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Time-domain simulation of damped impacted plates.
II. Numerical model and results

Christophe Lambourg,® Antoine Chaigne,” and Denis Matignon
Ecole Nationale Supieure des TEecommunications, Ogartement TSI, CNRS URA 820, 46 Rue Barrault,
75634 Paris Cedex 13, France

A time-domain model for the flexural vibrations of damped plates was presented in a companion
paper{Part I, J. Acoust. Soc. Anl.09, 1422-14322001)]. In this papetPart 1), the damped-plate

model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in
order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme
of second order in time and fourth order in space. As a consequence of the damping terms, the
stability and dispersion properties of this scheme are modified, compared to the undamped case. The
numerical model is used for the time-domain simulation of vibrations and sounds produced by
impact on isotropic and orthotropic plates made of various matdaaisninum, glass, carbon fiber

and wood). The efficiency of the method is validated by comparisons with analytical and
experimental data. The sounds produced show a high degree of similarity with real sounds and allow
a clear recognition of each constitutive material of the plate without ambiguity20@1 Acoustical

Society of America.

PACS numbers: 43.40.Dp)CBB]

I. INTRODUCTION numerical form using an explicit finite-difference scheme of
second order in time and fourth order in space. Similar
schemes were successfully applied in the past to the coupling

to investigate the relevance of material properties in the quallgetheen plate V|br§t|on and aCOL.’St'C rad|§t|oq by Erend|
ity of sounds produced by vibrating structures. This plateet al‘ and by Schediret al. for the time-domain simulation
model includes damping terms expressed by means of a geAf Undamped isotropic plates subjected to impadtae nu-
eral differential operator similar to the one commonly usedmerical formulation is followed by a necessary analysis of
in viscoelasticity. In the previous paper it was shown undesstability and dispersion properties, since no previous refer-
which conditions this operator is able to account for vis-ences were found in the literature for similar problems which
coelastic, thermoelastic and radiation losses in matéfrials. included damping.

In this paper(Part Il, Sec. Il)the equations of motion for The results presented in Sec. IV show the efficiency of
the damped plate are briefly reviewed in the general casghe simulation. Following the mode of presentation previ-
For convenience, these equations are written in the Laplaqgusb, used for xylophonesthe method is first validated by
domain with complex rigidity factors. The system is comple-comparisons between analytical and numerical results in
mented by initial and boundary conditions. The initial 'mpaCtsimple situations and, second, by comparisons between mea-

. . dsurements and simulations for damped rectangular plates
results are obtained in the case of freely suspended plates P g P

However, the model is able to account for other simplemaOle either of isotropic or orthotropic materials.
boundary conditions, such as clamped or simply supported
plates.

The main purpose of this paper is to validate a vibra-
tional model for the impacted plate. No attempt is made toI
compute the complete acoustic field around the plate with
great accuracy. However, in order to facilitate the compari-A. The damped-plate equations
son with real sounds, rather than with vibrational quantities
(such as velocity or acceleration at a given point of the

plate), a simple radiation model is to calculate radiation from” . . . :
the plate displacement, in order to obtain simulated Waveproblem). The equations are written in the orthotropic case.

forms having the same dimension as recorded sounds The losses are expressed by means of a differential operator
In Sec. Ill, the equations of the model are put into gSimilar to the one used in viscoelasticity. For a plate of small

thicknessh, the transverse displacemewi(x,y,t), as a
_ _ function of the coordinates,y and timet, is governed by
¥Present address: 64 rue des Moines, 75017 Paris, France.

PPresent address: ENSTA-UME, Chemin de la Hum@1761 Palaiseau ce- th_e fOllOWIhg eqf"atlons(l%)(pressed in the Laplace domain
dex, France, electronic mail: chaigne@ensta.fr with Laplace variables):™

A time-domain model of damped isotropic and orthotro-
pic plates was derived in a companion pafeart |)in order

I. THE GOVERNING EQUATIONS

The flexural vibrations of a rectangular Kirchhoff—Love
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FIG. 1. Geometry of the plate of dimensiohsandl, and of thickness.
The flexural displaceme/(x,y) is oriented along the axis.
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edges parallel to the axes of symmetry of the material are
considered here. For the edges located=a0 andx=1, (see
Fig. 1), these conditions dre

« for a free edg€F):

M M,y
7 +2w—0, 3)
« for a simply supported edg&S):
W=0 and M,=0, (4)

« for a clamped edgé€C):
W=0 and 8W—O 5
=0 an a_X =0. ( )

Similar conditions are given for the edges located at
=0 andy=I, by interchanging andy in Egs.(3)-(5).

C. The interaction between the plate and the impactor

In Eq. (1), it is assumed that the loddx,y,t) due to the
interaction between the plate and the impactor is governed
by Hertz's law of contacf. This method has been used with
success in the past for the time-domain modeling of im-
pacted xylophone bdtsand for a mixed time-frequency in-
vestigation on impacts on platéghe motionW; of the im-
pactor is a solution of the following system:

f(X,y,t) =9(X—X0,Y—Yo) Fu(1),

2 ~ iy ~
ph(S +RfS)W(X1y!S) MX,XX(X!yis)+My,yy(xayls) [(W(XO,yo,t)_Wi(t))/kH]3/2

+2M iy g (%,Y,8) + TAxY,9), Fu(h=1 if Wi(t)<W(xo,Yo.1), (6)
. . 0 otherwise
where the subscriptxx, yy and xy denote the partial de-
rivatives of the variables. The first three equations corre-  d?W;(t) Fu(t)
spond to the viscoelasticlike strain-stress relationships for az m

thin ~ orthotropic  plates. M(x,y,5), My(x,y,s) and
hereg(x—Xg,Y—Yo) is a normalized spatial window cen-
M,y(x,y.5) are the Laplace transforms of the bending andtered at the impact pointy, is the interaction forceW

twisting moments and;(s) are the four complex rigidities. — . is the relative displacement between the impactor and
W(x,y,s) is the Laplace transform of the displacement. Thethe plate at the impact pointy; is the mass of the impactor
fourth equation in Eq(1) derives from Newton’'s second and ky is Hertz’'s constant which depends on the surface
law, wherep is the density of the materiaR; a viscous geometries and elastic properties of the two bodies in con-
damping coefficient, antl,(x,y,t) an excitation source term. tact. In Eq.(6), the vibrations in the impactor are neglected

The finite-difference formulation of the problem is fa- and it is assumed that the contact surface remains constant
cilitated by expressing the strain—stress relationships imluring the impact. These assumptions are reasonable when
terms of differential equations. In the present model, thehe dimensions of the impactor are small compared to those
complex rigidities are written in the form: of the plate®

1+21’:l:15vpiv

Di(9)=Di(1+0(s) =D 5w
w=1 w

(2)  D. The radiation equation

For the purpose of simplicity, only the case of baffled
where the coefficientp;, and q,, depend on the damping plates will be considered here. Thus, for computing the radi-
mechanismgsee Table Il). TheD; correspond to the static ated pressure from the plate displaceméhtthe following
rigidities of the plate. Thal, are perturbation terms due to time-domain formulation of the Rayleigh integral was used:
damping. In order to ensure that the model is dissipative the 2W 1=
coefficientsp;, andgq,, must fulfill a number of constraints. f f > (ro,t )dSO

27 [r—ro| ot
()

wherep is the sound pressure at the positiom the sound
field, p, is the air density¢ is the speed of sound in ai,

For a plate of finite size, Eq1) must be completed by is the surface of the plate amg refers to the position of the
the boundary conditions. Only three ideal conditions forsource points on the plate surface.

p(r,t)=

B. The boundary conditions



Il. THE NUMERICAL MODEL N

(MO m=—h*D1 2, x1,(D,W)]'

The present work is limited to rectangular plates for r=0

which the boundaries coincide with the nodes of a regular D

rectangular grid. For this class of geometries, it is known that N

the Finite-Difference Method$FDM) are convenient for 2

solving vibration problems in the time domaih? N

In this sectipn, the use of a 2—-4 f_inite-_difference _scheme (My)ln,m: - h3D32 X3r(DyyW)|n,;1r

for solving the impacted plate equations is studied in terms r=0

of stability and numerical dispersion. This scheme is of sec- D, N N

ond order in time and fo_urth order in space. The numerical —h3722 Xar (D W) ol — > ALY

parameters to be determined are the time Atepnd the two r=0 r=1

spatial stepsAx, Ay along thex andy axis, respectively. 5 9
(M) 172 me172= — h374r_0 Xar(Dxy W) 112 me 172

N N
2, Xar(DyW)le' = 2 (M)l

pd

The appropriate selection of these parameters is imposed
both by the numerical stability condition and by the order of
accuracy required for the dispersion. N
In what follows, the guideline for the dispersion criteria _ 2 lﬂr(Mxy)Pﬂ/z 1)
was given by the accuracy required in the context of audio r=1 ‘
applications. According to Moor¥, the minimum value of

n+1__ _ n _ n—1
the relative difference limen for pitch of a pure tone is about Wim = (2= RADW, n+ (RIAT= D)W

0.5% at 2 kHz, and becomes greater than 5% for frequencies At2

above 5 kHz. Since there are no available data for the differ- + (DM Dimt (Dyy M)

ence limen relative to tones made of simultaneous inhar- P

monic frequencies, the pure tone difference limen was used +2(5xnyy)|n,m+(fz)|n,m)i

as reference for the required accuracy of the numerical ~

model. where the discrete spatial operat@rg,, Dy, , Dy, andD,,
S are fourth order approximatiorisee Appendix A). It can be

A. Explicit finite-difference schemes seen from Eq(9) that the transverse displacemafitis re-

The transverse displacement of the plate is computed @&ursively determined at time+ 1 from its values at previous
the nodesX=I1Ax, y=mAy, t=nAt) of a rectangular grid. time steps.
The value of a field variable(x,y,t) expressed on this mesh
is denotedv! ,=v(lAx,mAy,nAt).

The elastic and inertial terms, involving second orderg, goundary conditions
partial derivatives versus time or space, are discretized by
means of centered finite difference operat@mse Appendix | . . _ X
A). The damping terms are approximated by decentered Oélons is o_btalned by means of the image method. It consists
erators which has the advantage to keep the explicit charact@f €Placing the boundaries by virtual sources located at
of the numerical formulation. This strategy is justified by the points external to the plate. In what follows, only the bound-

. ~ ) . ary conditions for a free straight edge locatedk&t0, for a
fact thgt the damping te.rrrds defined in Eq(2) are assumed semi-infinite plate, is discuss¢dee Eq(3)]. The results can
to be first order correction terms. Centered operators for th

. A Be easily extended to simply supported and clamped edges.
damping terms would have led to an implicit scheme. Therpe merical formulation of the boundary conditions de-

time derivatives in the damping terntk are approximated scribed below is conducted so as to maintain the overall ac-
by backward difference operators which, in terms of thecyracy of the scheme and to limit the computational domain.
z-transform, amounts to replacing the continuous Laplace |t js assumed that the semi-infinite plate is located in
variables by the discrete operator (1z™!)/At. Thus, the >0 (see Fig. 1)and that the transverse displacem@ht at
discrete approximation af; , written in descending power of time nAt and at every previous time step, is known at each
z, is written: point IAX,mAy such thatl=—1. The values ofN at time
n+1 are then obtained by using the following procedure:

The numerical approximation of the boundary condi-

« First, the bending and twisting moments are computed at
SN oxizm AN EN ANTT(A-z7 Y, time nAt. This computation is performed by applying the
S T AtV SN AN T(1-7 Yq, (8) first three equations in Eq9) to each point of the grid for
r=1%r r=1 r which x>0. Forx=0, M, is equal to zero andl is de-
rived from the displacement by using the second equation
in Eq.(9), after replacing)f(f() by the second order operator

In Eq. (8), the constantg;, and ¢, are obtained by identi-  D{ in order to limit the spatial extension of the boundary
fying term by term the two sides of E¢g). domain. @\/Ixy)rll,Z’m is given by the third equation in Eq.
The finite-difference approximation of Eql) is then 9) Whereijy is replaced by the operatdiliz)oDy) de-

given by: fined as:



(DPoD{Mw)"

B 1
~ 24AxAy

1/2 ,m+1/2

[(Wg,mfz_ 27V\/(},mfl

1. Undamped model

In this paragraph, the fluid damping const&atand the
damping coefficientp;, and g, are set equal to zero. The
Fourier method is used for determining the stability
criterion* It consists of studying the modulus of one par-

+ 27V\/(1),m_ Wg,m-%— 2) - (er 1m-2" 2TW! 1,m—1 . ; .
ticular solut|onW,'fm=wn exp(k,Ax+jk,mAy) of the homo-
+2TW2 = W2 o) ] (10)  geneous equation. Injecting',, in Eq. (9) for f{',=0 leads
« The application of the image method also involves thet© the following equation fow, :

computation of the values dfl, at pointsx=—Ax. This
is performed by considering the second condition in Eq.
(3), for which a third order decentered approximation in
Ax and fourth order imMy leads to: with:

(M3 n=3(M)] = 5(M)5=3Ax((D{M )" 115 1

Wn+1+(b(kx:ky)zAtz_z)Wn"_anl:O: (14)

f% 1 2 g% 1 2
- s {8, 1, 1,
+(D§/4)Mxy)2/2,m)v (11) b(ky,ky) —16(AX4(X + 3)( ) +Ay4 v +3Y )
where 2
= (4 + §2 X2+ Ex4 Y2+ EYA)
(D§/ )MXV)IHH/Z m 8Ay((Mxy)|n+1/2 ,m+1/2_(Mxy)|n+1/2 ,m—1/2) W 3 3
- 5421 1 3 2 1 . 2
_24Ay((Mxy)F+1/2,m3/2 +W X+ X2 | Y+ Y],

= (M) 172 m-372)- (12)

The final task consists in computingy at time (n
+1)At. This is performed by using the fourth equation in
Eqg. (9) for the pointsI>0, and by replacing the fourth
order operators ilAx by second order ones in this equa-

h?D,  k,AX _ kyAy
&=1\/—— X=sin 5 Y=sin 5 (16)
tion at pointsl=0. The displacement at the image points P
I=—1 is derived from the free edge conditidh,=0 at

x=0. for which a second order ifx. and fourth order in 1n€ stability criterion is satisfied if the discriminant of the
Ay approximation leads to the following expression of qharacteristic polynomial associated with Ef4) is nega-

and where

WL - tive for all k, andk, . This leads to the following condition:
711m'
2D2
1 4 1 1 1
W= — 2D, (DSOW) B+ 2wg - wink (13) Ao 1 | o
4\2 2 ;2 7\4&2
The influence of the damping terms is neglected in the dis- 2 (_) ( 2+ _§+ _j +| = _;‘
crete approximation of the boundary conditions. The 3 r{ rqg 6/ r{

schemes for the three other edges of the plate obey the same
principles as the one presented abovexstO. wherer ;= Ay/AX.

C. Stability 1.0
The numerical parameters of explicit difference schemes
must fulfill a stability condition which guarantees the con- 0.8

vergence of the numerical solutidhin this paragraph, the
stability condition for the 2—4 scheme applied to the un-
damped plate model is presented. The results are then ex-
tended to the damped model. A distinction is made in what
follows between two definitions of stability: 047

¢ The numerical scheme is calledeakly stabldf the solu-
tion at a fixed timeT=nAt is bounded for allAt with 0.2
respect to the Euclidean norfV"|| = (= W} |22

¢ The scheme is callestrongly stablef the solution remains
bounded for allT. 0 02 04 06 08 10

A strong Stablllty condition can be obtained _for the un- FIG. 2. Numerical isotropy(6,F,r) for a reduced frequencl equal to
damped m9de|- |n't'he damped case, paradoxically, only 8> and for different values of the degree of anisotropy: r
weak stability condition can be given. ={0.2,0.4,0.6,0.81
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FIG. 3. (a) Infinite isotropic plate profile at successive instants of time
={0,0.05,0.10,0.15,0.20,0.pfs. Top: analytical solution. Bottom: nu-
merical solution(b) Relative error(in %) between analytical and numerical
solutions versus time for four different sampling frequenciég

={150,200,250,300kHz.

2. Damped model

The corresponding FD scheme is written:

N N
(MX>P=—IE20 xr<DxxW>P*f—§1 G(MOIT,

(19)
WP = (2— RADW!+ (R At— 1)W1
2

- E((DXXMX)P_i_(fZ)ln);
whereE is Young’s modulus] is the geometrical moment
andS is the cross-section of the bar. The tefprdenotes the
external force density by unit lengtl,, is a fourth order
discrete operator.

A necessary condition for weak stability is obtained by
studying the amplification matri& (see Appendix B). This
condition is written:

IEpn
Ax2=2At : 20
\/ 2Say (20)

It is found that the condition expressed in EO) is
similar to the one obtained with the Fourier method in the
undamped case, except thats now replaced by py/qy -

This term corresponds to the high frequencies’ asymptotic
value of the complex Young’s modulus.

The stability condition for the 2D system E) is de-
termined in the same way as for the 1D césee Appendix
B). It is found that the weak stability condition of the
damped 2—-4 scheme is similar to B4.7), after replacing
eachD; by D;p;n/qn . Sincep;y/qy is always greater than
unity for a dissipative model, this result shows that the sta-
bility condition is more restrictive when damping terms are
taken into account than for the undamped plate. However,
for the investigated material&@luminum, steel, glass and
wood), it has been found that the consecutive increase in size
of the minimum space step remains below a few percent,
compared to the undamped case.

A model including the damping terms is now consid-
ered. To facilitate the presentation, the case of a damped
bending bar(1D problem)is first presented and the results
are then extended to platézD).

Similarly to Eq.(1), the equations governing the trans-
verse displaceme(x,t) of a thin bar are written:

~ 1+31L,p,s

= |
* :I'—i_Ell'\lzlqrsr i

pS(s>+Rs)W=M, ., +T,.

2

® k
k= \ﬁ with k=ki+kj, 6=arctan’,
& x

D. Accuracy

One method for estimating the deviation between exact

Inserting

the

solution

and approximate solutions consists of calculating the differ-
ence between continuous and discrete frequen€i€stor
simplicity, only the undamped model will be discussed here.

W(x,y,t)= (A

(18) +Be‘j‘“t)exp0kxx+jkyy) in Eqg. (1), without damping terms
and forf,=0, yields the continuous dispersion equation:

§0=%(cho§ 6+ (D,+D,4)cog 4 sir? 9+ Dysin' 6). (21)
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Similarly, provided that the stability condition is verified, the
introduction  of the component W] = (Ael®“num4t
+Be lenn exp(k,JAx+jk,mAy) in Eq. (9) leads to the
numerical dispersion equation:

2 b(kekyAt
©num= 17 rCs 5 ,

(22)
whereb(k,,ky) is defined in Eq(15).

In order to simplify the mathematical derivations, it is
assumed here thg,=0 and thaté,= 2&, &5 which consti-

tutes a reasonable approximation for a large class of ortho-

tropic materials® This allows us to characterize the anisot-
ropy of the material with only one parameteré&5/¢;.
Under these conditions Eq&1) and (22), combined with
Eq. (17), yield:

Y4 2
Y2+ —

* 3

X4
24—
X+ g )

36
Q,,m=2 arcsi (
mm {\/9410
X3 2 Y3 2\ 1/2
(Yw) )

X+ —
\/ﬁcosa

6
Jcog 0+ r?sir? 0)

4705 14
X=sin (2592)
rJQsiné

- 470 1/4
stm( (2592) Jcog 6+ rZsir? 0) ’

where Q= wAt=27F and Q,,n= oAt are the reduced
angular frequencies.
Finally, the relative error in frequency is given by:

+2

(23)

FIG. 4. Bending vibrations of a L-shaped isotropic
plate, a few ms after the impact, with different bound-
ary conditions.(a) Geometry of the plate at restb)
Simply supported plate(c) Clamped plate(d) Free
plate.

_Qnum

Q
e(Q),0)= Q

(24)

It has been observed that about 15 time steps per period
are required with the 2—4 scheme in order to keep the error
in frequency smaller than 5% at 20 kHz, whereas more than
40 time-steps by period would have been needed with the
2-2 scheme. In the audio range 0—20 kHz, this degree of
accuracy requires a sampling rate approximately equal to
300 kHz for the 2—4 scheme, whereas 800 kHz would have
been needed with the 2—2 scheme.

For a material with a given anisotropy degreeeqg. (23)
shows that the numerical error not only depends on fre-
quency, but also on the propagation angla the plate. A
convenient method for representing this error is to define an
isotropy indext®

Cnum

1(6,F,r)= c

(25)

wherec,,y, is the numerical phase velocity ardthe exact
phase velocity. Figure 2 represents the variationswith 6,

for a given reduced frequendy=0.2, and for different val-
ues of the degree of anisotropy. Notice that the angl,
corresponding to the maximum indéy moves fromm/4 to
zero as the anisotropy degreeof the material decreases.
However, the ratioly, /I, between the maximum and the
minimum values of the isotropy index remains unchanged as
r varies.

In our applications, the plate equation has been solved
with a 2—4 scheme and with a sampling rate of 192 kHz.
This leads to an error of 8% in the estimation of the phase
velocity at 20 kHz and of 2.5% at 10 kHz.



(a)
800 . 800 .
FDM MM
700} 700
2 600 600
g
8 500 500
P
&
aoo} 20
3!
<
o, 30f 300
E
200p 200
100 4 100
% 2 4 s % 2 4 6
Time (ms)
(b)
800 , . 800 .
FDM MM
700} 1 700f
’Z_\ 600} 4 so0}
S’
& s 500
ot
Ret
400 a0}
k!
o]
g 300+ 300+
Jouaed
200} 200k
1000 1{ 100}
% z 7 s % P . 5
Time (ms)

FIG. 5. Interaction force between an orthotropic plate and an impactor dur-

ing the contact time, for two different initial velocities of the impact@)

1.45 m/s,(b) 0.6 m/s. Left: Simulation with the present Finite-Differences

Method (FDM). Right: Simulation made by McMillaiRef. 9).

E. Computation of the plate-impactor interaction

The discrete formulation of Ed6) is given by

fln,m: _gl,mFﬂ

n+1 n n—1 At2 n
Wit =2Wi =W "+ —Fy (26)
mS

1 [(WB+1—W?+1)/kH]3/2 if Win+1<Wr’;+1
F
0 otherwise.

W, is the displacement of the plate at impact poixg,/o).
The spatial windowyg, ,, is a triangular function of width
2Ax and 2Ay, centered at pointx,,Y)-

F. Computation of the sound pressure

(ny=-2= yE
p ' 27T =0 m=0

WI +1,m(t_ RI +1,m/C)

RI+1,m

n Wit mea(t— R|+1,m+1/C))
RI+1,m+1 '

AxAy d? (Whm(t— Rim/c)
Rl,m

Wl,m+ 1(t_ Rl,m+1/C)

RI,m+l

(27)

In this equation,N, and N, are the nearest integers
smaller than or equal td,/Ax and l,/Ay, respectively,
where 0<x<I, and 0<y<l, is the plate domairR, , is the
distance between the listening point and each mesh point of
the plate andR, ,/c is the corresponding time delay. After
time-domain discretization, this quantity is approximated by
the nearest multiple oAt such that:

I,m
cAt)
(28)

Finally, the discrete formulation of Eq27) is written:

N R
Wi m(NAt=R) n/c)=W, '™ with i) = mt(

imax Nx y

P NAD=p"=Dy > 2 2 & AWy, (29)

I=Imin 1=

where

I min= mm('l m) imax:ma)(il,m)

D, discrete backward time-derivative operator

30
Ay, %0

Lm™ ZWRI,m

1 if 0<I<N, and 0<m<N,

1/2 if ((1=0 or N,) and (0<m<N,))
lm or (m=0 or N,) and (0<I<N,))

1/4 otherwise.

IV. RESULTS OF SIMULATIONS

In order to assess the validity of the method, this section
starts with a comparison between the numerical result and
the theoretical solution obtained in a simple case where the
plate displacement is given analytically. This presentation is
followed by the simulation of the plate for three different
boundary conditions. The force pulse obtained with our nu-
merical scheme is then compared to the force pulse calcu-
lated for the same plate impacted with the same impactor
using the method developed by McMilldrFinally, simu-
lated waveforms, and their corresponding spectra, are com-
pared to measurements for four different materialsimi-
num, glass, carbon fiber and wood).

A. Comparison with analytical displacement

An analytical solution to the plate equation can be ob-
tained only for a limited number of cases. One example of

The semi-discrete formulation of the Rayleigh integralsuch an analytical solution can be found in textbooks for an
presented in Eq.7) is obtained by using a standard trapezoi-infinite isotropic plate subjected to the initial Gaussian

dal rule:

shapée®



TABLE I. Elastic and geometrical parameters of plates and impactors.

Aluminum plates

p=2660kg m? D,=6160 MPa D,=8600 MPa
platea;: I,=304 mm I, =192 mm h=2 mm f.=6 kHz
plateas: [x=419.5mm |,=400 mm h=4 mm f.=3 kHz
Glass plate
p=2550 kg m3 D,=6700 MPa D,=10270 MPa
platev: [x=229.5mm |, ,=220.5mm h=2 mm f.=5.8kHz
Carbon plate
p=1540 kg n73 D,=8437MPa D,=463MPa D,=852MPa D,=2267 MPa
platec;: [,=399 mm l,=200 mm h=2.2mm critical zone:[3.6,11.3kHz
Carbon—Epoxy plate
p=1581kgnm? D,=6912 MPa D,=51.5MPa D3;=4750MPa D,=1015MPa
platem, : [,=70.7mm l,=70.7mm h=2 mm
Wooden plate
p=388kgn? D,=1013MPa D,=27.5MPa D,;=53.7MPa D,=221MPa
plateb; : [,=515mm l,=412.5mm h=4.8 mm critical zone[2.4,10.3kHz
Titanium impactor
radiusR=10 mm m;=1.12 kg
ky=4.0X10"8mN-28
Rubber impactor
radiusR=10 mm m;=23.6 9
ky=9.0X10"®mN-28
TABLE Il. Damping parameters.
Thermoelastic dampingluminum)
Dy(s)=Dy|1+ SR Du(s)=D

1(8)=Dy ST i)’ 4(s)=D4
R,;=8.45x10"% c;=8.0x10 *radn?fs?t

Viscoelastic dampingglass)

SR

$;=10.1x10°rad s *

~ sk .

(S)=D. — i=[1,4
Di(s)=D; 1+s+§+s+§)’ [1, 4]
R;=1.63x10"% s;,=5180rad s’
Viscoelastic dampingcarbon)
~ sR,; SR, .

(9=Dj| 14+ — + —= i=[1,3,4
Bi(s)=D, 1+S+$l+s+$2). [1,3,4
R;;=1.32x102
R;;=8.8x10

R,=10.4%x10"2

Viscoelastic dampingwood)
SR | SR )
st+s St%)
R;;=8.18x102
R3;=16.7X107°
Ry=15.2%x10"2

1+

Di(9)=D;

Radiation dampingisotropic plates
2p,C Eibm<s/wc>m) i=[1, 4
pho, 3ay(sho,)" ‘
pa=1.2kgn3
a,=1.1669
b,=0.0620

Bi(s)=Di(l+

Fluid dampingR; in s7*
aluminumR;=0.032

$3=2.5X10° rad s**
$11=2.27X10°rad st

i=[1,3,4]

s;=3.2X1C rad s**
S3=1.1x1C rad s**
si=1.75X10°rad s *

c=344ms?
a,=1.6574
b,=0.5950

glassR;=0.88

R,=1.962x10 "3

52(5)= D,

Ry,=5.0x10"3
Rg,=44.0x103
R,,=14.4%x10"%

52(8)= D>

R;,=10.010°%
R3,=70.0x10"°%
R4,=35.0x10"2

p
=S\ b,

a,=1.5528
by=1.0272

carbonR;=0.8

s,=55100rad s*

$1,=94.0x10°rad s *
S3,=70.0rad st
S4,=40.0xX10°rad st

$1,=50.2X10%rad s*
S3,=50.2 rad 5t
$,=50.2x10°rad st

woodR;=2.4




TABLE lll. General simulation parameters.

Typical time and spatial steps

6000
fe=1/At=192 kHz Ax=Ay=9.5mm
Impact position 5 4000k
Xo=1,/2 Yo=1,/2 g
Listening point %2000_
x=1,/2 y=1,/2 z=24cm =
2,2 00 2(;00 40‘00 6000
W(O,r):WOeir /a . (31) Frequency (Hz)
In this case, the displacement at tithis given by: (b)
Wo 2.2 2 0 ; & '
— —r4/a“(1+7%) 5
W(tr)= e I ] I ) It
2 2 2 -20f i T Ti ¢
rer ) rer - T l I {
X| cos + 7SIn s 3
a¥(1+72) | al(1+ 1) (32) H I 11’
S —40-
where * L
4t 5 . ‘
T= 22 h“D4p. (33) 6% 2000 4000 6000
Frequency (Hz)

) Figure S.(a)ShOWS the shape of the plate at SU.CCESSiV%G. 7. Glass plate. FFT analysis of the sound pressure during the first 20
instants of time(between 0 and 0.25 m$or an aluminum  ms. (a) Simulated vs measured frequencies in the range 0-5(KB2).
plate with thicknessh=2 mm, and for an initial Gaussian The solid line indicates perfect matching between the two frequency sets
shape of widtha= 2.5 cm. The other dimensions of the plate (slope equal to 11 (b) Comparison between simulatétx”) and measured
L. ’ ) A (*O”) magnitudes of the main FFT peaks.
are sufficiently large (1 mX m) so that no reflexions from
the boundaries are observed during the selected time scale.
No differences can be easily seen between the exact solution
[top of Fig. 3(a)]and the simulated solution obtained with
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FIG. 6. Aluminum plate. FFT analysis of the sound pressure during the firsEIG. 8. Carbon plate. FFT analysis of the sound pressure during the first 20
20 ms.(a) Simulated vs measured frequencies in the range 0-5k82). ms. (a) Simulated vs measured frequencies in the range 0—1.582).

The solid line indicates perfect matching between the two frequency set$he solid line indicates perfect matching between the two frequency sets
(slope equal to 1 (b) Comparison between simulatétx””) and measured (slope equal to )1 (b) Comparison between simulatétx”) and measured
(*O") magnitudes of the main FFT peaks. (*O") magnitudes of the main FFT peaks.



(a) responds to an impact velocity of nearly 0.6 m/s. It can be
1500 , , seen that the two methods vyield identical waveforms. The
ripples in the force pulses are due to the fact that the inverse
of the lowest eigenfrequency of the plate here is about 20
times lower than the interaction time, a consequence of the
particular selected set of parameters.

Frequency (Hz)
S
5]

g

D. Comparison between measured and simulated

0 S(I)O 10l00 1500 pressure
Frequency (Hz)

The simulated sounds are now compared with measured

(b) sounds. Due to the large number of excited modes in each

0 - : : case, no quantitative information can be easily derived from

the visual comparison between measured and simulated

I N ! waveforms. In this respect, comparisons in the spectral do-

A I’gé l I { l IL& % | main are more informative. All spectra are calculated by FFT
%

I
I3
<

(fast Fourier transformon the first 20 ms on the sound and
f af& ] normalized (in dB) with respect to the magnitude of the
Ia

Magnitude (dB)

1
FY
<

T

highest peak. In order to allow quantitative comparison be-
tween measured and simulated spectra, only the most signifi-
60 300 1000 1500 cant peaks are displayed in the figures. These data are ex-
Frequency (He) tracted from the FFT analysis by means of a simple peak
FIG. 9. Wooden plate. FFT analysis of the sound pressure during the first 26€tection algorithm. The values of the parameters used for
ms. (a) Simulated vs measured frequencies in the range 0—1.5k8?2). the simulations can be found in Tables [-IIl.
The solid line indicates perfect matching between the two frequency sets Figure 6 shows the results obtained for an aluminum
(slope equal to )1 (b) Comparison between simulat€tx”) and measured lat ited with lobh bb llet with initial
(“O") magnitudes of the main FFT peaks. P a.e excitea wi _a Xylophone rubber mallet with inital ve-
locity 1.45 m/s. Figure 6(aghows that the number and fre-

L : quencies of the spectral peaks, between 0 and 5 kHz, are
our finite-difference scheriéottom of Fig. 3(a)]. Therefore, very well reproduced. The spectral envelopes of both real

in order to better show the discrepancies between these twé)nd simulated sounds are comparable. The displaved spectral
solutions, Fig. 3(bshows the relative error between the two P ' piay P

) . . .~ domain is limited here to 5 kHz for reasons of clarity, and
waveforms as a function of time for four different sampling .
. . also because the magnitude of the peaks above 5 kHz are
frequencies. For a sampling frequency equal to 200 kHz, for | .. .
. . . relatively small(less than—40 dB below the maximum), a
example, it can be seen that the relative error remains always

smaller than 5% and tends rapidly to less than 1%. consequence qf bOth excitation spectrum "’“?d damping. _The
damping here is mainly due to thermoelastic and radiation
losses.
B. Boundary conditions Figure 7 shows the results obtained for a glass plate.
Figure 4 illustrates the ability of the numerical method Heré again, the measured and simulated frequencies and
to calculate the flexural vibrations of the plate under variougnagnitudes of the spectral peaks look very similar, which is
boundary conditions: simply supportgig. 4(a)], clamped confirmed by listening to the corresponding sounds. The
[Fig. 4(b)]and free platdFig. 4(c)]. This figure shows, in Ios§e§ |n1 this material are mainly due to viscoelasticity and
addition, that the scheme is able to simulate L-shaped plate&adiation- _ _ _ _
provided that the sides are parallel to the axes. Thus, the A first example of impact against an orthotropic plate is

model is not restricted to simple rectangular plates. given in Fig. 8 which compares measurements with simula-
tions in the case of a plate made of carbon fibers. It can be

seen on the spectra that the high frequencies are rapidly
damped: the magnitude of the peaks are less thdd dB
below the maximum for frequencies above 1.2 kHz. Here,

In her thesis, McMillan tackles similar problems of im- the impact produces a duller sound than with aluminum and
pacted plates, using a method based on Green functions gfass. The damping is almost entirely due to viscoelastic
the vibrating structure at the impact pomEigure 5 shows losses in the material, and the radiation losses can be
the simulated forces obtained with the two methods, usingeglected. Similar conclusions can be drawn from Fig. 9
the same geometric and elastic parameters, in the case ofwhich shows the results obtained in the case of wood
Carbon—Epoxy plate struck by a Titanium impacisee (Spruce). Here, the damping of the vibrations in the plate is
Table 1). The force histories obtained with the present finite-mainly due to viscoelastic losses. However, due to the di-
difference method are on the left-hand side of the figuremensions of the plate, the radiation losses cannot be totally
whereas the force histories obtained with the McMillanneglected. The discrepancies between measurements and
method are on the right-hand side. Figufa)&orresponds to simulations for some of the peaks are probably due to the
an impact with initial velocity 1 m/s, whereas Figb)cor-  approximations made in the radiation model.

C. Impact simulation: Comparison with another
method
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FIG. 10. Decay factors(a) Aluminum plate. Range 0-1.2 kHz*O") Experiments;(“X") simulations.(b) Aluminum plate. Range 0-12 kHz. Top:
simulations; bottom: measurements) Carbon plate. Range 0-5 kHz. Top: simulations; bottom: measurentdntt/ooden plate. Range 0—3 kHz. Top:
simulations; bottom: measurements.

In a previous paper, measured decay factors were conthe losses above the critical frequency of the plate. For this
pared to the values predicted by the continuous plate modgllate (aluminumag, see parameters in Tables | angl the
solved in the frequency domalnTo completely assess the average decay factor above 4 kHz is about 100 times the
Valldlty of the methOd, Flg 10 ShOWS, in addition, the com- average decay factor below 1 kHz.
parison between measured and simulated decay factors, Figures 10(c)and (d) show the relevance of the vis-

where the simulated damping factors are now obtained fromgoe|astic model for orthotropic plates. It can be seen that the
a frequency analysis of the simulated waveforms. The analygiscoelastic losses fully account for the measured decay fac-

sis method used here is the Matrix Pencil methoBigure tors, except for the wooden plate above 2 kHz where the

10(a) shows that the thermoelastic model of losses accountrsadiation losses are not neqligible. Here again. the model is
for the apparent erratic distribution of the decay factors in the gligioie. gam,

low-frequency range for metallic plates. This distribution es-abIe to reproduce the apparent erratic distribution of decay

sentially follows from the fact that the decay time of eachfactors with frequency. This distribution is not due to error in

eigenfrequency depends on its modal shape. In this fre'® measurement& commonly erroneous conclusjohut

quency rangebelow 2 kHz, for the plate shown on this rather to the fact that there is a specific damping model for
figure)the radiation damping is negligible. The low values of €ach complex rigiditysee Table II). Notice further that 13
the decay factors below the critical frequency play a majoidamping parameters only are needed here for reproducing
role in duration and tone quality of the sound generated bydequately the temporal evolution of more than 40 modes.
the free vibrations of the plate. Figure (b)) shows the rel- This is an interesting feature of the method in terms of data
evance of the asymptotic radiation model which accounts foreduction.



V. CONCLUSION v(x,y,t). In this paper, Df},)v)ﬂm denotes the approximation

A time-domain model for the simulation of flexural vi- Of the pth time derivative ofv at point (Ax,mAy,nAt),
brations and sounds radiated by damped isotropic and orthdthere the subscripts)is the order of the truncation error in
tropic plates has been presented. In order to demonstrate thd-
particular interest of the method for the synthesis of tran-
sients, the study was made for plates excited by an impact.

The key point of the model is that the losses in the plates  First order decentered operators
are modeled in the time domain with the help of a general ) )
differential operator applied to the rigidities of the material. ~ The following operators are used to approximate the
This formulation gives great flexibility for modeling the time-derivatives in the damping terms.
damping of plates. As shown in a companion paper, this
formulation allows the modeling of the three main mecha- (DEl’v)“=i(v”—v“‘l)=(v{‘m) +O(AY)
nisms of damping in plates: viscoelasticity, thermoelasticity, At T
and radiatiort. Therefore, it makes it possible to reproduce
adequately the complicated frequency dependence of the de- (D{’v)"=(D{MoD{My)"
cay times observed in a large variety of materials with only a

small nhumber of damping parameters. =i2(v”—2v”’1+vn,2)=(v|”m) 1+ O(At)
The sounds synthesized with this model allow a clear At Y
recognition of the materials without ambiguity. This accurate (A1)

reproduction would not be possible with a simple description
of the damping, as_with a single loss factor, fqr exgmple. (DS’v)"=(Dﬁl)ngl)oDﬁl)v)”
All measured and simulated sounds presented in this paper

can be heard at the following Web addresstp:// (07— 3y 14 32— =3

wwwy.ensta.fr/~chaigne/plaque/ TAC
compar _exp _sim.html. |
The equations are solved numerically by means of a =(v),m) 1+ O(AL).

finite-difference scheme of second order in time and fourth
order in spacg2—-4 scheme). The presence of complex ri-
gidities makes it necessary to investigate thoroughly the sta&y second order centered operators
bility of the scheme, which contributes to filling a gap in the
literature. It has been shown that a weak stability condition 1
can be obtained from the study of the amplification matrix,(Di: )U)ﬂm=ﬁ(vﬂr+nl+vﬂ;l_20{1,m)
following the method by Richtmyer and Mortdf.

The accuracy of the method is studied in terms of nu- :(Uln,m),tt+ O(At?), (A2)
merical dispersion. A comparison with another scheme of
lower order in spacé2—2 schemeghows that, for a given 1

X . . . (2. \n __— /N n _ n

accuracy, the required computing time with the selected 24D U)l,m—sz (Wl mtoI-1m™= 201 m)
scheme is about 4 times lower than with the 2—2 scheme.

In order to show the validity of the method, a compari- = (v]'m) xx T O(AX?), (A3)
son is made first between an exact analytical solution and the
numerical result obtained for an infinite undamped isotropic 1
plate. The impact model is further validated by comparing(Dyzy)v)ﬂmZA—f(vﬂmﬂﬂLvﬂmfl—2Uﬂm)
the calculated force pulses imparted to the plate with the
force pulses obtained with another metHoBiinally, simu- =(v|“]m),yy+ O(Ay?), (A4)
lated sounds are systematically compared to measurements
for four different materials. These comparisons show a par-
. . . (2),,y\n .~  /.n n
ticularly good agreement in terms of frequencies and damptDxyv)i+1/2 ,ml/z—AxAy(U|+1,m+1+U|,m
ing factors despite the relatively low number of damping

parameters inserted in the model. —v,”H,m—vﬂer 1)

The present model is limited to rectangular plates and to
plates with rectangular cornefsee Fig. 4), for which the use = (01 172 .mi1/2) xy+ O(AX?) +O(Ay?),
of finite differences is particularly well-suited. Extension of (A5)
this model to more complicated shapes makes it necessary to
use other numerical methods, such as finite elements based ,) ., = 1 N N
on a variational formulation of the probletf. ny”)llm_AxAy(”Hl/Z 12t Vi-172 m-1/2
APPENDIX A: FINITE-DIFFERENCE OPERATORS —v|n+l,2 ,w1/2_0|n—1/2 ,m+1/2)

The discrete operators given below are obtained by lin- . 5 )
ear combinations of Taylor expansions of the field variable = (U, m) xy T O(AX%) +O(AY?). (AB)



3. Fourth order centered operators @
n _ n n
(Dyyv)l,m_ 12Ay2[_(vl,m+2+vl,m72)

1
(Df(i)v)["mz—z[—(v{‘+2’m+v|n,2’m)
124x + 16000 s 1 0o 1) = 3000 ]

+ 16(vln+l,m+ vln—l,m) - 3OUIn,m]

= (v m) xxt O(AXY), (A7) =(0]m) yyt O(AYH) (A8)

4 n _ n n n n n n n n
(Dﬁy)v)wl/z ,m+l/2_—242AXAy[(vl—l,m—l+vl+2,m+2_vl—l,m+2_UI+1,m—l)+27(UI—1,m+l+vl,m+2+vI+1,m—1+vl+2,m)
n n n n 2 n n n n
=270yt U o1 T U me 2 T Ul 2me ) T 270 m P 0 me 1~ Vi m™ Vlme 1) ]

=01 172 .me1/2) xy T O(Ax*)+0(Ay?h) (A9)

N4, \n __ = n n _.n _.n n n
(nyv)|,m—242AXAy[(U|—3/2,w3/2+vl+3/2,m3/2 U1h 32 me32" Vi—3/2 . m+3i2) T 27V —3/2 me 12T V1—1/2 \mr3r2

n n n n n n
TUh 12 mesi2t Ulsai2 me12) ~ 270132 m-1/2TVi—1/2 m-3i2T V14172 mr 32T Vit a2 me1/2)

+ 2P0 12 12 V12 me 2= VT 12 me 12— U= 172 imi 172) 1= (0] m) syt O(AXH) + O(AY?). (A10)

APPENDIX B: STABILITY
1. 1D problem

By introducing the spatial Fourier transforms of both the displacemepexp(klAx) and bending moment
(my), exp(klAx), Eg.(19) can be rewritten in the following matrix form:

Vit 1= G(ALK)V,, (B1)

with

Vi 1= [Whs 1, Wa, = Woo g 1, (M) (M no s 1] (B2)

where () ,=Ax?(m,),. The amplification matrixG(At,k) is given by:

A —BCx, -+ -+ —BCxyny C¢y - -+ -+ Cuiy
1 0 0 0 0
0 1 o - 0
0 0O 1 0 0 0 (83)
BXO BXN _wl _¢N !
0 0 1 0 0
0 1 O 0
0 0 0 0O 1 0
with
) AXPAt? . kAx
P=2—R;At, B=4IEX? C= F=R;At—1, X=sin——, A=(P—BCyq)(F—BCy,). (B4)

~ pSAX*’ 2



The discrete system in E@B1) is calledweakly stableif 2. 2D problem

. 4
there exists a real constak(,T) such that A necessary condition for the system K@) to be stable

0<At<r7 is now determined in the same way as for the 1D case. It is
= N < O=nAt<T assumed that the dissipativity conditions on the coefficients
IG(ALK)<K(7,T), for al ’ (B5) pin @andgy are fulfilled (see Ref. 1). As Atends to zeroy;,

k real and ¢;, can be expanded as follows:

where |G(At k)| denotes the spectral norm of the matrix Pin

G(At,k). A condition for strong stability is obtained by re- =(- 1)r—+O(At) 1si<4
placingK(7,T) by 1 in Eq. (B5). The following criterion has (B11)
been applied herk i =(—1)"+O0(At), i=[14].

As for the 1D case, it can be shown that the amplification
matrix is Lipschitz-continuous fokt=0. The eigenvalues;

of G(0k, ,ky) are now solutions of the following system:

“If G(At,k) is uniformly Lipschitz continuous
for At=0, so far as G(At,k)=G(0k)
+0(At), asAt—0, where the constant implied

by the expressio®(At) does not depend ok, O(N\) 0 0 —(P1(N)) = Poa(Ny))
g\zegkt)h(ies s'sc;:lslrgti is weakly stable if and only if 0 Q(\) 0 —(P3(N) = Py(\)))
' ' 0 0 QA(N) —Pa(Ni)
To apply this criterion, the first step consists of studying C1 Cs Ca PN)
the dependence d@B(At,k) on At. This parameter appears (NYn 0
in the coefficientsA, C andF defined in Eq(B4) and in the (Ny)n 0
expressions of the coefficients and ¢, : ’ (Nyy)n ol (B12)
W, 0
=(- 1)r +O(At) with:
—(—1)'+O(Al) (5 : p
#r= (1) + 04, Q0= (~1IN T, Pagh)=20°D X QM)
All the coefficients of the amplification matrix can be "~ N
expressed ag;; + O(At) and thusG is uniformly Lipschitz 4X? 1
continuous. The determination of a stability condition nowC1= hfz P)=N=24N 7,
consists of the study dB(0k). It must be checked whether . ) )
the spectral radius of this matrix remains smaller than O (n)= 4h D3Y @Q()\-) Ca 4y
equal to unity for allk or not. The eigenvalues; of G(0k) 3 r{  dn Ve phek
are such that the vector: (B13)
Pin
N=4h3 27 )
1]y (- gy MTADRCG A0,
W Wn-1
. . . ' D 4XY pan 8XY
is a solution of the discrete system in H49) for At=0,  Pa(A)= f—l " A(N), Cfm,
given by: st
2h3D,Y2 p AX? Ay
N 2 2N
P, ()\')__2_ O\, &= =i
DINCEILN —B—E( DN ((nx)n) (0) o . e
r= = .
1 Wn 0 As for the 1D case, the determination of the stability condi-
C )\|_2+)\|

tion is obtained by zeroing the determinant of the matrix Eq.
(B12) which amounts to studying the roots of the polyno-
The nontrivial solutions of this system are obtained by zeromial:

ing the determinant of the matrix:

(B8)

7>(>\)+cl( vy, P28 ) C3(A p3N+AZ3@)
' ay an

N 4
X*1E an an
(E (—1)"\! 2P, \+1]=0 (B9)
=0 &s PSSOy Pan
+C4A4_ :0, (814)
from which the following necessary condition for weak sta- An
bility is obtained: with
IE _ kAy h3D,Y?
AxP=20ty—, (B10) A=h3DiX, Y=sin—>, Ay=—r 5,
POy 2 2ry

(B15)
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