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Time-domain simulation of damped impacted plates.
II. Numerical model and results

Christophe Lambourg,a) Antoine Chaigne,b) and Denis Matignon
Ecole Nationale Supe´rieure des Te´lécommunications, De´partement TSI, CNRS URA 820, 46 Rue Barrault,
75634 Paris Cedex 13, France

A time-domain model for the flexural vibrations of damped plates was presented in a companion
paper@Part I, J. Acoust. Soc. Am.109, 1422-1432~2001!#. In this paper~Part II!, the damped-plate
model is extended to impact excitation, using Hertz’s law of contact, and is solved numerically in
order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme
of second order in time and fourth order in space. As a consequence of the damping terms, the
stability and dispersion properties of this scheme are modified, compared to the undamped case. The
numerical model is used for the time-domain simulation of vibrations and sounds produced by
impact on isotropic and orthotropic plates made of various materials~aluminum, glass, carbon fiber
and wood!. The efficiency of the method is validated by comparisons with analytical and
experimental data. The sounds produced show a high degree of similarity with real sounds and allow
a clear recognition of each constitutive material of the plate without ambiguity. ©2001 Acoustical
Society of America.

PACS numbers: 43.40.Dx@CBB#
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I. INTRODUCTION

A time-domain model of damped isotropic and orthotr
pic plates was derived in a companion paper~Part I! in order
to investigate the relevance of material properties in the q
ity of sounds produced by vibrating structures. This pl
model includes damping terms expressed by means of a
eral differential operator similar to the one commonly us
in viscoelasticity. In the previous paper it was shown un
which conditions this operator is able to account for v
coelastic, thermoelastic and radiation losses in materials1

In this paper~Part II, Sec. II!the equations of motion fo
the damped plate are briefly reviewed in the general c
For convenience, these equations are written in the Lap
domain with complex rigidity factors. The system is comp
mented by initial and boundary conditions. The initial impa
is modeled by Hertz’s law of contact. Most of the presen
results are obtained in the case of freely suspended pl
However, the model is able to account for other sim
boundary conditions, such as clamped or simply suppo
plates.

The main purpose of this paper is to validate a vib
tional model for the impacted plate. No attempt is made
compute the complete acoustic field around the plate w
great accuracy. However, in order to facilitate the comp
son with real sounds, rather than with vibrational quantit
~such as velocity or acceleration at a given point of
plate!, a simple radiation model is to calculate radiation fr
the plate displacement, in order to obtain simulated wa
forms having the same dimension as recorded sounds.

In Sec. III, the equations of the model are put into

a!Present address: 64 rue des Moines, 75017 Paris, France.
b!Present address: ENSTA-UME, Chemin de la Hunie`re 91761 Palaiseau ce

dex, France, electronic mail: chaigne@ensta.fr
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numerical form using an explicit finite-difference scheme
second order in time and fourth order in space. Sim
schemes were successfully applied in the past to the coup
between plate vibration and acoustic radiation by Fre
et al.2 and by Schedinet al. for the time-domain simulation
of undamped isotropic plates subjected to impacts.3 The nu-
merical formulation is followed by a necessary analysis
stability and dispersion properties, since no previous re
ences were found in the literature for similar problems wh
included damping.

The results presented in Sec. IV show the efficiency
the simulation. Following the mode of presentation pre
ously used for xylophones,4 the method is first validated by
comparisons between analytical and numerical results
simple situations and, second, by comparisons between m
surements and simulations for damped rectangular pl
made either of isotropic or orthotropic materials.

II. THE GOVERNING EQUATIONS

A. The damped-plate equations

The flexural vibrations of a rectangular Kirchhoff–Lov
plate are considered here~see Fig. 1 for the geometry of th
problem!. The equations are written in the orthotropic ca
The losses are expressed by means of a differential ope
similar to the one used in viscoelasticity. For a plate of sm
thicknessh, the transverse displacementW(x,y,t), as a
function of the coordinatesx,y and timet, is governed by
the following equations~expressed in the Laplace doma
with Laplace variables):1,5
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d:
S M̃ x~x,y,s!

M̃ y~x,y,s!

M̃ xy~x,y,s!
D 52h3S D̃1~s! D̃2~s!/2 0

D̃2~s!/2 D̃3~s! 0

0 0 D̃4~s!/2
D

3S W̃,xx~x,y,s!

W̃,yy~x,y,s!

W̃,xy~x,y,s!
D ,

~1!
rh~s21Rfs!W̃~x,y,s!5M̃x,xx~x,y,s!1M̃ y,yy~x,y,s!

12M̃ xy,xy~x,y,s!1 f̃ z~x,y,s!,

where the subscripts ,xx, ,yy and ,xy denote the partial de
rivatives of the variables. The first three equations cor
spond to the viscoelasticlike strain-stress relationships
thin orthotropic plates. M̃ x(x,y,s), M̃ y(x,y,s) and
M̃ xy(x,y,s) are the Laplace transforms of the bending a
twisting moments andD̃ i(s) are the four complex rigidities
W̃(x,y,s) is the Laplace transform of the displacement. T
fourth equation in Eq.~1! derives from Newton’s secon
law, wherer is the density of the material,Rf a viscous
damping coefficient, andf z(x,y,t) an excitation source term

The finite-difference formulation of the problem is fa
cilitated by expressing the strain–stress relationships
terms of differential equations. In the present model,
complex rigidities are written in the form:

D̃ i~s!5Di~11d̃i~s!!5Di

11(v51
N svpiv

11(w51
N swqw

, ~2!

where the coefficientspiv and qw depend on the dampin
mechanisms~see Table II!. TheDi correspond to the stati
rigidities of the plate. Thed̃i are perturbation terms due t
damping. In order to ensure that the model is dissipative
coefficientspiv andqw must fulfill a number of constraints.1

B. The boundary conditions

For a plate of finite size, Eq.~1! must be completed by
the boundary conditions. Only three ideal conditions

FIG. 1. Geometry of the plate of dimensionsl x and l y and of thicknessh.
The flexural displacementW(x,y) is oriented along thez axis.
-
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edges parallel to the axes of symmetry of the material
considered here. For the edges located atx50 andx5 l x ~see
Fig. 1!, these conditions are6

• for a free edge~F!:

Mx50 and
]Mx

]x
12

]Mxy

]y
50, ~3!

• for a simply supported edge~SS!:
W50 and Mx50, ~4!

• for a clamped edge~C!:

W50 and
]W

]x
50. ~5!

Similar conditions are given for the edges located ay
50 andy5 l y by interchangingx andy in Eqs.~3!–~5!.

C. The interaction between the plate and the impactor

In Eq. ~1!, it is assumed that the loadf (x,y,t) due to the
interaction between the plate and the impactor is gover
by Hertz’s law of contact.7 This method has been used wi
success in the past for the time-domain modeling of i
pacted xylophone bars8 and for a mixed time-frequency in
vestigation on impacts on plates.9 The motionWi of the im-
pactor is a solution of the following system:

f ~x,y,t !5g~x2x0 ,y2y0!FH~ t !,

FH~ t !5H @~W~x0 ,y0 ,t !2Wi~ t !!/kH#3/2

if Wi~ t !,W~x0 ,y0 ,t !,
0 otherwise

~6!

d2Wi~ t !

dt2
5

FH~ t !

mi
,

whereg(x2x0 ,y2y0) is a normalized spatial window cen
tered at the impact point,FH is the interaction force,W
2Wi is the relative displacement between the impactor a
the plate at the impact point,mi is the mass of the impacto
and kH is Hertz’s constant which depends on the surfa
geometries and elastic properties of the two bodies in c
tact. In Eq.~6!, the vibrations in the impactor are neglect
and it is assumed that the contact surface remains con
during the impact. These assumptions are reasonable w
the dimensions of the impactor are small compared to th
of the plate.9

D. The radiation equation

For the purpose of simplicity, only the case of baffle
plates will be considered here. Thus, for computing the ra
ated pressure from the plate displacementW, the following
time-domain formulation of the Rayleigh integral was use

p~r, t !52
ra

2p E E
S0

1

ur2 r0u
]2W

]t2 S r0 ,t2
ur2 r0u

c DdS0 ,

~7!

wherep is the sound pressure at the positionr in the sound
field, ra is the air density,c is the speed of sound in air,S0

is the surface of the plate andr 0 refers to the position of the
source points on the plate surface.
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III. THE NUMERICAL MODEL

The present work is limited to rectangular plates
which the boundaries coincide with the nodes of a regu
rectangular grid. For this class of geometries, it is known t
the Finite-Difference Methods~FDM! are convenient for
solving vibration problems in the time domain.10,11

In this section, the use of a 2–4 finite-difference sche
for solving the impacted plate equations is studied in ter
of stability and numerical dispersion. This scheme is of s
ond order in time and fourth order in space. The numer
parameters to be determined are the time stepDt and the two
spatial stepsDx, Dy along thex and y axis, respectively.
The appropriate selection of these parameters is impo
both by the numerical stability condition and by the order
accuracy required for the dispersion.

In what follows, the guideline for the dispersion criter
was given by the accuracy required in the context of au
applications. According to Moore,12 the minimum value of
the relative difference limen for pitch of a pure tone is abo
0.5% at 2 kHz, and becomes greater than 5% for frequen
above 5 kHz. Since there are no available data for the dif
ence limen relative to tones made of simultaneous inh
monic frequencies, the pure tone difference limen was u
as reference for the required accuracy of the numer
model.

A. Explicit finite-difference schemes

The transverse displacement of the plate is compute
the nodes (x5 lDx, y5mDy, t5nDt) of a rectangular grid.
The value of a field variablev(x,y,t) expressed on this mes
is denotedv l ,m

n 5v( lDx,mDy,nDt).
The elastic and inertial terms, involving second ord

partial derivatives versus time or space, are discretized
means of centered finite difference operators~see Appendix
A!. The damping terms are approximated by decentered
erators which has the advantage to keep the explicit chara
of the numerical formulation. This strategy is justified by t

fact that the damping termsd̃i defined in Eq.~2! are assumed
to be first order correction terms. Centered operators for
damping terms would have led to an implicit scheme. T

time derivatives in the damping termsd̃i are approximated
by backward difference operators which, in terms of t
z-transform, amounts to replacing the continuous Lapl
variables by the discrete operator (12z21)/Dt. Thus, the

discrete approximation ofd̃i , written in descending power o
z, is written:

( r 50
N x ir z

2r

11( r 51
N c rz

2r 5
DtN1( r 51

N DtN2r~12z21!rpir

DtN1( r 51
N DtN2r~12z21!rqr

. ~8!

In Eq. ~8!, the constantsx ir and c r are obtained by identi-
fying term by term the two sides of Eq.~8!.

The finite-difference approximation of Eq.~1! is then
given by:
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~Mx! l ,m
n 52h3D1(

r 50

N

x1r~DxxW! l ,m
n2r

2h3
D2

2 (
r 50

N

x2r~DyyW! l ,m
n2r2(

r 51

N

c r~Mx! l ,m
n2r

~M y! l ,m
n 52h3D3(

r 50

N

x3r~DyyW! l ,m
n2r

2h3
D2

2 (
r 50

N

x2r~DxxW! l ,m
n2r2(

r 51

N

c r~M y! l ,m
n2r

~9!

~Mxy! l 11/2 ,m11/2
n 52h3

D4

2 (
r 50

N

x4r~DxyW! l 1 1/2,m11/2
n2r

2(
r 51

N

c r~Mxy! l 11/2 ,m11/2
n2r

Wl ,m
n115~22RfDt !Wl ,m

n 1~RfDt21!Wl ,m
n21

1
Dt2

rh
~~DxxMx! l ,m

n 1~DyyM y! l ,m
n

12~D̃xyMxy! l ,m
n 1~ f z! l ,m

n !,

where the discrete spatial operatorsDxx , Dyy , Dxy andD̃xy

are fourth order approximations~see Appendix A!. It can be
seen from Eq.~9! that the transverse displacementW is re-
cursively determined at timen11 from its values at previous
time steps.

B. Boundary conditions

The numerical approximation of the boundary con
tions is obtained by means of the image method. It cons
of replacing the boundaries by virtual sources located
points external to the plate. In what follows, only the boun
ary conditions for a free straight edge located atx50, for a
semi-infinite plate, is discussed@see Eq.~3!#. The results can
be easily extended to simply supported and clamped edg13

The numerical formulation of the boundary conditions d
scribed below is conducted so as to maintain the overall
curacy of the scheme and to limit the computational doma

It is assumed that the semi-infinite plate is located inx
.0 ~see Fig. 1!and that the transverse displacementW, at
time nDt and at every previous time step, is known at ea
point lDx,mDy such thatl>21. The values ofW at time
n11 are then obtained by using the following procedure

• First, the bending and twisting moments are computed
time nDt. This computation is performed by applying th
first three equations in Eq.~9! to each point of the grid for
which x.0. For x50, M x is equal to zero andM y is de-
rived from the displacement by using the second equa
in Eq. ~9!, after replacingDxx

(4) by the second order operato
Dxx

(2) in order to limit the spatial extension of the bounda
domain. (Mxy)21/2,m

n is given by the third equation in Eq
~9! whereDxy

(4) is replaced by the operatorDx
(2)oDy

(4) de-
fined as:
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~Dx
(2)oDy

(4)W!21/2 ,m11/2
n

5
1

24DxDy
@~W0,m22

n 227W0,m21
n

127W0,m
n 2W1,m12

n !2~W21,m22
n 227W21,m21

n

127W21,m
n 2W21,m12

n !#. ~10!

• The application of the image method also involves
computation of the values ofMx at pointsx52Dx. This
is performed by considering the second condition in E
~3!, for which a third order decentered approximation
Dx and fourth order inDy leads to:

~Mx!21,m
n 53~Mx!1,m

n 2 1
2 ~Mx!2

n23Dx~~D̃y
(4)Mxy!21/2 ,m

n

1~D̃y
(4)Mxy!1/2 ,m

n !, ~11!

where

~D̃y
(4)Mxy!l11/2 ,m

n 5
9

8Dy
~~Mxy!l11/2 ,m11/2

n 2~Mxy!l11/2 ,m21/2
n !

2
1

24Dy
~~Mxy! l 11/2 ,m13/2

n

2~Mxy! l 11/2 ,m23/2
n !. ~12!

• The final task consists in computingW at time (n
11)Dt. This is performed by using the fourth equation
Eq. ~9! for the pointsl .0, and by replacing the fourth
order operators inDx by second order ones in this equ
tion at pointsl 50. The displacement at the image poin
l 521 is derived from the free edge conditionMx50 at
x50, for which a second order inDx, and fourth order in
Dy approximation leads to the following expression
W21,m

n11 :

W21,m
n11 52

Dx2D2

2D1
~Dyy

(4)W!0,m
n1112W0,m

n112W1,m
n11. ~13!

The influence of the damping terms is neglected in the
crete approximation of the boundary conditions. T
schemes for the three other edges of the plate obey the s
principles as the one presented above forx50.

C. Stability

The numerical parameters of explicit difference schem
must fulfill a stability condition which guarantees the co
vergence of the numerical solution.14 In this paragraph, the
stability condition for the 2–4 scheme applied to the u
damped plate model is presented. The results are then
tended to the damped model. A distinction is made in w
follows between two definitions of stability:14

• The numerical scheme is calledweakly stableif the solu-
tion at a fixed timeT5nDt is bounded for allDt with
respect to the Euclidean normiWni5(( l ,muWl ,m

n u2)1/2.
• The scheme is calledstrongly stableif the solution remains

bounded for allT.

A strong stability condition can be obtained for the u
damped model. In the damped case, paradoxically, on
weak stability condition can be given.
e

.

-

me

s

-
x-
t

a

1. Undamped model

In this paragraph, the fluid damping constantRf and the
damping coefficientspir and qr are set equal to zero. Th
Fourier method is used for determining the stabil
criterion.14 It consists of studying the modulus of one pa
ticular solutionWl ,m

n 5wn exp(jkxlDx1jkymDy) of the homo-
geneous equation. InjectingWl ,m

n in Eq. ~9! for f l ,m
n 50 leads

to the following equation forwn :

wn111~b~kx ,ky!2Dt222!wn1wn2150, ~14!

with:

b~kx ,ky!2516S j1
2

Dx4 S X21
1

3
X4D 2

1
j3

2

Dy4 S Y21
1

3
Y4D 2

1
j2

2

Dx2Dy2 S X21
1

3
X4D S Y21

1

3
Y4D

1
j4

2

Dx2Dy2 S X1
1

6
X3D 2S Y1

1

6
Y3D 2D ,

~15!

and where

j i5Ah2Di

r
, X5sin

kxDx

2
, Y5sin

kyDy

2
. ~16!

The stability criterion is satisfied if the discriminant of th
characteristic polynomial associated with Eq.~14! is nega-
tive for all kx andky . This leads to the following condition

Dt<
1

2AS 4

3
D 2S j1

21
j2

2

r 1
2 1

j3
2

r 1
4D 1S 7

6
D 4 j4

2

r 1
2

, ~17!

wherer 15Dy/Dx.

FIG. 2. Numerical isotropyI (u,F,r ) for a reduced frequencyF equal to
0.2 and for different values of the degreer of anisotropy: r
5$0.2,0.4,0.6,0.8,1%.
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2. Damped model

A model including the damping terms is now consi
ered. To facilitate the presentation, the case of a dam
bending bar~1D problem!is first presented and the resul
are then extended to plates~2D!.

Similarly to Eq. ~1!, the equations governing the tran
verse displacementW(x,t) of a thin bar are written:

M̃x52EI
11( r 51

N prs
r

11( r 51
N qrs

r W̃,xx

~18!
rS~s21Rfs!W̃5M̃x,xx1 f̃ z.

FIG. 3. ~a! Infinite isotropic plate profile at successive instants of timet
5$0,0.05,0.10,0.15,0.20,0.25% ms. Top: analytical solution. Bottom: nu
merical solution.~b! Relative error~in %! between analytical and numerica
solutions versus time for four different sampling frequenciesf e

5$150,200,250,300% kHz.
ed

The corresponding FD scheme is written:

~Mx! l
n52IE(

r 50

N

x r~DxxW! l
n2r2(

r 51

N

c r~Mx! l
n2r ,

~19!

Wl
n115~22RfDt !Wl

n1~RfDt21!Wl
n21

2
Dt2

rS
~~DxxMx! l

n1~ f z! l
n!,

whereE is Young’s modulus,I is the geometrical momen
andS is the cross-section of the bar. The termf z denotes the
external force density by unit length.Dxx is a fourth order
discrete operator.

A necessary condition for weak stability is obtained
studying the amplification matrix14 ~see Appendix B!. This
condition is written:

Dx2>2DtAIEpN

rSqN
. ~20!

It is found that the condition expressed in Eq.~20! is
similar to the one obtained with the Fourier method in t
undamped case, except thatE is now replaced byEpN /qN .
This term corresponds to the high frequencies’ asympt
value of the complex Young’s modulus.

The stability condition for the 2D system Eq.~9! is de-
termined in the same way as for the 1D case~see Appendix
B!. It is found that the weak stability condition of th
damped 2–4 scheme is similar to Eq.~17!, after replacing
eachDi by DipiN /qN . SincepiN /qN is always greater than
unity for a dissipative model, this result shows that the s
bility condition is more restrictive when damping terms a
taken into account than for the undamped plate. Howe
for the investigated materials~aluminum, steel, glass an
wood!, it has been found that the consecutive increase in
of the minimum space step remains below a few perce
compared to the undamped case.

D. Accuracy

One method for estimating the deviation between ex
and approximate solutions consists of calculating the diff
ence between continuous and discrete frequencies.10,15 For
simplicity, only the undamped model will be discussed he

Inserting the solution W(x,y,t)5(Aej vt

1Be2 j vt)exp(jkxx1jkyy) in Eq. ~1!, without damping terms
and for f z50, yields the continuous dispersion equation:
k5Av

ju
with k5Akx

21ky
2, u5arctan

ky

kx
, ju5

h2

r
~D1 cos4 u1~D21D4!cos2 u sin2 u1D3 sin4 u!. ~21!
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FIG. 4. Bending vibrations of a L-shaped isotrop
plate, a few ms after the impact, with different boun
ary conditions.~a! Geometry of the plate at rest.~b!
Simply supported plate.~c! Clamped plate.~d! Free
plate.
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Similarly, provided that the stability condition is verified, th
introduction of the component Wl ,m

n 5(Aej vnumnDt

1Be2 j vnumnDt)exp(jkxlDx1jkymDy) in Eq. ~9! leads to the
numerical dispersion equation:

vnum5
2

Dt
arcsin

b~kx ,ky!Dt

2
, ~22!

whereb(kx ,ky) is defined in Eq.~15!.
In order to simplify the mathematical derivations, it

assumed here thatj250 and thatj45A2j1j3 which consti-
tutes a reasonable approximation for a large class of or
tropic materials.16 This allows us to characterize the aniso
ropy of the material with only one parameterr 5j3 /j1 .
Under these conditions Eqs.~21! and ~22!, combined with
Eq. ~17!, yield:

Vnum52 arcsinF 36

A9410
S S X21

X4

3 D 2

1S Y21
Y4

3 D 2

12S X1
X3

6 D 2S Y1
Y3

6 D 2D 1/2G
X5sinS S 4705

2592D
1/4 AV cosu

Acos2 u1r 2 sin2 u
D ~23!

Y5sinS S 4705

2592D
1/4 rAVsinu

Acos2 u1r 2 sin2 u
D ,

whereV5vDt52pF and Vnum5vnumDt are the reduced
angular frequencies.

Finally, the relative error in frequency is given by:
o-

e~V,u!5
V2Vnum

V
. ~24!

It has been observed that about 15 time steps per pe
are required with the 2–4 scheme in order to keep the e
in frequency smaller than 5% at 20 kHz, whereas more t
40 time-steps by period would have been needed with
2–2 scheme. In the audio range 0–20 kHz, this degree
accuracy requires a sampling rate approximately equa
300 kHz for the 2–4 scheme, whereas 800 kHz would h
been needed with the 2–2 scheme.

For a material with a given anisotropy degreer , Eq.~23!
shows that the numerical error not only depends on
quency, but also on the propagation angleu in the plate. A
convenient method for representing this error is to define
isotropy index:15

I ~u,F,r !5
cnum

c
, ~25!

wherecnum is the numerical phase velocity andc the exact
phase velocity. Figure 2 represents the variations ofI with u,
for a given reduced frequencyF50.2, and for different val-
ues of the degreer of anisotropy. Notice that the angleum

corresponding to the maximum indexI M moves fromp/4 to
zero as the anisotropy degreer of the material decreases
However, the ratioI M /I m between the maximum and th
minimum values of the isotropy index remains unchanged
r varies.

In our applications, the plate equation has been sol
with a 2–4 scheme and with a sampling rate of 192 kH
This leads to an error of 8% in the estimation of the pha
velocity at 20 kHz and of 2.5% at 10 kHz.
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E. Computation of the plate-impactor interaction

The discrete formulation of Eq.~6! is given by

f l ,m
n 52gl ,mFh

n

Wi
n1152Wi

n2Wi
n211

Dt2

ms
Fh

n ~26!

Fh
n115H @~Wp

n112Wi
n11!/kH#3/2 if Wi

n11,Wp
n11

0 otherwise.

Wp is the displacement of the plate at impact point (x0 ,y0).
The spatial windowgl ,m is a triangular function of width
2Dx and 2Dy, centered at point (x0 ,y0).

F. Computation of the sound pressure

The semi-discrete formulation of the Rayleigh integ
presented in Eq.~7! is obtained by using a standard trapez
dal rule:

FIG. 5. Interaction force between an orthotropic plate and an impactor
ing the contact time, for two different initial velocities of the impactor:~a!
1.45 m/s,~b! 0.6 m/s. Left: Simulation with the present Finite-Differenc
Method ~FDM!. Right: Simulation made by McMillan~Ref. 9!.
l
-

p~r, t !52
ra

2p (
l 50

Nx21

(
m50

Ny21
DxDy

4

d2

dt2 S Wl ,m~ t2Rl ,m /c!

Rl ,m

1
Wl 11,m~ t2Rl 11,m/c!

Rl 11,m
1

Wl ,m11~ t2Rl ,m11 /c!

Rl ,m11

1
Wl 11,m11~ t2Rl 11,m11 /c!

Rl 11,m11
D . ~27!

In this equation,Nx and Ny are the nearest integer
smaller than or equal tol x /Dx and l y /Dy, respectively,
where 0,x, l x and 0,y, l y is the plate domain.Rl ,m is the
distance between the listening point and each mesh poin
the plate andRl ,m /c is the corresponding time delay. Afte
time-domain discretization, this quantity is approximated
the nearest multiple ofDt such that:

Wl ,m~nDt2Rl ,m /c!.Wl ,m
n2 i l ,m with i l ,m5 intS Rl ,m

cDt D .

~28!

Finally, the discrete formulation of Eq.~27! is written:

p~r, nDt !5pn5Dtt (
i 5 i min

i max

(
l 50

Nx

(
m50

Ny

d i i l ,m
Al ,mWl ,m

n2 i , ~29!

where

i min5min~ i l ,m!, i max5max~ i l ,m!

Dtt discrete backward time-derivative operator
~30!

Al ,m52
DxDyra

2pRl ,m
Bl ,m

Bl ,m55
1 if 0, l ,Nx and 0,m,Ny

1/2 if ~~ l 50 or Nx! and ~0,m,Ny!!

or ~~m50 or Ny! and ~0, l ,Nx!!

1/4 otherwise.

IV. RESULTS OF SIMULATIONS

In order to assess the validity of the method, this sect
starts with a comparison between the numerical result
the theoretical solution obtained in a simple case where
plate displacement is given analytically. This presentation
followed by the simulation of the plate for three differe
boundary conditions. The force pulse obtained with our n
merical scheme is then compared to the force pulse ca
lated for the same plate impacted with the same impa
using the method developed by McMillan.9 Finally, simu-
lated waveforms, and their corresponding spectra, are c
pared to measurements for four different materials~alumi-
num, glass, carbon fiber and wood!.

A. Comparison with analytical displacement

An analytical solution to the plate equation can be o
tained only for a limited number of cases. One example
such an analytical solution can be found in textbooks for
infinite isotropic plate subjected to the initial Gaussi
shape:6

r-



TABLE I. Elastic and geometrical parameters of plates and impactors.

Aluminum plates
r52660 kg m23 D156160 MPa D458600 MPa
platea1 : l x5304 mm l y5192 mm h52 mm f c56 kHz
platea3 : l x5419.5 mm l y5400 mm h54 mm f c53 kHz

Glass plate
r52550 kg m23 D156700 MPa D4510270 MPa
platev1 : l x5229.5 mm l y5220.5 mm h52 mm f c55.8 kHz

Carbon plate
r51540 kg m23 D158437 MPa D25463 MPa D35852 MPa D452267 MPa
platec1 : l x5399 mm l y5200 mm h52.2 mm critical zone5@3.6,11.3#kHz

Carbon–Epoxy plate
r51581 kg m23 D156912 MPa D2551.5 MPa D354750 MPa D451015 MPa
platem1 : l x570.7 mm l y570.7 mm h52 mm

Wooden plate
r5388 kg m23 D151013 MPa D2527.5 MPa D3553.7 MPa D45221 MPa
plateb1 : l x5515 mm l y5412.5 mm h54.8 mm critical zone5@2.4,10.3#kHz

Titanium impactor
radiusR510 mm mi51.12 kg
kH54.031026 m N22/3

Rubber impactor
radiusR510 mm mi523.6 g
kH59.031026 m N22/3

TABLE II. Damping parameters.

Thermoelastic damping~aluminum!

D̃1~s!5D1S11
sR1

s1~c1/h2!
D, D̃4(s)5D4

R158.4531023 c158.031024 rad m2 s21

Viscoelastic damping~glass!

D̃i~s!5DiS11
sR1

s1s1
1

sR2

s1s2
D, i 5@1, 4#

R151.6331023 s155180 rad s21 R251.96231023 s2555 100 rad s21

Viscoelastic damping~carbon!

D̃i~s!5DiS11
sRi1

s1si1
1

sRi2

s1si2
D, i 5@1, 3, 4# D̃2(s)5D2

R1151.3231023 s11510.13103 rad s21 R1255.031023 s12594.03103 rad s21

R3158.831023 s3152.53103 rad s21 R32544.031023 s32570.0 rad s21

R41510.431023 s4152.273103 rad s21 R42514.431023 s42540.03103 rad s21

Viscoelastic damping~wood!

D̃i~s!5DiS11
sRi1

s1si1
1

sRi2

s1si2
D, i 5@1, 3, 4# D̃2(s)5D2

R1158.1831023 s1153.23103 rad s21 R12510.0 1023 s12550.23103 rad s21

R31516.731023 s3151.13103 rad s21 R32570.031023 s32550.2 rad s21

R41515.231023 s4151.753103 rad s21 R42535.031023 s42550.23103 rad s21

Radiation damping~isotropic plates!

D̃i~s!5DiS11
2rac

rhvc

(1
3bm~s/vc!

m

(0
3an~s/vc!

n D i 5@1, 4# vc5c2A r

h2D1

ra51.2 kg m23 c5344 m s21

a051.1669 a151.6574 a251.5528 a351
b150.0620 b250.5950 b351.0272

Fluid dampingRf in s21

aluminumRf50.032 glassRf50.88 carbonRf50.8 woodRf52.4
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W~0,r!5W0e2r 2/a2
. ~31!

In this case, the displacement at timet is given by:

W~ t,r !5
W0

11t2 e2 r 2/a2(11t2)

3Fcos
r 2t

a2~11t2!
1t sin

r 2t

a2~11t2!G , ~32!

where

t5
4t

a2Ah2D1r. ~33!

Figure 3~a!shows the shape of the plate at success
instants of time~between 0 and 0.25 ms!for an aluminum
plate with thicknessh52 mm, and for an initial Gaussia
shape of widtha52.5 cm. The other dimensions of the pla
are sufficiently large (1 m31 m) so that no reflexions from
the boundaries are observed during the selected time s
No differences can be easily seen between the exact solu
@top of Fig. 3~a!#and the simulated solution obtained wi

FIG. 6. Aluminum plate. FFT analysis of the sound pressure during the
20 ms.~a! Simulated vs measured frequencies in the range 0–5 kHz~‘‘s’’!.
The solid line indicates perfect matching between the two frequency
~slope equal to 1!. ~b! Comparison between simulated~‘‘3’’! and measured
~‘‘s’’! magnitudes of the main FFT peaks.

TABLE III. General simulation parameters.

Typical time and spatial steps
f e51/Dt5192 kHz Dx5Dy59.5 mm

Impact position
xo5 l x/2 yo5 l y/2

Listening point
x5 l x/2 y5 l y/2 z524 cm
e

le.
ion

st

ts

FIG. 7. Glass plate. FFT analysis of the sound pressure during the firs
ms. ~a! Simulated vs measured frequencies in the range 0–5 kHz~‘‘s’’!.
The solid line indicates perfect matching between the two frequency
~slope equal to 1!. ~b! Comparison between simulated~‘‘3’’! and measured
~‘‘s’’! magnitudes of the main FFT peaks.

FIG. 8. Carbon plate. FFT analysis of the sound pressure during the firs
ms. ~a! Simulated vs measured frequencies in the range 0–1.5 kHz~‘‘s’’!.
The solid line indicates perfect matching between the two frequency
~slope equal to 1!. ~b! Comparison between simulated~‘‘3’’! and measured
~‘‘s’’! magnitudes of the main FFT peaks.
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our finite-difference scheme@bottom of Fig. 3~a!#. Therefore
in order to better show the discrepancies between these
solutions, Fig. 3~b!shows the relative error between the tw
waveforms as a function of time for four different samplin
frequencies. For a sampling frequency equal to 200 kHz,
example, it can be seen that the relative error remains alw
smaller than 5% and tends rapidly to less than 1%.

B. Boundary conditions

Figure 4 illustrates the ability of the numerical meth
to calculate the flexural vibrations of the plate under vario
boundary conditions: simply supported@Fig. 4~a!#, clamped
@Fig. 4~b!# and free plate@Fig. 4~c!#. This figure shows, in
addition, that the scheme is able to simulate L-shaped pla
provided that the sides are parallel to the axes. Thus,
model is not restricted to simple rectangular plates.

C. Impact simulation: Comparison with another
method

In her thesis, McMillan tackles similar problems of im
pacted plates, using a method based on Green function
the vibrating structure at the impact point.9 Figure 5 shows
the simulated forces obtained with the two methods, us
the same geometric and elastic parameters, in the case
Carbon–Epoxy plate struck by a Titanium impactor~see
Table I!. The force histories obtained with the present fin
difference method are on the left-hand side of the figu
whereas the force histories obtained with the McMill
method are on the right-hand side. Figure 5~a! corresponds to
an impact with initial velocity 1 m/s, whereas Fig. 5~b! cor-

FIG. 9. Wooden plate. FFT analysis of the sound pressure during the fir
ms. ~a! Simulated vs measured frequencies in the range 0–1.5 kHz~‘‘s’’!.
The solid line indicates perfect matching between the two frequency
~slope equal to 1!. ~b! Comparison between simulated~‘‘3’’! and measured
~‘‘s’’! magnitudes of the main FFT peaks.
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responds to an impact velocity of nearly 0.6 m/s. It can
seen that the two methods yield identical waveforms. T
ripples in the force pulses are due to the fact that the inve
of the lowest eigenfrequency of the plate here is about
times lower than the interaction time, a consequence of
particular selected set of parameters.

D. Comparison between measured and simulated
pressure

The simulated sounds are now compared with measu
sounds. Due to the large number of excited modes in e
case, no quantitative information can be easily derived fr
the visual comparison between measured and simul
waveforms. In this respect, comparisons in the spectral
main are more informative. All spectra are calculated by F
~fast Fourier transform!on the first 20 ms on the sound an
normalized ~in dB! with respect to the magnitude of th
highest peak. In order to allow quantitative comparison
tween measured and simulated spectra, only the most sig
cant peaks are displayed in the figures. These data are
tracted from the FFT analysis by means of a simple p
detection algorithm. The values of the parameters used
the simulations can be found in Tables I–III.

Figure 6 shows the results obtained for an alumin
plate excited with a xylophone rubber mallet with initial v
locity 1.45 m/s. Figure 6~a!shows that the number and fre
quencies of the spectral peaks, between 0 and 5 kHz,
very well reproduced. The spectral envelopes of both r
and simulated sounds are comparable. The displayed spe
domain is limited here to 5 kHz for reasons of clarity, a
also because the magnitude of the peaks above 5 kHz
relatively small~less than240 dB below the maximum!, a
consequence of both excitation spectrum and damping.
damping here is mainly due to thermoelastic and radiat
losses.1

Figure 7 shows the results obtained for a glass pla
Here again, the measured and simulated frequencies
magnitudes of the spectral peaks look very similar, which
confirmed by listening to the corresponding sounds. T
losses in this material are mainly due to viscoelasticity a
radiation.1

A first example of impact against an orthotropic plate
given in Fig. 8 which compares measurements with simu
tions in the case of a plate made of carbon fibers. It can
seen on the spectra that the high frequencies are rap
damped: the magnitude of the peaks are less than240 dB
below the maximum for frequencies above 1.2 kHz. He
the impact produces a duller sound than with aluminum a
glass. The damping is almost entirely due to viscoela
losses in the material, and the radiation losses can
neglected.1 Similar conclusions can be drawn from Fig.
which shows the results obtained in the case of wo
~Spruce!. Here, the damping of the vibrations in the plate
mainly due to viscoelastic losses. However, due to the
mensions of the plate, the radiation losses cannot be to
neglected. The discrepancies between measurements
simulations for some of the peaks are probably due to
approximations made in the radiation model.

20

ts
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FIG. 10. Decay factors.~a! Aluminum plate. Range 0–1.2 kHz.~‘‘s’’! Experiments;~‘‘3’’! simulations.~b! Aluminum plate. Range 0–12 kHz. Top
simulations; bottom: measurements.~c! Carbon plate. Range 0–5 kHz. Top: simulations; bottom: measurements.~d! Wooden plate. Range 0–3 kHz. Top
simulations; bottom: measurements.
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In a previous paper, measured decay factors were c
pared to the values predicted by the continuous plate m
solved in the frequency domain.1 To completely assess th
validity of the method, Fig. 10 shows, in addition, the co
parison between measured and simulated decay fac
where the simulated damping factors are now obtained f
a frequency analysis of the simulated waveforms. The an
sis method used here is the Matrix Pencil method.17 Figure
10~a!shows that the thermoelastic model of losses acco
for the apparent erratic distribution of the decay factors in
low-frequency range for metallic plates. This distribution e
sentially follows from the fact that the decay time of ea
eigenfrequency depends on its modal shape. In this
quency range~below 2 kHz, for the plate shown on thi
figure! the radiation damping is negligible. The low values
the decay factors below the critical frequency play a ma
role in duration and tone quality of the sound generated
the free vibrations of the plate. Figure 10~b! shows the rel-
evance of the asymptotic radiation model which accounts
-
el

-
rs,
m
y-

ts
e
-

e-

f
r
y

r

the losses above the critical frequency of the plate. For
plate ~aluminuma3 , see parameters in Tables I and II!, the
average decay factor above 4 kHz is about 100 times
average decay factor below 1 kHz.

Figures 10~c!and ~d! show the relevance of the vis
coelastic model for orthotropic plates. It can be seen that
viscoelastic losses fully account for the measured decay
tors, except for the wooden plate above 2 kHz where
radiation losses are not negligible. Here again, the mode
able to reproduce the apparent erratic distribution of de
factors with frequency. This distribution is not due to error
the measurements~a commonly erroneous conclusion! but
rather to the fact that there is a specific damping model
each complex rigidity~see Table II!. Notice further that 13
damping parameters only are needed here for reprodu
adequately the temporal evolution of more than 40 mod
This is an interesting feature of the method in terms of d
reduction.
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V. CONCLUSION

A time-domain model for the simulation of flexural v
brations and sounds radiated by damped isotropic and or
tropic plates has been presented. In order to demonstrat
particular interest of the method for the synthesis of tr
sients, the study was made for plates excited by an impa

The key point of the model is that the losses in the pla
are modeled in the time domain with the help of a gene
differential operator applied to the rigidities of the materi
This formulation gives great flexibility for modeling th
damping of plates. As shown in a companion paper,
formulation allows the modeling of the three main mech
nisms of damping in plates: viscoelasticity, thermoelastic
and radiation.1 Therefore, it makes it possible to reprodu
adequately the complicated frequency dependence of the
cay times observed in a large variety of materials with onl
small number of damping parameters.

The sounds synthesized with this model allow a cl
recognition of the materials without ambiguity. This accura
reproduction would not be possible with a simple descript
of the damping, as with a single loss factor, for examp
All measured and simulated sounds presented in this p
can be heard at the following Web address:http://
wwwy.ensta.fr/;chaigne/plaque/
compar –exp –sim.html.

The equations are solved numerically by means o
finite-difference scheme of second order in time and fou
order in space~2–4 scheme!. The presence of complex
gidities makes it necessary to investigate thoroughly the
bility of the scheme, which contributes to filling a gap in th
literature. It has been shown that a weak stability condit
can be obtained from the study of the amplification matr
following the method by Richtmyer and Morton.14

The accuracy of the method is studied in terms of n
merical dispersion. A comparison with another scheme
lower order in space~2–2 scheme!shows that, for a given
accuracy, the required computing time with the selected 2
scheme is about 4 times lower than with the 2–2 schem

In order to show the validity of the method, a compa
son is made first between an exact analytical solution and
numerical result obtained for an infinite undamped isotro
plate. The impact model is further validated by compar
the calculated force pulses imparted to the plate with
force pulses obtained with another method.9 Finally, simu-
lated sounds are systematically compared to measurem
for four different materials. These comparisons show a p
ticularly good agreement in terms of frequencies and da
ing factors despite the relatively low number of dampi
parameters inserted in the model.

The present model is limited to rectangular plates and
plates with rectangular corners~see Fig. 4!, for which the us
of finite differences is particularly well-suited. Extension
this model to more complicated shapes makes it necessa
use other numerical methods, such as finite elements b
on a variational formulation of the problem.18

APPENDIX A: FINITE-DIFFERENCE OPERATORS

The discrete operators given below are obtained by
ear combinations of Taylor expansions of the field varia
o-
the
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v(x,y,t). In this paper, (Dtp
( i )v) l ,m

n denotes the approximatio
of the pth time derivative ofv at point (lDx,mDy,nDt),
where the subscripts (i ) is the order of the truncation error i
Dt.

1. First order decentered operators

The following operators are used to approximate
time-derivatives in the damping terms.

~Dt
(1)v !n5

1

Dt
~vn2vn21!5~v l ,m

n ! ,t1O~Dt !

~Dtt
(1)v !n5~Dt

(1)oDt
(1)v !n

5
1

Dt2 ~vn22vn211vn22!5~v l ,m
n ! ,tt1O~Dt !

~A1!

~Dt3
(1)v !n5~Dt

(1)oDt
(1)oDt

(1)v !n

5
1

Dt3 ~vn23vn2113vn222vn23!

5~v l ,m
n ! ,ttt1O~Dt !.

A

2. Second order centered operators

~Dtt
(2)v ! l ,m

n 5
1

Dt2 ~v l ,m
n111v l ,m

n2122v l ,m
n !

5~v l ,m
n ! ,tt1O~Dt2!, ~A2!

~Dxx
(2)v ! l ,m

n 5
1

Dx2 ~v l 11,m
n 1v l 21,m

n 22v l ,m
n !

5~v l ,m
n ! ,xx1O~Dx2!, ~A3!

~Dyy
(2)v ! l ,m

n 5
1

Dy2 ~v l ,m11
n 1v l ,m21

n 22v l ,m
n !

5~v l ,m
n ! ,yy1O~Dy2!, ~A4!

~Dxy
(2)v ! l 11/2 ,m11/2

n 5
1

DxDy
~v l 11,m11

n 1v l ,m
n

2v l 11,m
n 2v l ,m11

n !,

5~v l 11/2 ,m11/2
n ! ,xy1O~Dx2!1O~Dy2!,

~A5!

~D̃xy
(2)v ! l ,m

n 5
1

DxDy
~v l 11/2 ,m11/2

n 1v l 21/2 ,m21/2
n

2v l 11/2 ,m21/2
n 2v l 21/2 ,m11/2

n !

5~v l ,m
n ! ,xy1O~Dx2!1O~Dy2!. ~A6!



3. Fourth order centered operators

~Dxx
(4)v ! l ,m

n 5
1

12Dx2 @2~v l 12,m
n 1v l 22,m

n !

116~v l 11,m
n 1v l 21,m

n !230v l ,m
n #

5~v l ,m
n ! ,xx1O~Dx4!, ~A7!
~Dyy
(4)v ! l ,m

n 5
1

12Dy2 @2~v l ,m12
n 1v l ,m22

n !

116~v l ,m11
n 1v l ,m21

n !230v l ,m
n #

5~v l ,m
n ! ,yy1O~Dy4! ~A8!
t

~Dxy
(4)v ! l 11/2 ,m11/2

n 5
1

242DxDy
@~v l 21,m21

n 1v l 12,m12
n 2v l 21,m12

n 2v l 11,m21
n !127~v l 21,m11

n 1v l ,m12
n 1v l 11,m21

n 1v l 12,m
n !

227~v l 21,m
n 1v l ,m21

n 1v l 11,m12
n 1v l 12,m11

n !1272~v l ,m
n 1v l 11,m11

n 2v l 11,m
n 2v l ,m11

n !#

5~v l 11/2 ,m11/2
n ! ,xy1O~Dx4!1O~Dy4! ~A9!

~D̃xy
(4)v ! l ,m

n 5
1

242DxDy
@~v l 23/2 ,m23/2

n 1v l 13/2 ,m13/2
n 2v l 13/2 ,m23/2

n 2v l 23/2 ,m13/2
n !127~v l 23/2 ,m11/2

n 1v l 21/2 ,m13/2
n

1v l 11/2 ,m23/2
n 1v l 13/2 ,m21/2

n !227~v l 23/2 ,m21/2
n 1v l 21/2 ,m23/2

n 1v l 11/2 ,m1 3/2
n 1v l 13/2 ,m11/2

n !

1272~v l 21/2 ,m21/2
n 1v l 11/2 ,m11/2

n 2v l 11/2 ,m21/2
n 2v l 21/2 ,m11/2

n !#5~v l ,m
n ! ,xy1O~Dx4!1O~Dy4!. ~A10!

APPENDIX B: STABILITY

1. 1D problem

By introducing the spatial Fourier transforms of both the displacementwn exp(jklDx) and bending momen
(mx)n exp(jklDx), Eq. ~19! can be rewritten in the following matrix form:

vn115G̃~Dt,k!vn, ~B1!

with

vn115@wn11,wn,¯,wn2N11 ,~nx!n ,¯,~nx!n2N11#T, ~B2!

where (nx)n5Dx2(mx)n . The amplification matrixG̃(Dt,k) is given by:

1
A 2BCx2 ¯ ¯ 2BCxN Cc1 ¯ ¯ ¯ CcN

1 0 ¯ ¯ 0 0 ¯ ¯ ¯ 0

0 1 0 ¯ 0 A A

A � A A A

0 ¯ 0 1 0 0 ¯ ¯ ¯ 0

Bx0 ¯ ¯ ¯ BxN 2c1 ¯ ¯ ¯ 2cN

0 ¯ ¯ ¯ 0 1 0 ¯ ¯ 0

A A 0 1 0 ¯ 0

A A A � A

0 ¯ ¯ ¯ 0 0 ¯ 0 1 0

2 , ~B3!

with

P522RfDt, B54IEX2, C5
4X2Dt2

rSDx4 , F5RfDt21, X5sin
kDx

2
, A5~P2BCx0!~F2BCx1!. ~B4!
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The discrete system in Eq.~B1! is called weakly stableif
there exists a real constantK(t,T) such that:14

iG̃~Dt,k!ni<K~t,T!, for all H 0,Dt,t
0<nDt<T
k real

, ~B5!

where iG̃(Dt,k)i denotes the spectral norm of the matr
G̃(Dt,k). A condition for strong stability is obtained by re
placingK(t,T) by 1 in Eq. ~B5!. The following criterion has
been applied here:14

‘‘If G̃(Dt,k) is uniformly Lipschitz continuous
for Dt50, so far as G̃(Dt,k)5G̃(0,k)
1O(Dt), asDt→0, where the constant implied
by the expressionO(Dt) does not depend onk,
then the scheme is weakly stable if and only if
G̃(0,k) is stable.’’

To apply this criterion, the first step consists of studyi
the dependence ofG̃(Dt,k) on Dt. This parameter appear
in the coefficientsA, C andF defined in Eq.~B4! and in the
expressions of the coefficientsx r andc r :

x r5~21!r
pN

qN
1O~Dt !

~B6!
c r5~21!r1O~Dt !.

All the coefficients of the amplification matrix can b
expressed asgi j 1O(Dt) and thusG̃ is uniformly Lipschitz
continuous. The determination of a stability condition no
consists of the study ofG̃(0,k). It must be checked whethe
the spectral radius of this matrix remains smaller than
equal to unity for allk or not. The eigenvaluesl i of G̃(0,k)
are such that the vector:

S ~nx!n

wn
D5l i S ~nx!n21

wn21
D ~B7!

is a solution of the discrete system in Eq.~19! for Dt50,
given by:

S (
r 51

N

~21!rl i
2r 2B

pN

qN
(
r 50

N

~21!rl i
2r

C l i221l i
21

D S ~nx!n

wn
D5S 0

0D .

~B8!

The nontrivial solutions of this system are obtained by ze
ing the determinant of the matrix:

S (
r 50

N

~21!rl i
r D S l i

21S X4

js

IEpN

rSqN
22Dl i11D50 ~B9!

from which the following necessary condition for weak s
bility is obtained:

Dx2>2DtAIEpN

rSqN
. ~B10!
r

-

-

2. 2D problem

A necessary condition for the system Eq.~9! to be stable
is now determined in the same way as for the 1D case.
assumed that the dissipativity conditions on the coefficie
piN andqN are fulfilled ~see Ref. 1!. As Dt tends to zero,x ir

andc ir can be expanded as follows:

x ir 5~21!r
piN

qN
1O~Dt !, 1< i<4

~B11!
c ir 5~21!r1O~Dt !, i 5@1,4#.

As for the 1D case, it can be shown that the amplificat
matrix is Lipschitz-continuous forDt50. The eigenvaluesl i

of G̃(0,kx ,ky) are now solutions of the following system:

S Q~l i ! 0 0 2~P1~l i !2P21~l i !!

0 Q~l i ! 0 2~P3~l i !2P23~l i !!

0 0 Q~l i ! 2P4~l i !

C1 C3 C4 P~l i !

D
•S ~nx!n

~ny!n

~nxy!n

wn

D 5S 0
0
0
0
D , ~B12!

with:

Q~l i !5(
r 50

N

~21!rl i
2r , P23~l i !52h3D2X2

p2N

qN
Q~l i !,

C15
4X2

rhjs
2 , P~l i !5l i221l i

21 ,

P3~l i !5
4h3D3Y2

r 1
2

p3N

qN
Q~l i !, C35

4Y2

rhjs
2r 1

2 ,

~B13!

P1~l i !54h3D1X2
p1N

qN
Q~l i !,

P4~l i !5
2h3D4XY

r 1

p4N

qN
Q~l i !, C45

8XY

rhjs
2r 1

,

P21~l i !5
2h3D2Y2

r 1
2

p2N

qN
Q~l i !, js5

Dx2

Dt
, r 15

Dy

Dx
.

As for the 1D case, the determination of the stability con
tion is obtained by zeroing the determinant of the matrix E
~B12! which amounts to studying the roots of the polyn
mial:

P~l!1C1S A1

p1N

qN
1A21

p2N

qN
D1C3S A3

p3N

qN
1A23

p2N

qN
D

1C4A4

p4N

qN
50, ~B14!

with

A15h3D1X, Y5sin
kDy

2
, A215

h3D2Y2

2r 1
2 ,
~B15!
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A35
h3D3Y2

r 1
2 , A235

h3D2X2

2
, A45

h3D4XY

2r 1
.

This yields a stability condition similar to Eq.~17!, where
the Di are replaced byDipiN /qN .
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vibrantes. Application a` la synthèse sonore,’’ Ph.D. thesis, Universite´ du
Maine, 1997.

14R. D. Richtmyer and K. W. Morton,Difference Methods for Initial-Value
Problems, 2nd ed.~Interscience, New York, 1967!.

15G. Cohen, Ed.,Ecole des Ondes Inria: Me´thodes nume´riques d’ordre
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