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Abstract

The 1-2 Conjecture raised by Przyby lo and Woźniak in 2010 asserts that every undirected
graph admits a 2-total-weighting such that the sums of weights “incident” to the vertices
yield a proper vertex-colouring. Following several recent works bringing related problems
and notions (such as the well-known 1-2-3 Conjecture, and the notion of locally irregular
decompositions) to digraphs, we here introduce and study several variants of the 1-2 Con-
jecture for digraphs. For every such variant, we raise conjectures concerning the number
of weights necessary to obtain a desired total-weighting in any digraph. We verify some of
these conjectures, while we obtain close results towards the ones that are still open.

1. Introduction

Posed by Karonski,  Luczak and Thomason in 2004, the 1-2-3 Conjecture reads as
follows [8]. An edge-weighting w of an undirected graph G is called sum-colouring if the
sums of weights “incident” to the vertices yield a proper vertex-colouring of G. More
precisely, for each vertex v of G one can compute

σe(v) :=
∑

u∈N(v)

w(vu)

and we require σe to be proper. The smallest k ≥ 1 such that G admits a sum-colouring k-
edge-weighting (if any) is denoted1 χeσ(G). The 1-2-3 Conjecture then states the following.

IThe first, third and fourth authors were supported by CNRS-PICS Project no. 6367 “GraphPar”.
The second author was supported by ANR grant no. ANR-13-BS02-0007 “STINT”, ERC Advanced
Grant GRACOL, project no. 320812, and PEPS grant POCODIS. The third author was supported by
the National Science Centre, Poland, grant no. 2014/13/B/ST1/01855. The third and fourth authors
were partly supported by the Polish Ministry of Science and Higher Education. The fourth author was
supported by the National Science Centre, Poland, grant no. DEC- 2013/09/B/ST1/01772.

1This notation and its variants should be understood as follows throughout: χ means the parameter
is a chromatic parameter; the superscript refers to the elements to be weighted or coloured; the subscript
refers to the aggregate, computed from the weighting or colouring, to be distinguished on the adjacent
vertices.
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Conjecture 1.1 (1-2-3 Conjecture). For every graph G with no isolated edge, we have
χeσ(G) ≤ 3.

Since its introduction, the 1-2-3 Conjecture has been attracting ingrowing attention, result-
ing in many research works considering either the conjecture itself or variants of it. As a
best result towards it, it was proved by Kalkowski, Karoński and Pfender that χeσ(G) ≤ 5
holds for every graph G with no isolated edge [7]. For more information, we refer the
interested reader to [11] for a survey by Seamone on this wide topic.

In this paper, we mainly focus on the following two notions related to the 1-2-3 Conjec-
ture. The first one is the total version of the 1-2-3 Conjecture, called the 1-2 Conjecture,
which was introduced by Przyby lo and Woźniak in [10]. Quite similarly as in the con-
text of weighting edges only, we say that a total-weighting w of G is sum-colouring if the
vertex-colouring σt defined as

σt(v) := w(v) +
∑

u∈N(v)

w(vu)

for every vertex v is proper. We then denote by χtσ(G) the least k ≥ 1 such that G
admits a sum-colouring k-total-weighing. It is believed that being granted the possibility
to “locally” modify the sums of weights incident to the vertices should, compared to the
original edge version, reduce the number of needed weights.

Conjecture 1.2 (1-2 Conjecture). For every graph G, we have χtσ(G) ≤ 2.

The 1-2 Conjecture is known to hold for several families of graphs, such as 3-colourable
graphs, complete graphs, and 4-regular graphs [10]. As for upper bounds on χtσ, the best
known one is due to Kalkowski who proved that χtσ(G) ≤ 3 holds for every graph G [6].

The second notion considered in this paper is the one of locally irregular decompositions.
We say that a graph G is locally irregular if every two of its adjacent vertices have distinct
degrees. A locally irregular edge-colouring of G is then an edge-colouring whose each colour
induces a locally irregular subgraph. We denote by χeirr(G) the least number of colours
giving a locally irregular edge-colouring of G (if any). Intuitively, the parameter χeirr can
be seen as a measure of how “far” from (locally) irregular is a graph. This parameter was
introduced and studied by the current authors in [1] mainly because of its link with the 1-2-
3 Conjecture and some of its variants. In particular, let us mention that in very particular
settings, such as when dealing with regular graphs and only two colours, finding a sum-
colouring edge-weighting is equivalent to finding a locally irregular edge-colouring. Since
its introduction, this particular edge-colouring notion gave birth to several investigations,
related mainly to the following conjecture raised in [1].

Conjecture 1.3. For every graph G not among a well-identified set of graphs with maxi-
mum degree at most 3, we have χeirr(G) ≤ 3.

Conjecture 1.3 was mainly verified for several families of graphs, including regular graphs
of large degree in [1] and graphs of large minimum degree [9]. No matter whether Con-
jecture 1.3 is true or not, it has to be known that it is difficult in general to compute
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the exact value of χeirr(G) for a given graph G, as shown in [2] by Baudon, Bensmail and
Sopena. In a recent work [4], Bensmail, Merker and Thomassen provided the first constant
upper bound on χeirr, showing that χeirr(G) ≤ 328 holds for every graph G admitting locally
irregular decompositions.

This paper is mainly inspired by two papers, namely [3] and [5], which brought Con-
jectures 1.1 and 1.3 in the context of digraphs in the particular setting where all notions of
“incident weights” and “locally irregular graphs” are with respect to the outdegree param-
eter. So that we avoid any confusion, we omit the formal definitions and statements here
and will rather recall them in the corresponding upcoming sections. Let us nevertheless
mention that the directed version of Conjecture 1.1 considered in [3] by Baudon, Bensmail
and Sopena was entirely solved, while the directed version of Conjecture 1.3 in [5] was only
proved in a weaker form by Bensmail and Renault, where 6 instead of 3 is proved.

Section 2 is dedicated to sum-colouring edge-weightings and total-weightings in di-
graphs, while Section 3 is devoted to irregular decompositions in digraphs. The three
series of results from these sections are comparable, and should hence be regarded in par-
allel. We start, in Section 2, by filling in the space showing that the directed version of
the 1-2 Conjecture in the setting of [3] is false in a strong sense, and introduce a holding
variant. In Section 3, we start by improving the main result of [5] from 6 down to 5,
making one step closer to what is conjectured to be the right bound. We then investigate
two total versions of the same problem inspired by the 1-2 Conjecture. Regarding these
two versions, we provide bounds which are close to what we estimate to be optimal. Some
conclusions are gathered in Section 4.

Notation and terminology: Throughout this paper, we focus on simple digraphs, i.e.
loopless digraphs with no two arcs directed in the same direction between any pair of
distinct vertices. Note that this definition allows our digraphs to have digons, i.e. directed
cycles of length 2. Any arc (u, v) of a digraph D will be denoted −→uv to lighten the notation
and make the arc’s direction apparent. The outdegree (resp. indegree) of a vertex v of D
is its number d+D(v) (resp. d−D(v)) of outgoing (resp. incoming) incident arcs. In case no
ambiguity is possible, the subscript in this notation will be freely omitted. The maximum
outdegree (resp. maximum indegree) of D, denoted ∆+(D) (resp. ∆−(D)) refers to the
maximum outdegree (resp. indegree) over the vertices of D.

2. Sum-colouring arc- and total-weightings in digraphs

In this section, we extend the results from [3] to the 1-2 Conjecture. We start in
Section 2.1 by recalling the investigations from [3]. Then we consider, in Sections 2.2
and 2.3, two directed analogues of the 1-2 Conjecture regarding the problem considered in
that paper. The first such variant is shown to be false, even in a strong sense, while the
second one is shown to hold.
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2.1. Outsum-colouring arc-weightings

Let D be a digraph, and w be an arc-weighting of D. From w, one can compute, for
every vertex v, the sum σe+(v) of “outgoing weights”, formally defined as

σe+(v) :=
∑

u∈N+(v)

w(−→vu).

In case σe+ is proper, we call w outsum-colouring. The least number k ≥ 1 of weights
needed to obtain an outsum-colouring k-arc-weighting of D is denoted χeσ+(D). Using a
very simple argument, Baudon, Bensmail and Sopena showed in [3] that the tightest upper
bound on χeσ+ is 3, which cannot be improved as deciding whether χeσ+(D) ≤ 2 holds for
a given digraph D is NP-complete in general. Since this upper bound will be of some use
in the upcoming sections, we state it here.

Theorem 2.1. For every digraph D, we have χeσ+(D) ≤ 3.

2.2. Outsum-colouring total-weightings

We now consider the natural directed variant of the 1-2 Conjecture, where the termi-
nology we use is inspired by that introduced in Section 2.1. Assume w is a total-weighting
of a digraph D. To every vertex v, we associate the colour σt+(v), where

σt+(v) := w(v) +
∑

u∈N+(v)

w(−→vu).

We say that w is outsum-colouring if σt+ is proper. Again, the least number k ≥ 1 of
weights needed to deduce an outsum-colouring k-total-weighting of D is denoted χtσ+(D).

Due to Theorem 2.1, clearly we have χtσ+(D) ≤ 3 for every digraph D (start from an
outsum-colouring χeσ+(D)-arc-weighting, and put weight 1 on all vertices). As a straight
directed analogue of the 1-2 Conjecture, one could naturally wonder about the following
question.

Question 2.2. For every digraph D, do we have χtσ+(D) ≤ 2?

Unfortunately, easy counterexamples to Question 2.2 can be exhibited, showing that 3 is
actually the best general upper bound on χtσ+. It can even be proved that Question 2.2 is
far from being true, in the sense that there exists no constant k ≥ 3 such that every digraph
admits an outsum-colouring (k, 2)-total-weighting, i.e. an outsum-colouring total-weighting
using weights among {1, ..., k} on the vertices and among {1, 2} on the arcs.

Proposition 2.3. There is no k ≥ 1 such that every digraph admits an outsum-colouring
(k, 2)-total-weighting.

Proof. Choose an odd integer n ≥ 5, and let
−→
Tn be the tournament on n vertices defined

as follows. Denote 0, 1, ..., n − 1 the vertices of
−→
Tn, and, for every vertex i of

−→
Tn, add the

arcs
−−−−−→
(i, i+ 1),

−−−−−→
(i, i+ 2), ...,

−−−−−−−→
(i, i+ bn

2
c), where the indexes are taken modulo n.
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Figure 1: A digraph with no outsum-colouring 2-total-weighting.

By construction, every vertex of
−→
Tn has outdegree precisely bn

2
c. For this reason, the

possible values as σt+(v) by a (k, 2)-total-weighting w of
−→
Tn are those among the set{⌊n

2

⌋
+ 1,

⌊n
2

⌋
+ 2, ..., 2 ·

⌊n
2

⌋
+ k
}
,

which includes bn
2
c+k values. Because

−→
Tn is a tournament, we need to have σt+(u) 6= σt+(v)

for every two vertices u and v of
−→
Tn so that w is outsum-colouring. Thus we want k to be

big enough so that bn
2
c + k ≥ n, and hence k ≥ dn

2
e. By then making n grow, we need

bigger and bigger values of k to get an outsum-colouring (k, 2)-total-weighting of
−→
Tn. This

implies the claim.

Due to Proposition 2.3, digraphs may not admit outsum-colouring (k, 2)-total-weightings
with k being any fixed constant. So k should rather be expressed as some digraph invariant,
as suggested in the following result, which is actually tight.

Proposition 2.4. Every digraph D admits an outsum-colouring (∆+(D) + 1, 2)-total-
weighting. Furthermore, there exist digraphs for which we cannot decrease the number
of vertex weights.

Proof. Let w be an outsum-colouring 3-arc-weighting of D. Such exists according to The-
orem 2.1. Now for every vertex v ∈ V (D), define

n3(v) := |{−→vu ∈ A(D) : w(−→vu) = 3}| ,

the number of arcs outgoing from v weighted 3 by w. Clearly, we have n3(v) ≤ ∆+(D).
Now consider the (∆+(D) + 1, 2)-total-weighting w′ of D defined as w′(v) = n3(v) + 1 for every v ∈ V (D), and

w′(−→uv) = min{2, w(−→uv)} for every −→uv ∈ A(D).

By the way w′ is defined, the value σt+(v) by w′ is exactly 1 plus σe+(v) by w. Since w is
outsum-colouring, then w′ is also outsum-colouring.

To conclude the proof, we just note that the construction from the proof of Proposi-

tion 2.3 confirms the last part of the statement, as every considered tournament
−→
Tn verifies

∆+(
−→
Tn) + 1 = bn

2
c+ 1 = dn

2
e.
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We end up this section by mentioning that Proposition 2.3 remains true even if one
requires the adjacent “incident outmultisets” (rather than the “incident outsums”) to be
different. This will justify our upcoming investigations in the next section.

Remark 2.5. Even the directed multiset analogue of the 1-2 Conjecture is false.

2.3. Pair-colouring total-weightings

As pointed out in the previous section, the directed analogue of the 1-2 Conjecture in
the setting of [3] is false in a strong sense (recall Proposition 2.3 and Remark 2.5). We
herein show that by modifying the aggregate to be distinguished on the adjacent vertices,
we get another directed variant of the 1-2 Conjecture, which, here, is verified.

Let w be a total-weighting of a digraph D. From w, we compute at every vertex v the
value

ρt+(v) :=

w(v),
∑

u∈N+(v)

w(−→vu)

 .

In case the vertex-colouring ρt+ is proper, we call w pair-colouring. The least number k ≥ 1
of weights needed to obtain a pair-colouring k-total-weighting of D is denoted χtρ+(D).

We now prove the analogue of the 1-2 Conjecture for pair-colouring total-weighting.

Theorem 2.6. For every digraph D, we have χtρ+(D) ≤ 2.

Proof. Set n := |V (D)|. Consider the following ordering v1, ..., vn over the vertices of D,
defined from last (vn) to first (v1). Let vn be a vertex of D satisfying d−D(vn) ≤ d+D(vn).
Such a vertex exists since ∑

v∈V (D)

d−D(v) =
∑

v∈V (D)

d+D(v).

Now consider the digraph D− {vn}, and denote vn−1 one vertex of V (D) \ {vn} satisfying
d−D−{vn}(vn−1) ≤ d+D−{vn}(vn−1). Repeat the same procedure until all vertices of D are
labelled. Namely, assuming that the vertices vn−i+1, ..., vn have been defined, choose vn−i
as a vertex of D − {vn−i+1, ..., vn} satisfying

d−D−{vn−i+1,...,vn}(vn−i) ≤ d+D−{vn−i+1,...,vn}(vn−i),

which again exists according to the same argument as above.
We construct a pair-colouring 2-total-weighting w of D by considering the vertices

v1, ..., vn from “left” to “right”, i.e. in increasing order of their indexes. Assume v1, ..., vi−1
have already been correctly treated, i.e. ρt+(v1), ..., ρ

t
+(vi−1) are defined (these vertices

and their outgoing arcs have been each assigned a weight) and ρt+(vj) 6= ρt+(vj′) for every
j, j′ ∈ {1, ..., i− 1} such that vj and vj′ are adjacent. Let Di := D−{vi+1, ..., vn}. We now
assign a weight to vi and its outgoing arcs by w in such a way that no conflict arises. An
important thing to keep in mind is that when weighting an arc −−→vivj, the couple ρt+(vj) is
not altered. Note further that ρt+(vi) 6= ρt+(vj) whenever w(vi) 6= w(vj).

For every α ∈ {1, 2}, let

nα :=
∣∣{vj ∈ N−Di

(vi) ∪N+
Di

(vi) : j < i and w(vj) = α
}∣∣
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(2, σ+) (1, σ+)

σ+=1 σ+=2 σ+=3
vi

(1, σ+ = 4)

1

1
2

?

?

Figure 2: Illustration of the proof of Theorem 2.6.

be the number of already treated adjacent vertices which have been assigned weight α.
There has to be a value of α ∈ {1, 2} for which

nα ≤
⌊
d+Di

(vi) + d−Di
(vi)

2

⌋
.

Let us assume α = 1 in what follows.
Set w(vi) = 1. Then vi is already distinguished from all its already treated adjacent

vertices which received weight 2 by w. Now what remains to do is to weight the arcs
outgoing from vi in D so that vi is distinguished by its outsum from all its already treated
adjacent vertices which received weight 1 by w (refer to Figure 2 for an illustration). The
possible outsums for vi in D by w are those among

S :=
{
d+D(vi), d

+
D(vi) + 1, ..., 2d+D(vi)

}
,

forming a set with cardinality d+D(vi) + 1. But the outsum of vi has to be different from
the outsums of its n1 previously treated adjacent vertices which also received weight 1 by
w. By the ordering of the vertices of D, we have

d+Di
(vi) + d−Di

(vi) ≤ 2d+Di
(vi),

yielding
n1 ≤ d+Di

(vi) < |S|.
There is thus at least one value s among S which does not appear as the outsum by w of
any vertex vj with j < i neighbouring vi which received weight 1. Then just weight the
arcs outgoing from vi so that the outsum of vi is s. Now vi gets also distinguished from its
previously considered neighbours weighted 1.

By repeating the above procedure until we reach v1, we eventually get the claimed
pair-colouring 2-total-weighting w, concluding the proof.

3. Irregular arc- and total-decompositions in digraphs

We now focus on irregular decompositions of digraphs, where the notion of irregularity
is with respect to the one introduced in [5] by Bensmail and Renault. We start by recalling
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the needed terminology and notation in Section 3.1. In the same section, we then improve
the main result from [5] by showing that every digraph is decomposable into at most
five locally irregular digraphs (while six is proved there). Total counterparts for irregular
decompositions of the notions we have introduced in Sections 2.2 and 2.3, are then studied
in Sections 3.2 and 3.3.

3.1. Locally irregular arc-colourings

A digraph D is called locally irregular if its adjacent vertices have distinct outdegrees.
An arc-colouring of D is said locally irregular if its every colour class induces a locally
irregular subdigraph. The smallest number of colours in a locally irregular arc-colouring
of D is denoted by χeirr+(D).

The main conjecture stated in [5] is the following.

Conjecture 3.1. For every digraph D, we have χeirr+(D) ≤ 3.

The originators of Conjecture 3.1 proved its following weakening.

Theorem 3.2. For every digraph D, we have χeirr+(D) ≤ 6.

The proof of Theorem 3.2 consists in first arc-decomposing any D into two acyclic digraphs,
i.e. two digraphs with no directed cycles. The claimed upper bound then follows by showing
that Conjecture 3.1 holds for acyclic digraphs (as first proved in [5]). We formally state
this result as it will be used in some of our upcoming proofs.

Lemma 3.3. For every acyclic digraph D, we have χeirr+(D) ≤ 3.

Our improvement on the bound in Theorem 3.2 from 6 down to 5, consists in showing
that every digraph admits an arc-decomposition into one acyclic digraph and one degree-
decreasing acyclic digraph, which we define as an acyclic digraph admitting an ordering
v1, ..., vn of its vertices such that

1. all arcs are directed “to the right”, and

2. d+(vi) ≥ d+(vj) whenever i < j.

Since acyclic digraphs D verify χeirr+(D) ≤ 3 (according to Lemma 3.3) and degree-
decreasing acyclic digraphs D verify χeirr+(D) ≤ 2 (which we show in Lemma 3.6 below),
our result follows.

Theorem 3.4. For every digraph D, we have χeirr+(D) ≤ 5.

Towards Theorem 3.4, as a first step we start by pointing out that every digraph
indeed admits an arc-decomposition into one acyclic digraph and one degree-decreasing
acyclic digraph.

Lemma 3.5. Every digraph D admits an arc-decomposition into one acyclic digraph and
one degree-decreasing acyclic digraph.
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Proof. Consider the following ordering v1, ..., vn over the vertices of D. Start with v1 being
one vertex of D with largest outdegree (if there are several choices as v1, pick any of
them). Now remove v1 from D and choose v2 to be one vertex of D−{v1} with the largest
outdegree. Then remove v2 from D − {v1} and continue the procedure until all vertices
are labelled. Basically, if we just read the vertices from “left” (i.e. v1) to “right” (i.e. vn)
we get that for every two vertices vi and vj with i < j, vertex vi has more outneighbours
than vj towards the right.

Now let A2 be the subset of arcs of D containing all arcs of the form −−→vivj with i < j
(i.e. the arcs going to the right). Clearly D[A2] cannot have a directed cycle. Besides, due
to the ordering of the vertices, D[A2] is degree-decreasing. Now let A1 be the subset of
the remaining arcs, i.e. those going to the left. For the same reason as previously, D[A1]
is acyclic (but clearly it may be not degree-decreasing). Then A1 and A2 yield the desired
arc-decomposition.

We now prove the second ingredient of our proof of Theorem 3.4, namely that degree-
decreasing acyclic digraphs D verify χeirr+(D) ≤ 2. The proof is algorithmic and the result
is also of interest as, as noted in [5], there are acyclic digraphs D verifying χeirr+(D) = 3.
So our result provides a new class of acyclic digraphs for which two colours are sufficient.

Lemma 3.6. For every degree-decreasing acyclic digraph D, we have χ′irr(D) ≤ 2.

Proof. Let v1, ..., vn be an ordering of V (D) such that all arcs are directed to the right,
and verifying d+(v1) ≥ ... ≥ d+(vn). To prove the claim, we start from vn, iteratively put
back the vertices vn−1, vn−2, ..., v1 to D following this order, and, at each iteration, extend a
locally irregular 2-arc-colouring to the added arcs. Assume we consider one vertex v of the
vi’s, and all of its outneighbours u1, ..., uk, which all have smaller outdegree, have already
been considered. We then just need to show that the arcs outgoing from v can be coloured
without creating any conflict with the previously coloured arcs. Note that colouring any
such arc does not affect the outdegrees of the ui’s in the subdigraphs induced by colours 1
and 2.

In the following, we say that one of the ui’s, say u1, is a (d1, d2)-vertex if u1 has d1
outgoing arcs coloured 1 by the partial colouring, and d2 outgoing arcs coloured 2. Now
consider the following procedure for colouring the arcs outgoing from v. First start by
colouring 1 all arcs outgoing from v. If this extension of the arc-colouring is not locally
irregular (otherwise we are done), it means that at least one neighbour of v, say u1, has
k outgoing arcs coloured 1. Actually, by the ordering of the vertices of D, we even get
that u1 is a (k, 0)-vertex. This being known, for the next steps we know that the arc −→vu1
can be safely coloured 1 unless all arcs outgoing from v are couloured 1. Now colour all
arcs outgoing from v with colour 2. If a conflict arises (otherwise, again we are done), by
the previous arguments we know it originates from at least one vertex, say u2, which is a
(0, k)-vertex different from u1. Once again, we note that u2 cannot cause more trouble in
the next iterations unless all arcs outgoing from v are coloured 2.

Now colour 2 the arc −→vu2 and colour 1 all other arcs outgoing from v. By the previous
arguments, if the obtained arc-colouring is still not locally irregular, it means that at least
one vertex different from u1 and u2, say u3, is a (k − 1,≤ 1)-vertex. This time, for the
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u1

u2

u3

u4

u5

5

5

≤1
4

4

≤1

≤2
3

Figure 3: Illustration of the proof of Lemma 3.6 for k = 5.

next iterations, note that u3 will not cause more problem unless k − 1 arcs including −→vu3
are coloured 1, or maybe only the arc −→vu3 is coloured 2 (in case u3 is a (k − 1, 1)-vertex).
Now colouring 1 the arc −→vu1 and 2 all the other arcs outgoing from v, if again we run into
a conflict, it involves at least one vertex different from u1, u2, u3, say u4, which is actually
a (≤ 1, k − 1)-vertex. Similar deductions as for u3 can be made for the next iterations.

By repeatedly applying this colouring scheme, i.e. colouring 1 or 2 some “safe” arcs
outgoing from v whose outdegrees in the two subdigraphs induced by the partial arc-
colouring have been revealed in the previous steps, we either get a locally irregular extension
at some point, or reveal that v has at least one (k − i,≤ i)-outneighbour and at least one
(≤ i, k− i)-outneighbour (unless k is odd) for every value of i within some range. Actually,
since we reveal the status of two new outneighbours at each step (unless for the last step
if k is odd), the procedure ends within dk/2e steps. Now the conclusion is that if k is
even, then the procedure ends with none of the ui’s being a (k/2, k/2)-vertex; so to get
a locally irregular extension, we can just arbitrarily colour k/2 arcs outgoing from v with
colour 1, and colour the remaining k/2 arcs with colour 2. In case k is odd, it just has to
be noted that if, in the procedure above, at each step we try to reveal some outdegree in
the subdigraph induced by colour 1 first, then the procedure ends with none of the ui’s
having outdegree bk/2c in the subdigraph induced by colour 1, and none of the ui’s having
outdegree dk/2e in the subdigraph induced by colour 2. Then we can just arbitrarily
colour bk/2c arcs outgoing from v with colour 1, and colour 2 the dk/2e remaining arcs
(see Figure 3).

3.2. Locally irregular total-colourings

Let us now discuss a total counterpart of the problem above. Within this, arcs and
vertices of a given digraph D receive colours, and each colour class is expected to induce
a locally irregular subdigraph in D with respect to outdegrees. This time however, the
outdegree of a vertex v in the subdigraph induced by colour i is being increased by 1 if v
is coloured with colour i (and is not modified otherwise).

In other words, the colour classes define a decomposition of D into locally irregular
total subdigraphs, where a total digraph might be regarded as a triplet Dt = (V0, V1;A)
with V := V0 ∪ V1 (V0 ∩ V1 = ∅) constituting its vertex set and A corresponding to the set
of arcs (defined as in a usual digraph). The vertices in V0 are called hollow, while those in
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u1 u2

u3u4

Figure 4: A locally irregular 2-total-colouring (with colours black and gray) of a digraph.

V1 are said solid. The (total) outdegree (resp. indegree) of a vertex v, denoted d+t (v) (resp.
d−t (v)), is then understood as only the number of arcs outgoing from (resp. incoming to)
v if v is a hollow vertex, or this quantity plus 1 if v is solid. Such a total digraph is called
locally irregular if d+t (u) 6= d+t (v) for every arc −→uv ∈ A. A locally irregular k-total-colouring
of a digraph D is then a total-colouring c of D with k colours such that each colour class
induces a locally irregular total subdigraph (where for any given colour i, the vertices of
D coloured with i define V1 for the corresponding total digraph, and the rest of vertices of
D yield V0). The least number of colours needed to colour D is then denoted by χtirr+(D).

See Figure 4 for an illustration of a locally irregular 2-total-colouring of a given digraph.
We note in particular that the gray subdigraph is locally irregular since its only pairs
of adjacent vertices are (u1, u3) and (u2, u4), which verify (d+t (u1), d

+
t (u3)) = (0, 1) and

(d+t (u2), d
+
t (u4)) = (2, 1). It is worth mentioning that all these notions were introduced

and studied in the context of undirected graphs by the authors [1].

Concerning a general upper bound on χtirr+, it is worth observing that if χtirr+(D) ≤ 2
held for every digraph D, then every digraph would admit a 2-total-weighting distinguish-
ing the adjacent vertices by their “incident outmultisets”, contradicting Remark 2.5. We
however believe that the following conjecture should be the right direction.

Conjecture 3.7. For every digraph D, we have χtirr+(D) ≤ 3.

As already mentioned, the upper bound in Conjecture 3.7, if verified, would be best
possible. We below get quite close to Conjecture 3.7 by proving that 4 bounds χtirr+ above.

Theorem 3.8. For every digraph D, we have χtirr+(D) ≤ 4.

Proof. By Lemma 3.5, digraph D admits an arc-decomposition into a degree-decreasing
acyclic digraph D1 and an acyclic digraph D2. We will regard these as total subdigraphs
where all vertices of D1 are hollow and all vertices of D2 are solid. By Lemma 3.6, we
immediately obtain that D1 can be further decomposed into two locally irregular total
subdigraphs (as all vertices of D1 are hollow, and thus do not influence their corresponding
outdegrees). It is thus left to show that D2 (with all vertices solid) can be decomposed into
two such total subdigraphs as well. For this aim, a slightly increased range of potential
outdegrees of all vertices is exactly as much as is necessary.

Let v1, ..., vn be any ordering of V (D2) such that all arcs are directed to the right. To
construct a desired decomposition, or equivalently the corresponding total-colouring of D2

with colours 1 and 2, we start from vn and iteratively put back the vertices vn−1, vn−2, ..., v1
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to D2 following this order, and, at each iteration, show that a locally irregular 2-total-
colouring exists. Assume we consider v, and all of its outneighbours u1, ..., uk have already
been considered. We then just need to show that the arcs outgoing from v and v itself can
be coloured without creating any conflict with the previously considered vertices. Note
that colouring any element close to v (i.e. an arc incident to v, or v itself) does not affect
the total outdegrees of the ui’s in the subdigraphs induced by colours 1 and 2.

For every ui with i = 1, . . . , k, we denote by di1 and di2 the total outdegrees of ui in the
total subdigraphs induced (thus far) by colours 1 and 2, respectively. By the pigeonhole
principle, for at least one of the k ordered pairs (1, k), (2, k−1), . . ., (k, 1), say (r, k+1−r)
(r ∈ {1, . . . , k}), we must have∣∣{i : di1 = r}|+ |{i : di2 = k + 1− r}

∣∣ ≤ 1,

as otherwise (i.e. when the sums of cardinalities of such pairs of sets equal at least 2, in
fact exactly 2, for r = 1, . . . , k), none of the ui’s can have di1 = d + 1 nor di2 = d + 1,
and we could just colour all the arcs outgoing from v and v itself with colour 1 (or all of
these with 2). Suppose then first that v has at most one outneighbour, say ui (if any) with
di1 = r, and no outneighbour uj with dj2 = k + 1 − r for an r ∈ {1, . . . , k}. Then we can
assign to exactly k + 1− r arcs outgoing from v, including vui (if it exists), the colour 2,
and the colour 1 to the remaining outgoing arcs of v and to v itself, thus creating no new
conflicts. The construction follows the same pattern in the symmetrical case, i.e. when v
has at most one outneighbour, say ui (if any) with di2 = k + 1− r and no outneighbour uj
with dj1 = r.

By repeating this colouring procedure until all vertices and arcs are coloured, we even-
tually get a total-colouring of D which is as desired.

3.3. Locally pair-irregular total-colourings

As mentioned in previous Section 3.2, it is not true that every digraph admits a locally
irregular 2-total-colouring. Similarly as in Section 2.3, we here introduce slightly modified
notions and terminology leading to a decomposition conjecture involving two colours only
which corresponds to Theorem 2.6.

As in previous Section 3.2, we consider total digraphs D with vertex set V (D) parti-
tioned into hollow and solid vertices. Once more, we consider decompositions into locally ir-
regular total subdigraphs, in the sense that, in the total-colouring of D, every i-subdigraph
(i.e. the total subdigraph induced by colour i) is locally irregular. Recall that, in every
i-subdigraph, the vertices coloured with colour i are solid, while the other vertices are
hollow.

Because the definition of decomposition must be in accordance with the relevant def-
inition of colouring, we have to define the pair-degree of a vertex v ∈ V (D) as the pair
(1, d+(v)) if v is solid, and (0, d+(v)) if v is hollow. A total digraph D is called locally
pair-irregular if the pair-degrees of u and v are distinct for every arc −→uv ∈ A(D).

The least number of colours in a locally pair-irregular total-colouring of D is denoted
χtρ,irr+(D). For this variant, we wonder, in the same spirit as our investigations in Sec-
tion 2.3, whether every digraph can be coloured with at most two colours only. We believe
that this is so.
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Conjecture 3.9. For every digraph D, we have χtρ,irr+(D) ≤ 2.

As a first step towards Conjecture 3.9, using Theorem 3.8 and the fact that if the
sums (in the definition of locally irregular total graphs) are distinct, then the pairs (in the
definition of locally pair-irregular total graphs) are distinct, we get the following.

Remark 3.10. For every digraph D, we have χtρ,irr+(D) ≤ 4.

4. Conclusions

In this paper, we have considered several problems related to directed versions of the
1-2 Conjecture and locally irregular decompositions. Although some of our results are best
possible, there is still a gap to fill in concerning some of the variants. In particular, though
we improved the upper bound on χeirr+ from [5] from 6 down to 5, recall Theorem 3.4,
the conjectured upper bound 3 is still open. Unfortunately, we do not believe that our ap-
proach, which is already an improvement of the one used in [5] (consisting in independently
colouring two arc-disjoint subdigraphs), could be improved to decrease the upper bound
to 3 or even only 4. Concerning locally irregular total-colourings, our upper bound of 4 on
χtirr+ given in Theorem 3.8 is close to what we believe to be the optimal value, namely 3
(recall Conjecture 3.7). Here again, we doubt our proof scheme could be improved to lower
the bound further. The situation is similar in the case of Conjecture 3.9. One should hence
design new tools and techniques to tackle these three holding conjectures.
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