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Abstract—This paper presents an overview of the 5th Com-
petition on Recognition of Online Handwritten Mathematical
Expressions (CROHME). As in previous years, the main task is
formula recognition from handwritten strokes (Task 1). Addi-
tional tasks include classification of isolated symbols (Task 2a),
classification of isolated valid and invalid symbols (Task 2b), a
new task on parsing formula structure from valid handwritten
symbols (Task 3), and parsing expressions with matrices (Task
4, experimental). In total, eleven (11) research labs registered
for the competition, with six (6) teams submitting results.
Innovations for this CROHME included providing a corpus
of formulae from Wikipedia to train language models, and an
online system for result submission. The highest recognition
rates were obtained by MyScript corporation (Task 1. 67.65%,
2a. 92.81%, 2b. 86.77%, 3. 84.38%, and 4. 68.40%). Using
only provided training data, the highest recognition rates were
obtained by WIRIS corporation (Task 1. 49.61%, Task 3.
78.80%, Task 4. 56.40%), the Tokyo University of Agriculture
and Technology (Task 2a. 92.28%), and RIT (Task 2b. 83.34%).
The competition results suggest that recognition of handwritten
formulae remains a difficult structural pattern recognition task.

Keywords-mathematical expression recognition, handwriting
recognition, spatial relations, performance evaluation.

I. INTRODUCTION

Recognition of mathematical expressions has been an
active area of research for over two decades [1]. While the
earliest work on online handwritten math recognition was
completed in the 1960’s (e.g., by Anderson at MIT), by the
1980’s research on math notation recognition concentrated
on images of printed expressions. Since that time, both
offline and online handwritten expression recognition have
gradually attracted more attention. Although several results
were reported in the literature, progress was unclear due to
the absence of common datasets and evaluation metrics. To
overcome this bottleneck, the Competition on Recognition
of Handwritten Mathematical Expressions (CROHME) was
introduced as a shared task at the ICDAR 2011 conference
held in Beijing.1

After receiving a very encouraging response from the
research community, CROHME has been held regularly,

1http://www.icdar2011.org

with four editions of this event already having been suc-
cessfully completed. A recent paper provides an overview of
previous CROHMEs, and highlights the contributions of this
event to research in math recognition and structural pattern
recognition [2].

This fifth edition of CROHME was organized to continue
encouraging activity in handwritten math recognition re-
search, and to improve available data, tools and benchmarks
for research in the area. For CROHME 2016, four tasks are
defined:

• Task-1 Formula Recognition: Isolated formula recog-
nition from handwritten strokes (main task)

• Task-2 Symbol Recognition: Classification of isolated
math symbols

• Task-3 Structure Recognition: Parsing formula struc-
ture from given (valid) handwritten symbols

• Task-4 Matrix Recognition: Recognition of expressions
containing matrices from handwritten strokes

Task-1 is the main task. Task-2 is split into two sub-tasks;
In Task-2a only valid symbols are provided as input, while
in Task-2b incorrect symbol segmentations (junk) are mixed
with valid symbols. Task-3 has been introduced to evaluate
spatial relationship recognition (i.e., structure recognition)
independently of symbol recognition. Task-4 remains an
experimental task for recognizing expressions with matrices.

Eleven groups registered for the competition, and six
groups submitted results. For the main task, the highest
recognition rate is 5% higher than in CROHME 2014
(67.65% vs. 62.68%). This is a positive trend, but these rates
suggest that recognizing handwritten math remains a difficult
problem, likely due to the complex interactions involved
in segmenting, classifying, and relating symbols, and the
number of decisions that need to be made correctly in order
to recognize a non-trivial formula [2].

The rest of the paper is organized as follows. Section-
II presents the competition protocol and data. Participant-
provided system descriptions are given in Section-III. The
evaluation results and related discussion are presented in
Section-IV, and Section-V concludes the paper.



II. COMPETITION PROTOCOL AND DATA

A. Data

Thanks to the release of data from previous CROHME
competitions, more than 10,000 labeled handwritten formu-
lae are publicly available.2 We created training, validation
and some test sets from this data. The validation sets
allow benchmarking against test sets from the last two
CROHME competitions, and/or for use in preventing over-
fitting by machine learning algorithms (e.g., neural nets).
This use of existing data allowed our data collection efforts
to focus on providing new test sets for the main task, Task
1 (Formula Recognition) and for the experimental Task 4
(Matrix Recognition). Table I shows which data have been
used for each task.

Table I
TASKS IN THE COMPETITION AND DATA SETS USED IN EACH TASK.

* INDICATES NEW DATA SETS CREATED FOR THE COMPETITION.

Training Set Validation Set Test Set
TASK 1 - FORMULAE Train 2014 Test 2014 2016 Test*

8 836 expr. 986 expr. 1 147 expr.
TASK 2 - SYMBOLS Train 2014 Test 2013 Test 2014

2a. Valid 85 802 symb. 10 061 symb. 10 019 symb.
2b. Valid+Junk 74 284 junk 9161 junk 8416 junk*

TASK 3 - STRUCTURE Train 2014 Test 2013 Test 2014
(new for 2016) 8 836 expr. 671 expr. 986 expr.

TASK 4 - MATRICES M. Train 2014 M. Test 2014 M. Test 2016*
(experimental) 362 expr. 175 expr. 250 expr.

For Tasks 2a and Task 3, previous CROHME data sets
from 2014 were used to limit the data preparation effort of
the organizers. For Task 2b, the ‘valid’ symbols were the
same as in the test set for CROHME 2014, but the set of
‘junk’ symbols was recomputed using a different random
seed for the ‘junk’ generation script.

Data Collection. The new data sets for Tasks 1 and
4 were collected and labeled by the organizers at the
University of Nantes in France. As the Wikipedia corpus
used to define test expressions in the previous competition
was made available to participants (see below), we used
a new source of expressions: arXiv paper sources from
2000 and 2001 processed and made available for the KDD
2003 Cup [3]. Following the same selection process as in
previous competitions [2], a corpus of 1147 expressions was
selected, according to the same expression grammar and
symbol frequency constraints used to create the CROHME
2014 Test set. Expressions for Task 4 with matrices were
randomly selected from the same corpus as in 2014, so
some expressions are the same as in the 2014 Matrix Test
set. Some modifications were made manually to increase the
complexity of some very simple matrices, and to reduce the
frequency of symbols ’0’ and ’1’.

2http://tc11.cvc.uab.es/datasets/CROHME-2014 2

Both individual formulae and expressions with matrices
were collected from 50 writers using three types of devices
with different resolutions: 1) pen-based 12” tabletPC, 2)
27” touch-screen using a finger to draw, and 3) a pen-
based interactive whiteboard using a video projector. During
acquisition, a GUI shows an expression to copy (rendered by
LATEX) and this LATEX string is stored with the handwritten
strokes in a raw InkML file. To generate ground truth for
each expression, the LATEX string is parsed to count how
many symbols have to be found, and from which classes.
This symbol information is then used to guide automatic
symbol recognition and parsing of the ink, searching for the
known symbols and relationships. This strategy is simple but
effective for most symbols, but requires manual checking
followed by editing to correct mistakes. On average, the full
ground-truthing process takes one minute per expression.

Wikipedia Formulae. State-of-the-art handwritten math
recognizers use language models such as Stochastic Context-
Free Grammars [2]. To support parameter fitting for lan-
guage models, we made available over 592,000 formulae
from English Wikipedia in LATEX and Presentation MathML
formats,3 taken from the recent NTCIR-12 Math IR compe-
tition [4].

Data Usage by Participants. All participants used the
provided training data sets. WIRIS was the only system
to make use of the provided Wikipedia formula corpus
to train their language models, while MyScript was the
only system that made use of an additional private training
set (approx. 30,000 formulae). RIT used a synthetic data
generation technique to produce a training set five times
larger than the original for Task 2 [5]. All participants used
the validation data sets to prevent over-fitting by machine
learning algorithms and/or model selection.

B. Evaluation Metrics and Tools

As in the last two CROHME competitions, updated
and improved versions of the CROHMELib and LgEval
libraries4 were made available to participants, and used to
compute results for the competition [2]. Included are tools
that provide performance metrics at the stroke, symbol, and
expression level, along with automated error analyses such
as confusion matrices and confusion histograms that tabulate
errors in symbol and/or relationship recognition for target
subgraphs [2].

Formula Representation: Symbol Layout Trees (SLTs).
Formulae are represented by labeled adjacency graphs over
strokes (label graphs). This allows errors to be unambigu-
ously identified, even for conflicting segmentations. For
CROHME, label graphs represent formulae as Symbol Lay-
out Trees (SLTs) [1], with symbols defined by labeled stroke
groups, and spatial relationships by labeled directed edges

3http://ntcir-math.nii.ac.jp/data/
4https://www.cs.rit.edu/∼dprl/Software.html



between symbols. SLTs provide a simple representation of
formula appearance.

In a label graph adjacency matrix, labels on the diagonal
define the symbol class associated with each stroke, while
off-diagonal elements represent stroke groupings and spa-
tial relationships. Symbols are represented by bidirectional
edges between all stroke pairs in the symbol, with each
edge labeled by the symbol class. For spatial relationships,
a labeled edge is defined from every stroke of the parent
symbol to every stroke of the child symbol. For matrices,
we generalize label graphs to include sets of labels on nodes
and edges [2]. This allows a stroke to belong to more than
one type of object and/or level of structure. For example, a
single stroke ‘2’ may be a symbol, in a cell, belonging to a
row, a column, and a matrix. We simply assign all of these
types to the stroke, and identify the segmentation of objects
using cliques sharing a label (e.g., all strokes labeled as a
‘Row’ sharing bi-directional ‘Row’ edges are an object).

Formula Recognition Metrics. For Tasks 1, 3 and 4,
metrics provided by LgEval include conventional formula
and symbol recognition rates, along with finer-grained recall
and precision metrics for the segmentation and classification
of symbols and relationships. Recall is the same as the
recognition rate, while precision measures the accuracy of
returned results, for example the percentage of returned
symbol segments that are correct. A relationship is correctly
detected (segmented) when two symbols with a parent-child
relationship in the Symbol Layout Tree are found, ignoring
the symbol and relationship labels. Hamming distances over
stroke labels in label graphs are also provided for fine-
grained analysis [2].

Isolated Symbol Results and Metrics. For Tasks 2a
and 2b, each inkML test file contains a single symbol with
an associated identifier (‘UI’ tag). Participants submitted a
CSV file containing one line for each test file. Each line
provides the symbol identifier followed by a ranked list of
the Top-10 classification candidates. A CROHMELib tool
(evalSymbolIsole.py) was used to compute symbol
recognition rates along with the average rank of the correct
symbol class (TMP: True Mean Position), where any target
class not appearing in the Top-10 is treated as rank 11.
For Task 2b where some inputs were ‘junk’ symbols (i.e.
incorrectly segmented symbols), the tool also provides the
symbol true positive rate (TAR: True Acceptance Rate) and
false positive rate (FAR: False Acceptance Rate).

Ranking. The expression recognition rate was used for
Tasks 1, 3 and 4, while the symbol recognition rate was
used for Tasks 2a and 2b.

C. Submission

Previously CROHME systems were submitted directly to
organizers, requiring significant efforts to configure and run.
For CROHME 2016, recognition results were provided by

participants through a web-based evaluation system5 imple-
mented in Django.6 Multiple submissions were permitted,
with the highest obtained recognition rates used to rank
systems. After a participant made a submission, the recogni-
tion rate obtained was visible to the participant. A publicly
visible rankings page was automatically updated with the
names of participants hidden during the competition. After
logging in, a participant could see their place in the rankings,
but not the names of other participants.

Unfortunately a bug required organizers to upload results
for participants in many cases. Despite its shortcomings, the
submission interface greatly reduced the effort to compile
results, and motivated participants to correct and improve
their results. We plan to repair the submission system and
make it available after the competition, as done for other
document analysis competitions (e.g., ICDAR 2015 Robust
Reading7 [6]).

III. PARTICIPATING SYSTEM DESCRIPTIONS

The system descriptions in this Section were provided
by the participants of CROHME 2016. We list system de-
scriptions alphabetically by group name. Eleven participants
registered for CROHME 2016, but several withdrew, taking
Task-1 from 8 to 5 participants; Task-2 from 11 to 3; Task-3
from 6 to 4; and Task-4 from 3 to 2. We are uncertain what
the cause for this was, whether it was technical difficulties,
concerns about performance, or other reasons.

MyScript. (Tasks 1-4) The MyScript Math recognizer
system is built on the principle that segmentation, recogni-
tion and interpretation have to be handled concurrently and
at the same level in order to produce the best candidates. The
recognition engine analyzes the spatial relationships between
all parts of the equation, in conformity with the rules
laid down in its grammar, to determine the segmentation
of all of its parts. The grammar is defined by a set of
rules describing how to parse an equation, each rule being
associated with a specific spatial relationship. For instance,
a fraction rule defines a vertical relationship between a
numerator, a fraction bar and a denominator.

The symbol recognizer extracts both dynamic and static
features from the online signal. Dynamic information is
extracted from the trajectory of the pen, including direction
and curvature. Static features are computed from a bitmap
representation of the ink and are typically based on projec-
tions and histograms. The features are then processed by a
combination of Deep MLP and Recurrent Neural Networks.

The recognition engine includes a statistical language
model that evaluates the contextual probabilities between
symbols in the equation. The recognizer is trained on about

5http://crohme2016eval.cs.rit.edu
6https://www.djangoproject.com/
7http://rrc.cvc.uab.es



30,000 additional handwritten samples collected from writ-
ers in different countries, using discriminative training and
automatic learning of all meta-parameters.

Rochester Institute of Technology (RIT). (Task 2)
Our approach for on-line recognition of handwritten math
symbols uses adaptations of off-line features [5]. Our feature
set is based on shape descriptors, in order to obtain greater
tolerance to variations in writing direction and stroke order.
Currently these features are: Crossings, 2D histograms of
stroke segment lengths, 2D histograms of stroke segment
orientations, and 2D histograms of visual words. Currently,
we use 2D histograms of stroke segment lengths computed
locally and k-means clustering to create our visual word
dictionary.

Tokyo University of Agriculture and Technology.
(Tasks 1, 2 & 3) The systems are developed by Nakagawa
Laboratory. For classifying isolated math symbols, an offline
classifier (CNN) and several online classifiers (LSTMs) are
combined [7]. For parsing formula structure, the CYK algo-
rithm is employed. Stroke order is employed to reduce the
complexity of the parsing algorithm and additional grammar
rules are employed to deal with the multiple stroke order
variations. Details of the system are presented in Le et al. [8].
For recognition of mathematical expressions, our previous
system from CROHME 2014 was improved by integrating
the new symbol recognizer and retraining weight parameters.

University of Nantes. (Task 1) Our system recognizes
handwritten mathematical expressions by merging multiple
1D sequences of labels produced by a sequence labeler.
The proposed solution aims at rebuilding a 2D expression
from several 1D-labeled paths. An online math expression
is a sequence of strokes which is later used to build a
graph considering both temporal and spatial information for
strokes. In this graph, nodes correspond to strokes and edges
denote the relationship between a pair of strokes. Next, we
select 1D paths from the graph with the expectation that
these paths can catch all the strokes and the relationships
between pairs of strokes. As an advanced and strong se-
quence classifier, BLSTM networks with a local CTC output
layer are adopted to label the selected 1D paths. We assign
different weights to these 1D-labeled paths, and then merge
them to rebuild a label graph. After that, an additional post-
process is performed to complete edges automatically. No
language models have been used.

University of São Paulo. (Tasks 1 & 3) In this ap-
proach, the recognition problem is modeled as a graph
parsing problem. The method is divided into two stages:
(1) hypotheses graph generation and (2) graph parsing. In
the first stage, multiple symbols (labeled stroke groups) and
relations between symbols are identified and stored in a
structure called a hypotheses graph. To this end, symbol and
relation classifiers are trained using both valid and invalid
symbols and relations extracted from complete mathematical
expressions, as described in [9]. A graph grammar is used

to define a language of graphs representing mathematical
expressions. In the second stage, a top-down parsing algo-
rithm uses a graph grammar to parse the hypotheses graph
and identify the subgraph containing the best interpretation,
taking symbol and spatial relation scores into account [10].

WIRIS math. (Tasks 1-4) The handwritten math expres-
sion recognition engine is part of WIRIS Editor,8 a solution
for editing math formulas. It is based on an integrated ap-
proach such that symbol segmentation, symbol classification
and the structure of the math expression are globally deter-
mined. The recognition process is guided by a probabilistic
grammar that accounts for the structural probability between
symbols and expressions. The statistical language model has
been estimated using both the expressions of the training
dataset and formulae from English Wikipedia provided by
the organizers of the competition.

The system is completed with specialized modules for
specific tasks: spatial relations classification, symbol seg-
mentation and symbol classification. Mathematical symbol
classification is performed using neural networks and a com-
bination of several sets of online and offline features, like the
input sequence of points, histograms of oriented gradients
or the offline representation of the symbol hypothesis. The
remaining models are also statistical classifiers such that
all probabilistic sources of information are estimated from
training data.

Finally, the global recognition engine parameters have
been tuned for each task of the competition (expressions,
matrices and structure). Matrix recognition requires addi-
tional considerations, like matching dimensions of rows
and columns and handling spatial information for proper
segmentation of cells.

IV. RESULTS

Symbol Recognition (Tasks 2a & 2b). Table II shows
that recognizing isolated handwritten mathematical symbols
is still non-trivial. Indeed, some classes are difficult or
impossible to discriminate. For example, without context it
is difficult to separate ‘x’, ‘X’, and ‘×’ (times); ‘o’, ‘O’,
and ‘0’; and ‘p’ and ‘P .’ Commas and dots require relative
size information to avoid ambiguity - otherwise commas
may be frequently confused with ‘1’ or ‘/’ for example.
These ambiguities place an upper bound on accuracy [5],
and recognition rates may are higher if highly ambiguous
classes are merged. The tools provided for the competition
allow these rates to be computed (omitted for space).

The average rank for the correct symbol class (TMP)
is high for all three systems, with the location of the
correct class slightly below the 1st (top-1) position. When an
isolated symbol classifier is used in a system recognizing full
expressions, it will need to discriminate between correctly
and incorrectly segmented symbols. As presented in Table II

8http://www.wiris.com/editor/demo



Task 2b, a substantial drop-off in classification accuracy
occurs when invalid symbols are added along with a reject
(junk) class. RIT obtains a better true acceptance rate (TAR)
than MyScript, but with a higher false acceptance rate
(FAR), indicating that the RIT system is biased toward
accepting more symbols as valid.

Table II
RESULTS FOR SYMBOL RECOGNITION TASKS (TASKS 2A & 2B). Top-1:
RECOGNITION RATE, TMP: TRUE MEAN POSITION (AVERAGE RANK OF

THE CORRECT CLASS), TAR: TRUE ACCEPTANCE RATE FOR VALID
SYMBOLS, FAR: FALSE ACCEPTANCE RATE FOR JUNK SYMBOLS.

TASK 2A (VALID) TASK 2B (VALID + JUNK)
(101 classes) (102 classes) (Symb. vs. Junk)

Top-1 TMP Top-1 TMP TAR FAR
MyScript 92.81 1.13 86.77 1.19 89.82 11.16
Tokyo 92.27 1.15 - - - -
RIT 88.85 1.25 83.34 1.31 95.86 19.71

Isolated Expression Recognition (Tasks 1 & 3). Ta-
ble III presents expression level results for Task 1 and
Task 3, where formulae are parsed from handwritten strokes
(Task 1) or provided symbols (Task 3). We provide structure
recognition rates along with fully correct recognition rates.
Correct structure recognition requires only symbol segmen-
tation and the detection of relationships between symbols to
be valid; to be fully correct an expression must have correct
structure and correct labels for symbols and relationships.
Also shown in Table III are the expression recognition rates
obtained if one or two label errors are permitted in the label
graph adjacency matrix for an expression.

Fully correct recognition rates are much higher in Task
3, as the symbols are provided, and spatial relationships are
constrained by symbol types (e.g., ‘+’ cannot have a su-
perscript). We see that MyScript finds the correct unlabeled
graph for 88% of the test expressions in Task 1, and 90.7% of
test expressions in Task 3. It is interesting that the difference
between these structure recognition rates is small.

Symbol level metrics for Task 1 are shown in Table IV,
including recall and precision for segmentation, and for
both correct segmentation and classification. The MyScript
and WIRIS systems perform best, but even the weakest-
performing system at the expression level have a competitive
symbol recall rate. Univ. Nantes low expression rates may
be due to not using an expression grammar for parsing. Most
systems have higher symbol precision than recall, suggesting
that they often under-segment symbols when errors are
made.

Recall and precision metrics are also provided for de-
tecting (segmenting) and classifying spatial relationships
in Table IV. For Tasks 1 and 3, there are six spatial
relationships: Above, Below, Subsc, Super, Right, and Inside.
The spatial relationship performance metrics for Task 1 are
lower and vary more than those for symbols. This is because
segmenting and classifying relationships is strictly harder,

Table III
RESULTS FOR ISOLATED FORMULA PARSING. IN ADDITION TO

RECOGNITION RATES FOR SYMBOL LAYOUT TREES (SLTS) WITH
CORRECT STRUCTURE, AND CORRECT STRUCTURE AND LABELING,

RATES FOR FORMULAE WITH n ≤ 2 INCORRECT LABELS FOR STROKES
AND DIRECTED STROKE EDGES ARE SHOWN.

TASK 1: ISOLATED FORMULAE (TEST 2016)

Structure Structure + Labels
Rec.Rate Rec.Rate ≤ 1 err. ≤ 2 err.

MyScript 88.14 67.65 75.59 79.86
Wiris 74.28 49.61 60.42 64.69
Tokyo 61.55 43.94 50.91 53.70
São Paolo 57.02 33.39 43.50 49.17
Nantes 21.45 13.34 21.02 28.33

TASK 3: ISOLATED W. PROVIDED SYMBOLS (TEST 2014)

Structure Structure + Labels
Rec.Rate Rec.Rate ≤ 1 err. ≤ 2 err.

MyScript 90.67 84.38 85.90 87.62
Wiris 86.61 78.80 80.42 82.75
São Paulo 69.27 64.81 67.34 70.69
Tokyo 70.99 61.46 63.89 66.84

as both parent and child symbols need to be segmented
correctly for a relationship to be correctly detected. As
one would expect, for the Top-3 systems the most common
spatial relationship confusions are between right-adjacency
and subscript, followed by right-adjacency and superscript.

The most frequently mis-recognized symbols for each
system are presented in Table VI. Table VII provides the
most frequent symbol pair relationships (bigrams) that are
confused by each system. In both Tables, we have provided
the frequencies for the Top-5 most frequent test set patterns.
For all participants, the most common symbol recognition
errors correspond to the most frequent symbols (‘2’ and‘1’)
and ambiguous symbols (x, ×). As in the past [2], recogniz-
ing a ‘1’ above a fraction line as a single ‘1’ is a common
error (see Table VII).

Matrix Recognition (Task 4). The results for the second
experimental matrices recognition task are presented in
Table V. Systems perform better than in the last competition,
but it is not clear whether this is due to algorithms or the new
data set. As in the last CROHME, the alignment of elements
in columns is harder than for rows. Symbol recall rates for
both systems are lower than their results for Task 1 (see
Table IV), because matrix layout makes symbol detection
more difficult.

Table V
TASK 4: MATRIX RECOGNITION RESULTS.

MyScript Wiris
Expression Rate 68.40 56.40
Symbol Recall 94.86 87.03
Matrix Recall 97.52 85.67
Row Recall 95.61 87.16
Column Recall 90.71 82.22
Cell Recall 87.49 84.68



Table IV
TASK 1: SYMBOL-LEVEL RESULTS. THERE ARE 101 SYMBOL CLASSES, AND SIX SPATIAL RELATIONSHIPS. Seg: SEGMENTATION, Seg+Class:

SEGMENTATION & CLASSIFICATION, Rec: RECALL, Prec: PRECISION.

SYMBOLS SPATIAL RELATIONSHIPS
Seg (%) Seg+Class (%) Seg (%) Seg+Class (%)

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.
MyScript 98.89 98.95 95.47 95.53 96.81 96.82 95.11 95.11
Wiris 96.49 97.09 90.75 91.31 91.98 92.62 90.17 90.79
Tokyo 91.62 93.25 86.05 87.58 84.41 85.98 82.11 83.64
São Paulo 92.91 95.01 86.31 88.26 83.51 86.26 81.48 84.16
Nantes 94.45 89.29 87.19 82.42 76.34 71.67 73.20 68.72

Table VI
TASK 1: FREQUENT SYMBOL RECOGNITION ERRORS AND TOP-5 TEST

SET SYMBOL FREQUENCIES.

1st # 2nd # 3rd #

MyScript c (23) 1 (22) q (18)
Wiris 1 (65) z (55) 2 (44)
Tokyo x (99) 1 (86) 2 (77)
São Paulo 1 (70) × (77) 2 (72)
Nantes 1 (115) 2 (42) × (39)
Freq. in − (1120) 2 (898) 1 (891)
Test set + (763) x (695)

Table VII
TASK 1: MOST FREQUENT SYMBOL BIGRAM ERRORS AND TOP-5

MOST FREQUENT SYMBOL BIGRAMS IN THE TEST SET.

1st # 2nd # 3rd #

MyScript
∑
a

(11) lim
n

(8)
∑
i

(8)

Wiris x) (16) z) (14) (z (14)

Tokyo dx (29) x) (22) 1 (22)

São Paulo −− (36)
√
+ (26) 1 (24)

Nantes 1 (88) x+ (46) −− (44)

Freq. in 1 (198)
2

(156) +1 (126)
Test set −1 (124) −− (124)

V. CONCLUSION

The recognition of handwritten math expressions is still a
challenge after six years of competitions. High recognition
rates for individual tasks were obtained, but correctly parsing
a handwritten expression requires many individual segmen-
tation and classification decisions to be made correctly in
tandem. The system with the best performance for the main
task is again MyScript corporation, which made use of a
large private dataset to train their handwritten symbol parser.
The best results obtained using only provided data were from
WIRIS corporation (Tasks 1, 3 and 4), the Tokyo University
of Agriculture and Technology (Task 2a), and RIT (Task 2b).

For online handwritten math recognition, a key direction
for future research is improving structure recognition: even
from provided symbols in Task 3, for the best submission

almost 10% of recognized formulas have incorrect structure.
Improving detection of invalid (junk) symbols is an impor-
tant related direction. Improvements in symbol and spatial
relationship classification can also be made, including better
discrimination between right-adjacent and sub/super-scripted
relationships.
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