this section, we investigate how the results from [4], which concern a directed version
of Conjecture 1.1, can be extended to the total context (i.e. when also the vertices are
weighted). We start in Section 2.1 by recalling the investigations from [4]. Then we consider,
in Sections 2.2 and 2.3, two directed analogues of the 1-2 Conjecture derived from the problem
considered in that paper. The first such variant is shown to be false, even in a strong sense,
while the second one is shown to hold.

2.1. Outsum-colouring arc-weightings

Let D be a digraph, and w an arc-weighting of D. From w, one can compute, for every
vertex v, the sum (outsum) σe+(v) of “outgoing weights”, formally defined as

σe+(v) :=
∑

u∈N+(v)

w(−→vu).

In case σe+ is a proper vertex-colouring, we call w outsum-colouring. The least number k ≥ 1
of weights needed to obtain an outsum-colouring k-arc-weighting of D is denoted χeσ+(D).
Using a very simple argument, Baudon, Bensmail and Sopena showed in [4] that the tightest
upper bound on χeσ+ is 3, which cannot be improved as deciding whether χeσ+(D) ≤ 2 holds
for a given digraph D is NP-complete in general. Since this upper bound will be of some use
in the upcoming sections, we state it here.

Theorem 2.1 (Baudon, Bensmail, Sopena [4]). For every digraph D, we have χeσ+(D) ≤ 3.

2.2. Outsum-colouring total-weightings

We now consider the natural directed variant of the 1-2 Conjecture, where the terminology
we use is inspired by that introduced in Section 2.1. Assume w is a total-weighting of a
digraph D. To every vertex v, we associate the colour σt+(v), where

σt+(v) := w(v) +
∑

u∈N+(v)

w(−→vu).
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Figure 1: A digraph with no outsum-colouring 2-total-weighting.

We say that w is outsum-colouring if σt+ is a proper vertex-colouring. Again, the least number
k ≥ 1 of weights needed to deduce an outsum-colouring k-total-weighting of D is denoted
χtσ+(D).

Due to Theorem 2.1, clearly we have χtσ+(D) ≤ 3 for every digraph D (start from an
outsum-colouring χeσ+(D)-arc-weighting, and put weight 1 on all vertices). As a straight
directed analogue of the 1-2 Conjecture, one could naturally wonder about the following
question.

Question 2.2. For every digraph D, do we have χtσ+(D) ≤ 2?

Unfortunately, easy counterexamples to Question 2.2 can be exhibited, showing that 3 is
actually the best general upper bound on χtσ+. It can even be proved that Question 2.2 is
far from being true, in the sense that there exists no constant k ≥ 3 such that every digraph
admits an outsum-colouring (k, 2)-total-weighting, i.e. an outsum-colouring total-weighting
using weights among {1, ..., k} on the vertices and among {1, 2} on the arcs.

Proposition 2.3. For every k ≥ 1, there exist digraphs admitting no outsum-colouring
(k, 2)-total-weighting.

Proof. Given k, choose any odd integer n ≥ 5 such that k < dn
2
e, and let

−→
Tn be the tournament

on n vertices defined as follows. Denote 0, 1, ..., n−1 the vertices of
−→
Tn, and, for every vertex i

of
−→
Tn, add the arcs

−−−−−→
(i, i+ 1),

−−−−−→
(i, i+ 2), ...,

−−−−−−−→
(i, i+ bn

2
c), where the indexes are taken modulo n.

By construction, every vertex of
−→
Tn has outdegree precisely bn

2
c. For this reason, for any

vertex v, the possible values for σt+(v) by a (k, 2)-total-weighting w of
−→
Tn are those among

the set
S :=

{⌊n
2

⌋
+ 1,

⌊n
2

⌋
+ 2, ..., 2 ·

⌊n
2

⌋
+ k
}
,

which includes bn
2
c+ k values. By our choice of n, we have |S| < bn

2
c+ dn

2
e = n. From this,

we deduce that there has to be at least two vertices of
−→
Tn having the same outsums by w.

Since
−→
Tn is a tournament, this implies that w is not outsum-colouring.

Due to Proposition 2.3, digraphs may not admit outsum-colouring (k, 2)-total-weightings
with k being any fixed constant. Hence, to design outsum-colouring (k, 2)-total-weightings,
in general we should rather consider values of k depending on the given digraph. This is
illustrated in the following result, which is actually tight.
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Proposition 2.4. Every digraph D admits an outsum-colouring (∆+(D)+1, 2)-total-weighting.
Furthermore, there exist digraphs for which we cannot decrease the number of vertex weights.

Proof. Let w be an outsum-colouring 3-arc-weighting of D. Such exists according to Theo-
rem 2.1. Now for every vertex v ∈ V (D), define

n3(v) := |{−→vu ∈ A(D) : w(−→vu) = 3}| ,

the number of arcs outgoing from v weighted 3 by w. Clearly, we have n3(v) ≤ ∆+(D).
Now consider the (∆+(D) + 1, 2)-total-weighting w′ of D defined as w′(v) = n3(v) + 1 for every v ∈ V (D), and

w′(−→uv) = min{2, w(−→uv)} for every −→uv ∈ A(D).

By the way w′ is defined, the value σt+(v) induced by w′ is exactly 1 + σe+(v), for the value
of σe+(v) induced by w. Since w is outsum-colouring, then w′ is also outsum-colouring.

To conclude the proof, we just note that the construction from the proof of Proposition 2.3

confirms the last part of the statement, as every considered tournament
−→
Tn verifies ∆+(

−→
Tn) +

1 = bn
2
c+ 1 = dn

2
e.

We end this section by mentioning that Proposition 2.3 remains true even if one requires
the adjacent “incident outmultisets” (rather than the “incident outsums”) to be different.
This will justify our investigations in Section 3.2. Let w be an arc-weighting (resp. total-
weighting) of a digraph D. Here, by the outmultiset of any vertex v of D, we mean the
multiset {{w(a1), ..., w(ad+(v))}} (resp. {{w(a1), ..., w(ad+(v)), w(v)}} of weights “outgoing” from
v, where a1, ..., ad+(v) denote the arcs outgoing from v. Note that, for any two adjacent vertices
u, v, the outmultisets of u and v differ whenever their outsums differ (but the contrary is not
always true). Hence, distinguishing vertices via their outmultisets is easier than distinguishing
vertices via their outsums.

Remark 2.5. For every k ≥ 1, there exist digraphs admitting no (k, 2)-total-weighting dis-
tinguishing the adjacent vertices by their outmultisets.

2.3. Pair-colouring total-weightings

As pointed out in the previous section, the directed analogue of the 1-2 Conjecture in the
setting of [4] is false in a strong sense (recall Proposition 2.3 and Remark 2.5). In this section,
we show that by modifying the aggregate to be distinguished on the adjacent vertices, we
get another directed variant of the 1-2 Conjecture, which, here, is verified.

Let w be a total-weighting of a digraph D. From w, we compute at every vertex v the
value

ρt+(v) :=

w(v),
∑

u∈N+(v)

w(−→vu)

 .

In case the vertex-colouring ρt+ is proper, we call w pair-colouring. The least number k ≥ 1
of weights needed to obtain a pair-colouring k-total-weighting of D is denoted χtρ+(D).

We now prove the analogue of the 1-2 Conjecture for pair-colouring total-weighting.
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Theorem 2.6. For every digraph D, we have χtρ+(D) ≤ 2.

Proof. Set n := |V (D)|. Let v1, ..., vn be the ordering of V (D) defined in the following way.
Let vn be a vertex of D satisfying d−D(vn) ≤ d+D(vn). Such a vertex exists since∑

v∈V (D)

d−D(v) =
∑

v∈V (D)

d+D(v).

Now consider the digraph D − {vn}, and denote vn−1 one vertex of V (D) \ {vn} satisfying
d−D−{vn}(vn−1) ≤ d+D−{vn}(vn−1). Repeat the same procedure until all vertices of D are labelled.
Namely, assuming that the vertices vn−i+1, ..., vn have been defined, choose vn−i as a vertex
of D − {vn−i+1, ..., vn} satisfying

d−D−{vn−i+1,...,vn}(vn−i) ≤ d+D−{vn−i+1,...,vn}(vn−i),

which again exists according to the same argument as above.
We construct a pair-colouring 2-total-weighting w ofD by considering the vertices v1, ..., vn

from “left” to “right”, i.e. in increasing order of their indexes. Assume v1, ..., vi−1 have already
been correctly treated, i.e. ρt+(v1), ..., ρ

t
+(vi−1) are defined (these vertices and their outgoing

arcs have been each assigned a weight) and ρt+(vj) 6= ρt+(vj′) for every j, j′ ∈ {1, ..., i − 1}
such that vj and vj′ are adjacent. Let Di := D−{vi+1, ..., vn}. We now assign a weight to vi
and its outgoing arcs by w in such a way that no conflict arises. An important thing to keep
in mind is that weighting an arc −−→vivj does not alter ρt+(vj). Note further that ρt+(vi) 6= ρt+(vj)
whenever w(vi) 6= w(vj).

For α = 1, 2, let

nα :=
∣∣{vj ∈ N−Di

(vi) ∪N+
Di

(vi) : j < i and w(vj) = α
}∣∣

be the number of already treated adjacent vertices which have been assigned weight α. There
has to be a value of α ∈ {1, 2} for which

nα ≤
⌊
d+Di

(vi) + d−Di
(vi)

2

⌋
.

Let us assume α = 1 in what follows.
Set w(vi) = 1. Then vi is already distinguished from all its already treated adjacent

vertices which received weight 2 by w. Now what remains to do is to weight the arcs outgoing
from vi in D so that vi is distinguished by its outsum from all its already treated adjacent
vertices which received weight 1 by w (refer to Figure 2 for an illustration). The possible
outsums for vi in D by w are those among

S :=
{
d+D(vi), d

+
D(vi) + 1, ..., 2d+D(vi)

}
,

forming a set with cardinality d+D(vi) + 1. But the outsum of vi has to be different from the
outsums of its n1 previously treated adjacent vertices which also received weight 1 by w. By
the ordering of the vertices of D, we have

d+Di
(vi) + d−Di

(vi) ≤ 2d+Di
(vi),
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(2, σ+) (1, σ+)

σ+=1 σ+=2 σ+=3
vi

(1, σ+ = 4)

1

1
2

?

?

Figure 2: Illustration of the proof of Theorem 2.6.

yielding
n1 ≤ d+Di

(vi) < |S|.

There is thus at least one value s among S which does not appear as the outsum by w of
any vertex vj with j < i neighbouring vi which received weight 1. Then just weight the
arcs outgoing from vi so that the outsum of vi is s. Now vi also gets distinguished from its
previously considered neighbours weighted 1.

By repeating the above procedure until v1 is treated, we eventually get the claimed pair-
colouring 2-total-weighting w, concluding the proof.

3. Irregular arc- and total-decompositions in digraphs

We now focus on irregular decompositions of digraphs, where the notion of irregularity is
with respect to the one introduced in [6] by Bensmail and Renault. We start by recalling the
needed terminology and notation in Section 3.1. In the same section, we then improve the
main result from [6] by showing that every digraph is decomposable into at most five locally
irregular digraphs (while six is proved there). Total counterparts for irregular decompositions
of the notions we have introduced in Sections 2.2 and 2.3, are then studied in Sections 3.2
and 3.3.

3.1. Locally irregular arc-colourings

A digraph D is called locally irregular if its adjacent vertices have distinct outdegrees.
An arc-colouring of D is called locally irregular if its every colour class induces a locally
irregular subdigraph. The smallest number of colours in a locally irregular arc-colouring of
D is denoted by χeirr+(D).

The main conjecture stated in [6] is the following.

Conjecture 3.1 (Bensmail, Renault [6]). For every digraph D, we have χeirr+(D) ≤ 3.

It is important to mention, as pointed out in [6], that the upper bound of 3 in Conjecture 3.1

cannot be reduced to 2 in general. For an easy illustration, consider the directed cycle
−→
C3

of length 3 (i.e. the digraph with vertex set {v0, v1, v2} and arc set {−−→v0v1,−−→v1v2,−−→v2v0}), which

clearly verifies χeirr+(
−→
C3) = 3. It turns out that determining whether χeirr+(D) ≤ 2 holds for
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a given digraph D is NP-complete in general [6]; hence, many more digraphs needing three
colours exist. To date, we are not aware of any digraph D verifying χeirr+(D) > 3.

The originators of Conjecture 3.1 proved its following weakening.

Theorem 3.2 (Bensmail, Renault [6]). For every digraph D, we have χeirr+(D) ≤ 6.

The proof of Theorem 3.2 consists in first arc-decomposing any D into two acyclic digraphs,
i.e. two digraphs with no directed cycles. The claimed upper bound then follows by showing
that Conjecture 3.1 holds for acyclic digraphs (as first proved in [6]). We formally state this
result as it will be used in some of our upcoming proofs.

Lemma 3.3 (Bensmail, Renault [6]). For every acyclic digraph D, we have χeirr+(D) ≤ 3.

The NP-completeness result mentioned earlier actually also holds for acyclic digraphs [6].
Namely, deciding whether χeirr+(D) ≤ 2 is an NP-complete problem, even when restricted
to acyclic digraphs D. This implies that there exist infinitely many acyclic digraphs that
cannot be arc-coloured with only two colours, hence that the bound in Lemma 3.3 cannot be
improved in general.

Our improvement on the bound in Theorem 3.2 from 6 down to 5, consists in showing that
every digraph admits an arc-decomposition into one acyclic digraph and one degree-decreasing
acyclic digraph, which we define as an acyclic digraph admitting an ordering v1, ..., vn of its
vertices such that

1. all arcs are directed “to the right” (i.e. for every two adjacent vertices vi, vj with i < j,
the arc is −−→vivj), and

2. d+(vi) ≥ d+(vj) whenever i < j.

Since acyclic digraphs D verify χeirr+(D) ≤ 3 (according to Lemma 3.3) and degree-decreasing
acyclic digraphs D verify χeirr+(D) ≤ 2 (which we show in Lemma 3.6 below), our result
follows.

Theorem 3.4. For every digraph D, we have χeirr+(D) ≤ 5.

Towards Theorem 3.4, as a first step we start by pointing out that every digraph in-
deed admits an arc-decomposition into one acyclic digraph and one degree-decreasing acyclic
digraph.

Lemma 3.5. Every digraph D admits an arc-decomposition into one acyclic digraph and one
degree-decreasing acyclic digraph.

Proof. Consider the following ordering v1, ..., vn over the vertices ofD. Start with v1 being one
vertex of D with largest outdegree (if there are several choices as v1, pick any of them). Now
remove v1 from D and choose v2 to be one vertex of D − {v1} with the largest outdegree.
Then remove v2 from D − {v1} and continue the procedure until all vertices are labelled.
Basically, if we just read the vertices from “left” (i.e. v1) to “right” (i.e. vn) we get that for
every two vertices vi and vj with i < j, vertex vi has at least as many outneighbours as vj
towards the right.
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Now let A2 be the subset of arcs of D containing all arcs of the form −−→vivj with i < j
(i.e. the arcs going to the right). Clearly D[A2] cannot have a directed cycle. Besides, due
to the ordering of the vertices, D[A2] is degree-decreasing. Now let A1 be the subset of
the remaining arcs, i.e. those going to the left. For the same reason as previously, D[A1]
is acyclic (but clearly it may not be degree-decreasing). Then A1 and A2 yield the desired
arc-decomposition.

We now prove the second ingredient of our proof of Theorem 3.4, namely that degree-
decreasing acyclic digraphs D verify χeirr+(D) ≤ 2. The proof is algorithmic and the result is
also of interest as, as mentioned earlier, there are acyclic digraphs D verifying χeirr+(D) = 3.
So our result provides a new class of acyclic digraphs for which two colours are sufficient.

Lemma 3.6. For every degree-decreasing acyclic digraph D, we have χ′irr(D) ≤ 2.

Proof. We prove the claim by induction on the order n of D. As it can easily be proved by
hand for small values of n, we proceed to the induction step. Let v1, ..., vn be an ordering of
V (D) such that all arcs are directed to the right (i.e. for every two adjacent vertices vi, vj
with i < j, the arc joining them is −−→vivj), and verifying d+(v1) ≥ ... ≥ d+(vn). Set v := v1,
and note that D − {v} is a degree-decreasing acyclic digraph, which hence admits a locally
irregular 2-arc-colouring, say with colour red and blue, according to the induction hypothesis.
Our goal is to extend this arc-colouring to the arcs outgoing from v, without creating any
outsum conflict.

Let u1, ..., uk denote the outneighbours of v in D; recall that d+(v) ≥ d+(ui) for every i.
Note that colouring any arc outgoing from v with red or blue does not affect the red and
blue outdegrees of the ui’s. Thus, when extending the colouring to the arcs outgoing from v,
we just have to make sure that its red outdegree does not meet that of any of the ui’s, and
similarly for its blue outdegree. In the following, we say that one of the ui’s is a (d1, d2)-vertex
if it has red outdegree d1 and blue outdegree d2.

Now consider the following procedure for colouring the arcs outgoing from v. As Step 1,
we start by colouring all arcs outgoing from v red. If this extension of the arc-colouring is
not locally irregular (otherwise we are done), then it means that at least one outneighbour
of v, say u1, has red outdegree k. Actually, by the ordering of the vertices of D, we even get
that u1 is a (k, 0)-vertex. As Step 2, we then colour the arc −→vu1 blue, and all other arcs
outgoing from v red. If this does not result in a locally irregular 2-arc-colouring, then, since
u1 has blue outdegree 0, this means that v has at least one outneighbour, say u2, which is a
(k − 1,≤ 1)-vertex different from u1. As Step 3, we then colour the arcs −→vu1 and −→vu2 blue,
and all other arcs red. This time, if an outsum conflict arises, then this means that at least
one third outneighbour of v, say, u3, different from u1 and u2, is a (k − 2,≤ 2)-vertex.

We carry on this procedure step by step: at Step i, we colour the arcs −→vu1, ...,−−−→vui−1 blue,
and the remaining arcs outgoing from v red. This cannot cause any blue outsum conflict
because the vertices u1, ..., ui−1 where revealed, in the previous steps, to have blue outdegree
strictly less than i− 1. So if a conflict arises, this is because at least one new outneighbour
of v, denoted ui, different from u1, ..., ui−1, is revealed to have red outsum k − i + 1. More
precisely, ui is revealed to be a (k − i+ 1,≤ i− 1)-vertex. For these reasons, once Step k is
achieved, if no locally irregular 2-arc-colouring has been obtained at any point, then it means
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u1 u2

u3u4

u1 u2

u3u4

u1 u2

u3u4

Figure 3: A locally irregular 2-total-colouring of a digraph with colours red and blue (left), the resulting red
total subdigraph (middle), and the resulting blue total subdigraph (right). In the middle and right pictures,
vertices filled in white are hollow while the other ones are solid.

that the u′is are precisely (k,≤ 0)-, (k− 1,≤ 1)-, (k− 2,≤ 2)-, ..., (1,≤ k− 1)-vertices. Then
colouring all arcs outgoing from v blue results in a correct colouring.

3.2. Locally irregular total-colourings

Let us now discuss a total counterpart of locally irregular decompositions, which is inspired
from [2], where the authors introduced similar concepts for undirected graphs, as an attempt
for binding the 1-2 Conjecture and locally irregular decompositions (the latter concept being
originally motivated by applications to the 1-2-3 Conjecture).

By a total digraph, we mean a triplet Dt := (V0, V1;A) with vertex set V0∪V1 (V0∩V1 = ∅)
and arc set A. The vertices in V0 are called hollow, while those in V1 are said solid. The main
difference between total digraphs and usual digraphs lies in the definition of vertex degrees.
Namely, for a total digraph Dt, the total outdegree (resp. indegree) of a vertex v, denoted
d+t (v) (resp. d−t (v)), is understood as only the number of arcs outgoing from (resp. incoming
to) v if v is a hollow vertex, or this quantity plus 1 if v is solid. In other words, solid vertices
have their indegrees and outdegrees being naturally altered by 1.

We call a total digraph Dt := (V0, V1;A) locally irregular if d+t (u) 6= d+t (v) for every arc
−→uv ∈ A. A locally irregular k-total-colouring of a usual digraph D is then a total-colouring c
of D with k colours such that each colour class induces a locally irregular total subdigraph
(where for any given colour i, the vertices of D coloured with i define V1 for the corresponding
total digraph, and the other vertices of D yield V0). The least number of colours needed to
colour D in this way is denoted by χtirr+(D).

These concepts are illustrated in Figure 3, which depicts a 2-total-colouring of a given
digraph (left). The resulting red total subdigraph (middle) is locally irregular since it verifies
d+t (u1) = 2, d+t (u2) = 1, d+t (u3) = 2, d+t (u4) = 1, and its arcs are −−→u1u2, −−→u2u3, −−→u3u4, −−→u4u1.
The resulting blue total subdigraph (right) is locally irregular since it verifies d+t (u1) = 0,
d+t (u2) = 2, d+t (u3) = 1, d+t (u4) = 1, and its arcs are −−→u3u1, −−→u2u4. Thus, the 2-total-colouring
in Figure 3 (left) is locally irregular.

As for a general upper bound on χtirr+, it is worth observing that if χtirr+(D) ≤ 2 held
for every digraph D, then every digraph would admit a 2-total-weighting distinguishing the
adjacent vertices by their outmultisets, contradicting Remark 2.5. We however believe that
the following conjecture should be the right direction.

Conjecture 3.7. For every digraph D, we have χtirr+(D) ≤ 3.
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Below, we get quite close to Conjecture 3.7 by proving that 4 bounds χtirr+ above. The
proof is reminiscent of that of Theorem 3.4; namely, it mainly follows from decomposing
digraphs into acyclic digraphs which we then decompose independently. We first need to
show that, for acyclic digraphs D, actually even χtirr+(D) ≤ 2 holds.

Lemma 3.8. For every acyclic digraph D, we have χtirr+(D) ≤ 2.

Proof. We prove the claim by induction on the order n of D. As it can easily be proved true
for small values of n, we focus on proving the induction step. Let v1, ..., vn be an ordering of
V (D) such that all arcs go to the right. Set v := v1; clearly D− {v} is acyclic, and D− {v}
hence admits a locally irregular 2-total-colouring with colours red and blue. As in the proof
of Lemma 3.6, our goal is to extend this colouring to v and its outgoing arcs without creating
any conflict.

Let u1, ..., uk denote the outneighbours of v in D. For every ui, we denote by dir and
dib the total outdegrees of ui in the total subdigraphs induced (thus far) by colours red and
blue, respectively. By the pigeonhole principle, for at least one of the k ordered pairs (1, k),
(2, k − 1), ..., (k, 1), say (r, k + 1− r) (where r ∈ {1, ..., k}), we must have∣∣{i : dir = r}|+ |{i : dib = k + 1− r}

∣∣ ≤ 1,

as otherwise none of the ui’s can have dir = k+ 1 nor dib = k+ 1, and we could just colour all
the arcs outgoing from v and v itself red. Suppose then that v has at most one outneighbour,
say ui (if any), with dir = r, and no outneighbour uj with djb = k+ 1− r for an r ∈ {1, ..., k}.
Then we can colour exactly k+1−r arcs outgoing from v, including vui (if it exists), blue, and
the remaining outgoing arcs of v and v itself red, thus creating no conflict. The construction
follows the same pattern in the symmetrical case, i.e. when v has at most one outneighbour,
say ui (if any), with dib = k + 1− r and no outneighbour uj with djr = r.

Theorem 3.9. For every digraph D, we have χtirr+(D) ≤ 4.

Proof. By Lemma 3.5, digraph D admits an arc-decomposition into a degree-decreasing
acyclic digraph D1 and an acyclic digraph D2. Note that decomposing a digraph into two lo-
cally irregular total subdigraphs with hollow vertices only is similar to decomposing it into two
locally irregular subgraphs; thus, by Lemma 3.6, we get that D1 can be further decomposed
into two locally irregular total subdigraphs where all vertices are hollow. By Lemma 3.8, we
get that D2 can be further decomposed into two locally irregular total subdigraphs. We thus
obtain a decomposition of D into four locally irregular total subdigraphs.

3.3. Locally pair-irregular total-colourings

As mentioned in previous Section 3.2, it is not true that every digraph admits a locally
irregular 2-total-colouring. Thus, to fit with the spirit of the 1-2 Conjecture, we here introduce
other distinguishing concepts which, although more artificial, allow us to come up with a
conjecture quite similar to Theorem 2.6.

Let Dt := (V0, V1;A) be a total digraph. To every vertex v of Dt, we associate its pair-
degree being the pair (1, d+(v)) if v is solid, and (0, d+(v)) if v is hollow. We call Dt locally
pair-irregular if the pair-degrees of u and v are distinct for every arc −→uv ∈ A(D). In turn, a
total-colouring of a usual digraph D is called locally pair-irregular if every colour class yield a
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locally pair-irregular subdigraph (where a vertex v assigned colour, say, red is regarded solid
only in the red total subdigraph). The least number of colours in a locally pair-irregular
total-colouring of D is denoted χtρ,irr+(D).

For these notions, we wonder, in the same spirit as our investigations in Section 2.3,
whether every digraph can be total-coloured with at most two colours. We believe that this
is so.

Conjecture 3.10. For every digraph D, we have χtρ,irr+(D) ≤ 2.

Since a locally irregular total digraph is also locally pair-irregular, we note that Theo-
rem 3.9 implies the following as a first step towards Conjecture 3.10.

Remark 3.11. For every digraph D, we have χtρ,irr+(D) ≤ 4.

4. Conclusions

In this paper, we have considered several problems related to directed versions of the
1-2 Conjecture and locally irregular decompositions. Although some of our results are best
possible, there is still a gap to fill in concerning some of the variants. In particular, though
we have improved the upper bound on χeirr+ from [6] from 6 down to 5 (recall Theorem 3.4),
the conjectured upper bound 3 is still open. Unfortunately, we do not believe that our
approach, which is already an improvement of the one used in [6] (consisting of independently
colouring two arc-disjoint subdigraphs), could be improved to decrease the upper bound to 3
or even only 4. Concerning locally irregular total-colourings, our upper bound of 4 on χtirr+
given in Theorem 3.9 is close to what we believe to be the optimal value, namely 3 (recall
Conjecture 3.7). Here again, we doubt our proof scheme could be improved to lower the
bound further. The situation is similar in the case of Conjecture 3.10. One should hence
design new tools and techniques to tackle these three holding conjectures.

Another remaining (algorithmic) open question we have is related to Question 2.2:

Question 4.1. What is the complexity of determining χtσ+(D) for a given digraph D?

Recall that the analogous problem of determining χeσ+(D) for a given digraph D is NP-
complete, as proved in [4]. Furthermore, we are not aware of any NP-completeness result
regarding variants of the 1-2 Conjecture. Settling Question 4.1 would thus be an interesting
task.
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[8] M. Kalkowski, M. Karoński, F. Pfender. Vertex-coloring edge-weightings: towards the
1-2-3 conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.
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