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In this paper we follow the approach of Bertrand-Beukers (and of later work of Bertrand), based on differential Galois theory, to prove a very general version of Shidlovsky's lemma that applies to Padé approximation problems at several points, both at functional and numerical levels (i.e., before and after evaluating at a specific point). This allows us to obtain a new proof of the Ball-Rivoal theorem on irrationality of infinitely many values of Riemann zeta function at odd integers, inspired by the proof of the Siegel-Shidlovsky theorem on values of E-functions: Shidlovsky's lemma is used to replace Nesterenko's linear independence criterion with Siegel's, so that no lower bound is needed on the linear forms in zeta values. The same strategy provides a new proof, and a refinement, of Nishimoto's theorem on values of L-functions of Dirichlet characters.

Introduction

The motivation of this paper comes from the Ball-Rivoal theorem: ζ(s) is irrational for infinitely many odd integers s ≥ 3. Its proof is based on explicit Padé approximation to polylogarithms. In order to try to generalize this result to other functions, it would be natural to use non-explicit Padé approximation instead, for instance through Siegel's lemma. Several difficulties arise; the first one is the need for a lower bound on the linear forms in zeta values, in order to apply Nesterenko's linear independence criterion: such a lower bound cannot be obtained from a non-explicit construction.

In this paper we overcome this difficulty by giving a new proof of the Ball-Rivoal theorem in which no lower bound on the linear forms is used. Indeed Nesterenko's linear independence criterion is replaced with Siegel's combined with a multiplicity estimate, namely a new generalization of Shidlovsky's lemma. We combine an explicit construction of the linear forms with the strategy used to prove the Siegel-Shidlovsky theorem on values of E-functions (see for instance [START_REF]Shidlovsky -Transcendental numbers[END_REF]Chapter 3]).

Let q be a positive integer, and A ∈ M q (C(z)). We fix P 1 , . . . , P q ∈ C[z] and n ∈ N = {0, 1, 2, . . .} such that deg P i ≤ n for any i. Then with any solution Y = t (y 1 , . . . , y q ) of the differential system Y ′ = AY is associated a remainder R(Y ) defined by R(Y )(z) = q i=1 P i (z)y i (z).

Let Σ be a finite subset of C ∪ {∞}. For each σ ∈ Σ, let (Y j ) j∈Jσ be a family of solutions of Y ′ = AY such that the functions R(Y j ), j ∈ J σ , are C-linearly independent and holomorphic at σ; here σ ∈ C ∪ {∞} might be a singularity of the differential system Y ′ = AY . We agree that J σ = ∅ if σ ∈ Σ, and let M(z) = [P k,i (z)] 1≤i,k≤q ∈ M q (C(z)) where the rational functions P k,i ∈ C(z) are defined for k ≥ 1 and 1 ≤ i ≤ q by    P k,1 . . .

P k,q    = d dz + t A k-1    P 1 . . . P q    . (1.1)
Obviously the poles of the coefficients P k,i of M are among those of A.

The following multiplicity estimate appears essentially (see below) in [START_REF] Bertrand | Le théorème de Siegel-Shidlovsky revisité[END_REF]Théorème 2].

Theorem 1. There exists a positive constant c 1 , which depends only on A and Σ, such that if

σ∈Σ j∈Jσ ord σ (R(Y j )) ≥ (n + 1)q -n#J ∞ -τ (1.2)
with 0 ≤ τ ≤ nc 1 , then det M(z) is not identically zero.

The special case where Σ = {0}, #J 0 = 1, and Y j is analytic at 0 is essentially Shidlovsky's lemma (see [START_REF]Transcendental numbers[END_REF]Chapter 3,Lemma 8]). When Σ ⊂ C, #J σ = 1 for any σ, and all functions Y j are obtained by analytic continuation from a single one, analytic at all σ ∈ Σ, this result was proved by Bertand-Beukers [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF] with more details on the constant c 1 . Then Bertrand has allowed [START_REF] Bertrand | Le théorème de Siegel-Shidlovsky revisité[END_REF]Théorème 2] an arbitrary number of solutions at each σ, proving Theorem 1 under the additional assumptions that ∞ ∈ Σ and the functions Y j , j ∈ J σ , are analytic at σ.

Our proof of Theorem 1 (like that of [START_REF] Bertrand | Le théorème de Siegel-Shidlovsky revisité[END_REF]Théorème 2]) follows the strategy of [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF], based on differential Galois theory. The point is that we allow Σ to contain ∞, and/or singularities of the differential system Y ′ = AY : only the remainders R(Y j ) are assumed to be holomorphic at σ (but not the functions Y j , and not at points σ ′ ∈ Σ distinct from σ). These features make Theorem 1 general enough to cover essentially all Padé approximation problems related to polylogarithms we have found in the literature, for instance the ones of Beukers [START_REF] Beukers | Padé-approximations in number theory[END_REF][START_REF]The values of polylogarithms[END_REF], Sorokin [START_REF] Sorokin | Hermite-Padé approximations for Nikishin systems and the irrationality of ζ(3)[END_REF][START_REF]A transcendence measure for π 2[END_REF][START_REF]Apéry's theorem[END_REF], and those of [START_REF] Fischler | Approximants de Padé et séries hypergéométriques équilibrées[END_REF]. In such a setting, τ in Eq. (1.2) appears as the difference between the number of unknowns and the number of equations.

Then we evaluate at a point α, going from functional to numerical linear forms (see [START_REF]Transcendental numbers[END_REF]Chapter 3,Lemma 10] for the classical setting). The point here is that we allow α to be a singularity of the differential system Y ′ = AY , and/or an element of Σ (in our proof of the Ball-Rivoal theorem, α is both).

Theorem 2. There exists a positive constant c 2 , which depends only on A and Σ, with the following property. Assume that, for some α ∈ C: (ii) All rational functions P k,i , with 1 ≤ i ≤ q and 1 ≤ k ≤ τ + c 2 , are holomorphic at z = α.

(iii) Eq. (1.2) holds for some τ with 0 ≤ τ ≤ nc 1 .

Then the matrix [P k,i (α)] 1≤i≤q,1≤k≤c 2 ∈ M q,c 2 (C) has rank at least q -#J α .

If α is a singularity, assertion (i) means it is regular and all exponents at α are integers. As far as we know, this result is the first general one in which α is allowed to be a singularity. The case where α is not a singularity is much easier, and assumptions (i) and (ii) are then trivially satisfied.

If α ∈ Σ then J α = ∅ so that we obtain a matrix of maximal rank q. On the opposite, if α ∈ Σ then #J α linearly independent linear combinations of the rows of the matrix [P k,i (z)] i,k are holomorphic at α and (probably) vanish at α: the lower bound q -#J α is best possible.

Using a zero estimate such as Theorem 2 is the key point in the classical proof of the Siegel-Shidlovsky theorem on values of E-functions. Following a different but similar strategy, Nikishin constructed explicitly [16] linearly independent linear forms in 1, Li 1 (α), . . . , Li a (α) to prove that these numbers are linearly independent over Q when α = u/v is a rational number with v sufficiently large in terms of |u|. His approach was used by several authors, including Marcovecchio [START_REF] Marcovecchio | Linear independence of linear forms in polylogarithms[END_REF] to bound from below the dimension of the Q-vector space spanned by these numbers, for any fixed algebraic number α with |α| < 1 (thereby generalizing to non-real numbers α Rivoal's result [START_REF]Indépendance linéaire des valeurs des polylogarithmes[END_REF] based on Nesterenko's linear independence criterion). The zero estimate used by Marcovecchio is similar to Theorem 2 but deals only with a specific situation in which (essentially) τ = 1 in Eq. (1.2), α ∈ Σ, and α is not a singularity. Moreover he does not define P k,i for k ≥ 2 using Eq. (1.1) (i.e., differentiating the linear forms as in the proof of the Siegel-Shidlovsky theorem): following Nikishin he uses an additional parameter instead.

In this paper we use Theorem 2 to obtain a new proof, and a refinement, of the following result of Nishimoto [START_REF] Nishimoto | On the linear independence of the special values of a Dirichlet series with periodic coefficients[END_REF] 

on L-functions L(χ, s) = ∞ n=1 χ(n)
n s associated with Dirichlet characters χ. He proved it with d instead of N in the lower bound (1.3); see §4.1 for this easy improvement. Theorem 3. Let χ be a Dirichlet character modulo d, of conductor N. Let p ∈ {0, 1} and a ≥ 2. Denote by δ χ,p,a the dimension of the Q-vector space spanned by 1 and the numbers L(χ, s) with 2 ≤ s ≤ a and s ≡ p mod 2. Then

δ χ,p,a ≥ 1 + o(1) N + log 2 log a (1.3)
where o( 1) is a sequence that depends on N and a, and tends to 0 as a → ∞ (for any N).

If p and χ have the same parity then L(χ, s)π -s is a non-zero algebraic number for any s ≥ 2 such that s ≡ p mod 2 (see for instance [15, Chapter VII, §2]): this result is interesting when p and χ have opposite parities.

Nishimoto's proof is similar to Ball-Rivoal's, except that obtaining the lower bound necessary to apply Nesterenko's criterion is very technical: the saddle point method has to be used because cancellations take place (see [START_REF] Nash | Special values of Hurwitz zeta functions and Dirichlet L-functions[END_REF]). In this paper we present an alternative proof of Theorem 3, based on the zero estimate stated above. It makes it unnecessary to use the saddle point method, since Siegel's criterion is applied instead of Nesterenko's. In the special case d = N = 1 (so that χ(n) = 1 for any n, and L(χ, s) = ζ(s)) this is exactly the proof of the Ball-Rivoal theorem mentioned above.

We also obtain the following refinement of Theorem 3, by improving the arithmetic estimates.

Theorem 4. In the setting of Theorem 3, if N is a multiple of 4 then Eq. (1.3) can be replaced with

δ χ,p,a ≥ 1 + o(1) (N/2) + log 2 log a.
When χ is the non-principal character mod d = 4, so that N = 4, this result was proved by Rivoal-Zudilin [START_REF] Rivoal | Diophantine properties of numbers related to Catalan's constant[END_REF] as a first step towards the (conjectural) irrationality of Catalan's constant

L(χ, 2) = ∞ k=0 (-1) k (2k+1) 2 .
The structure of this paper is as follows. We first sketch in §2 our proof of the Ball-Rivoal theorem. Then §3 is devoted to Shidlovsky's lemma: we prove Theorems 1 and 2. At last, in §4 we prove in details a general result which contains Theorem 3, Theorem 4, and the Ball-Rivoal theorem.

A new proof of the Ball-Rivoal theorem

We sketch in this section the new proof of the Ball-Rivoal theorem obtained as a special case of the proof of Theorem 6 in §4 below (namely N = 1, f (n) = 1 for any n, p = 1, z 0 = 1, i 0 = 2, ξ 1 = 0, and ξ j = ζ(j) for any j ≥ 2). Of course we refer to §4 for more details.

Let a, r, r ′ , n be such that a is odd and r, r ′ < a/2. It turns out that the best estimates come from the case where r and r ′ have essentially the same size, so we shall restrict in §4 to the case r ′ = r; however the proof works in the same way if r ′ = r. Consider the rational function

F (t) = n! a-r-r ′ (t -rn) rn (t + n + 1) r ′ n (t) a n+1
where (α) k = α(α + 1) . . . (α + k -1) is Pochhammer's symbol, and let

S 0 (z) = ∞ t=n+1 F (-t)z t , S ∞ (z) = ∞ t=1 F (t)z -t .
For any k ≥ 1 we let

Λ k = S (k-1) 0 (1) -S (k-1) ∞ (1), (2.1) 
where S (k-1) is the (k -1)-th derivative of S. We shall use a symmetry phenomenon to get rid of even zeta values, but it does not appear exactly as in the original proof of Ball-Rivoal. Indeed, even if r ′ = r, S

(k-1) 0

(1) and S (k-1) ∞

(1) involve both odd and even zeta values when k ≥ 2: they are values at z = 1 of hypergeometric series which are no more well-poised. The cancellation of even zeta values comes at a different stage, by considering Λ k in Eq. (2.1). Indeed there exist integers s k,i , 2 ≤ i ≤ a, and u k , v k such that for any k ≤ (arr ′ )n + a -1, we have both

d a n S (k-1) 0 (1) = u k + a i=2 (-1) i s k,i ζ(i)
and

d a n S (k-1) ∞ (1) = v k + a i=2 s k,i ζ(i)
where

d n = lcm(1, 2, . . . , n), so that d a n Λ k = d a n S (k-1) 0 (1) -d a n S (k-1) ∞
(1) is a Z-linear combination of 1 and odd zeta values: 

d a n Λ k = s k,a+1 -2 2≤i≤a i odd s k,i ζ(i), with s k,a+1 = u k -v k .
dim Q Span Q (1, ζ(3), ζ(5), . . . , ζ(a)) ≥ 1 + o(1) 1 + log 2 log a.
Let us focus now on the functional aspects of this proof, which play an important role (whereas the proof of Ball-Rivoal can be written with z = 1 throughout). For simplicity we restrict ourselves to the case r ′ = r. The functions S 0 (z) and S ∞ (z) are solutions of the following Padé approximation problem: find polynomials P 1 , . . . , P a+2 of degree at most n such that:

   S 0 (z) := P a+1 (z) + a i=1 P i (z)(-1) i Li i (z) = O(z (r+1)n+1 ), z → 0, S ∞ (z) := P a+2 (z) + a i=1 P i (z)Li i (1/z) = O(z -rn-1 ), z → ∞, a i=1 P i (z)(-1) i-1 (log z) i-1 (i-1)! = O((z -1) (a-2r)n+a-1 ), z → 1. (2.2)
This is exactly the Padé approximation problem of [9, Théorème 1]: it has a unique solution up to proportionality, (n + 1)(a + 2) unknowns and (n + 1)(a + 2) -1 equations.

Let A ∈ M a+2 (C(z)) denote the following matrix:

A =              0 0 0 . . . 0 0 1 z-1 1 z(1-z) -1 z 0 0 . . . 0 0 0 0 0 -1 z 0 . . . 0 0 0 0 0 0 -1 z . . . 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . -1 z 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0             
and consider the following solutions of the differential system Y ′ = AY :

Y 0 (z) = t (-Li 1 (z), Li 2 (z), . . . , (-1) a Li a (z), 1, 0), Y ∞ (z) = t (Li 1 (1/z), Li 2 (1/z), . . . , Li a (1/z), 0, 1), Y 1 (z) = t (1, -log z, (log z) 2 2 , . . . , (-1) a-1 (log z) a-1 (a -1)! , 0, 0). Let Σ = {0, 1, ∞} and J 0 = {0}, J 1 = {1}, J ∞ = {∞}.
Then with the notation of the introduction, we have R(Y 0 ) = S 0 (z), R(Y ∞ ) = S ∞ (z), and R(Y 1 ) is the left hand side of the third equation of (2.2); Eq. (1.2) stated in the introduction holds with τ = 1 as a consequence of the Padé approximation problem (2.2). In general, τ corresponds in Eq. (1.2) to the difference between the number of unknowns and the number of equations.

To apply Theorem 2 it is not useful to prove that the problem has a unique solution up to proportionality: the upper bound τ ≤ n/2, for instance, would be sufficient since n is taken arbitrarily large. Defining P k,i as in the introduction by Eq. (1.1), it is well-known (see [START_REF]Transcendental numbers[END_REF]Chapter 3,[START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF]) that for any k ≥ 1,

S (k-1) 0 (z) = P k,a+1 (z)+ a i=1 P k,i (z)(-1) i Li i (z) and S (k-1) ∞ (z) = P k,a+2 (z)+ a i=1 P k,i (z)Li i (1/z).
(2.3) Moreover P k,i is a rational function of which 0 is the only possible pole if i ≤ a. If i = a + 1 or i = a + 2, both 0 and 1 may be poles of P k,i ; but if k ≤ (a -2r)n + a -1, the functions S (k-1) 0 (z) and S (k-1) ∞ (z) have finite limits as z → 1 so that 1 is not a pole. Finally Theorem 2 applies at α = 1: the matrix [P k,i (1)] 1≤i≤a+2,1≤k≤c 2 has rank at least a + 1. Actually P k,1 (1) = 0 for any k ≤ (a -2r)n + a -1 (which can be seen by letting z tend to 1 in Eq. (2.3)) so that the first row of this matrix is zero (provided n is large enough) and its rank is exactly a + 1. Since the coefficients s k,i defined above are given by s

k,i = d a n P k,i (1) for 2 ≤ i ≤ a and s k,a+1 = d a n (P k,a+1 (1) -P k,a+2 (1) 
), the matrix [s k,i ] 2≤i≤a+1,1≤k≤c 2 has rank a: Siegel's criterion (stated and proved in §4.6) applies.

Zero estimates

In this section we prove Theorems 1 and 2. We start with the functional part of the proof ( §3.1), in which we follow the approach of Bertrand-Beukers [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF] to generalize Shidlovsky's lemma (see Theorem 5). Then we deduce in §3.2 Theorems 1 and 2 stated in the introduction: the important point is to evaluate at α which may be a singularity and/or an element of Σ.

Functional zero estimate

Throughout this section we consider a positive integer q and a matrix A ∈ M q (C(X)). We let P 1 , . . . , P q ∈ C[X] with deg P i ≤ n for any i. We also denote by Ω a simply connected open subset of C in which A has no pole. We assume that Ω is obtained from C by removing finitely many half-lines, so that Ω is dense in C, and denote by H the space of functions holomorphic on Ω. A solution Y of the differential system Y ′ = AY will always be a column matrix in M q,1 (H), identified with the corresponding element (y 1 , . . . , y q ) of H q . Since P 1 , . . . , P q are fixed, to such a solution is associated a remainder R(Y ) defined on Ω by

R(Y )(z) = q i=1 P i (z)y i (z).
Let Σ be a finite subset of P 1 (C) = C ∪ {∞}. For each σ ∈ Σ, let (Y j ) j∈Jσ be a family of solutions of Y ′ = AY such that:

• For any j ∈ J σ , the function R(Y j ) is holomorphic at σ.
• The functions R(Y j ), for j ∈ J σ , are linearly independent over C.

Here we do not assume that σ ∈ Ω: in the case σ ∈ Ω (for instance if σ = ∞), by R(Y j ) is holomorphic at σ we mean that R(Y j ) can be continued analytically to a function holomorphic at σ. Moreover, we denote by ord σ (R(Y j )) its order of vanishing at z = σ.

The point is that we do not assume any relation (or lack of relation) between the families (Y j ) j∈Jσ at distinct points σ, except of course that all are solutions of the same differential system.

At last, we let J σ = ∅ when σ ∈ Σ.

Defining M(z) and P k,i as in the introduction, our functional multiplicity estimate is the following generalization of Bertrand-Beukers' version of Shidlovsky's lemma; if ∞ ∈ Σ and the functions Y j , j ∈ J σ , are analytic at σ it is due to Bertrand [START_REF] Bertrand | Le théorème de Siegel-Shidlovsky revisité[END_REF]Théorème 2]. The constant c 1 is the same as in Theorem 1 (that we shall deduce from Theorem 5 at the beginning of §3.2).

Theorem 5. Let µ denote the order of a non-zero differential operator L ∈ C(z)[ d dz ] such that L(R(Y j )) = 0 for any σ and any j ∈ J σ . Then

σ∈Σ j∈Jσ ord σ (R(Y j )) ≤ (n + 1)(µ -#J ∞ ) + c 1 (3.1)
where c 1 is a constant that depends only on A and Σ.

In the special case where Σ ⊂ C, J σ consists of a single element j σ , and the function Y jσ is the same for all σ, this is exactly [4, Théorème 2] except that we did not try to make the constant c 1 explicit (we refer to [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF], and to [1, Appendix of Chapter III] in the Fuchsian case, for discussions on effectivity which are not relevant to our purposes). Indeed we have fixed a simply connected open subset Ω only for convenience: analytic continuation from a point of Σ to another could be performed along any fixed path.

Let us prove Theorem 5 now, following the strategy of [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF]. Given σ ∈ P 1 (C), we let A σ denote the set of all finite sums

α∈E Q∈P J j=0 u α,Q,j (z -σ)(z -σ) α (log(z -σ)) j exp(Q((z -σ) -1/q! )) (3.2)
where E ⊂ C and P ⊂ C[X] are finite subsets, J ≥ 0, and

u α,Q,j (z -σ) ∈ C[[(z - σ) 1/q! ]] for any α, Q, j.
Here and below, we agree that zσ stands for 1/z si σ = ∞. Then the differential system Y ′ = AY has a complete system of formal solutions in A q σ . Moreover we let K σ denote the fraction field of A σ , and F σ denote the differential subfield of K σ generated over C(z) by all components of all solutions of Y ′ = AY in K q σ . Then the differential extension F σ /C(z) is Picard-Vessiot, and we denote by G σ its group of differential automorphisms.

To prove Theorem 5 we may assume that 0 ∈ Σ, that µ is the minimal order of a non-zero differential operator that annihilates R(Y j ) for any j ∈ J σ and any σ ∈ Σ, and that the coefficient of ( d dz ) µ in L is 1. Given σ ∈ Σ and j ∈ J σ , all components of Y j are holomorphic on the cut plane Ω, and can be seen as elements of A 0 . Indeed, if 0 is a regular singularity (or an ordinary point) of the system Y ′ = AY then all components of Y j have a generalized Taylor expansion at the origin in A 0 (of the form (3.2) with P = {0}). In the general case, we identify each component of Y j with its asymptotic expansion at 0 in a fixed large sector (see [START_REF] Ramis | Séries divergentes et théories asymptotiques[END_REF]). By definition of F 0 , all components of Y j (seen in A 0 ) belong to F 0 so that R(Y j ) ∈ F 0 . We consider the C-vector space V ⊂ F 0 spanned by the images

γ(R(Y j )) of all R(Y j ), j ∈ J σ , σ ∈ Σ, under all γ ∈ G 0 . Since the kernel of L : F 0 → F 0 is stable under G 0 , we have V ⊂ ker L so that m ≤ µ, where m = dim C V . Let (R 1 , . . . , R m ) be a basis of V , such that R i = γ i (R(Y j i )) with γ i ∈ G 0 and j i ∈ J σ i for any i ∈ {1, . . . , m}.
Arguing as in the proof of [4, Proposition 3], we have

Ly = 1 W (R 1 , . . . , R m ) det      y y ′ . . . y (m) R 1 R ′ 1 . . . R (m) 1 . . . . . . . . . R m R ′ m . . . R (m) m      where W (R 1 , . . . , R m ) = det[R (j-1) i
] 1≤i,j≤m is the wronskian determinant. In particular, we have m = µ and V = ker L. Now we claim that for any σ ∈ P 1 (C) there exist µ solutions Y [σ,j] = (y

[σ,j] 1 , . . . , y [σ,j] q ) of Y ′ = AY in F q σ , with 1 ≤ j ≤ µ, such that R(Y [σ,1] ), . . . , R(Y [σ,µ]
) span the C-vector space of solutions of Ly = 0 in F σ . Indeed, as in [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF]Corollaire], using a differential isomorphism F 0 → F σ we may assume σ = 0. Then for any i ∈ {1, . . . , m}, γ i (Y

j i ) ∈ F q 0 is a solution of Y ′ = AY and π 0 (γ i (Y j i )) = R(γ i (Y j i )) = γ i (R(Y j i )) = R i so that the claim is proved since (R 1 , . . . , R m ) is a basis of V = ker L.
Let us recall the following terminology from [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF]: an element of A σ has rank ≤ κ ∈ 1 q! N and generalized order ≥ r if it is of the form (3.2) with deg Q ≤ q!κ for any Q ∈ P and Re α ≥ r for any α ∈ E. The differential operator L has rank ≤ κ at σ and (r 1 , . . . , r µ ) ∈ R µ is an admissible system of exponents of L at σ if the differential equation Ly = 0 has a complete system of solutions (y 1 , . . . , y µ ) in A µ σ such that each y i has rank ≤ κ and generalized order ≥ r i .

Given σ ∈ P 1 (C) all functions y [σ,j] i with 1 ≤ i ≤ q and 1 ≤ j ≤ µ have rank ≤ κ σ and generalized order ≥ r σ for some κ σ ∈ 1 q! N and r σ ∈ R which depend only on A and σ (see [START_REF] Bertrand | Équations différentielles linéaires et majorations de multiplicités[END_REF]

, Proposition 1]). If σ = ∞, R(Y [σ,j] ) = q i=1 P i (z)y [σ,j] i
(z) has rank ≤ κ σ and generalized order ≥ r σ ; these functions make up a complete system of solutions of L (using the claim above). Moreover, if σ ∈ Σ \ {∞} then for any j ∈ J σ the function R(Y j ) is holomorphic at σ, so it can be seen as an element of A σ with rank ≤ 0 and generalized order ≥ ord σ (R(Y j )). Combining these C-linearly independent solutions of Ly = 0 with suitable functions R(Y [σ,j] ), we obtain that L has rank ≤ κ σ at σ and an admissible system of exponents of L at σ consists in r σ repeated µ -#J σ times, and ord σ (R(Y j )) for each j ∈ J σ . In the same way, at infinity, for any j ∈ J ∞ the function R(Y j ) ∈ A ∞ has rank ≤ 0 and generalized order ≥ ord ∞ (R(Y j )). To obtain a complete system of solutions of Ly = 0 in A ∞ we use also µ -#J ∞ functions R(Y [∞,j] ), which have rank ≤ κ σ and generalized order ≥ r ∞n since deg P i (z) ≤ n for any i ∈ {1, . . . , q}. Therefore L has rank ≤ κ ∞ at ∞ and an admissible system of exponents of L at ∞ consists in r ∞n repeated µ -#J ∞ times, and ord ∞ (R(Y j )) for each j ∈ J ∞ .

So far we have found an upper bound on the rank of L, and an admissible system of exponents of L, at any σ ∈ Σ. Enlarging Σ if necessary, we may assume that it contains ∞ and all poles of A. Then for any σ ∈ P 1 (C) \ Σ the differential system Y ′ = AY has a complete system of solutions holomorphic at σ, and therefore the same property holds for the differential equation Ly = 0 using the claim above. Accordingly Σ contains ∞ and all non-apparent singularities of L, so that the Corollary of [4, Théorème 3] provides an inequality involving upper bounds on the ranks of L and admissible systems of exponents of L at all points of Σ, namely:

(µ -#J ∞ )(r ∞ -n) + j∈J∞ ord ∞ (R(Y j )) -(κ ∞ + 1)µ(µ -1)/2 + σ∈Σ\{∞} (µ -#J σ )r σ + j∈Jσ ord σ (R(Y j )) -(κ σ + 1)µ(µ -1)/2 ≤ -µ(µ -1) so that σ∈Σ j∈Jσ ord σ (R(Y j )) -(n + 1)(µ -#J ∞ ) ≤ c 1
where c 1 is a constant that can be written down explicitly in terms of Σ, µ, κ σ , r σ and #J σ for σ ∈ Σ. This concludes the proof of Theorem 5.

Numerical zero estimate

In this section we prove Theorems 1 and 2 stated in the introduction. The proof falls into 3 steps; the first one is Theorem 1.

Step 1: M(z) ∈ M q (C(z)) is an invertible matrix.

As in [START_REF]Transcendental numbers[END_REF], if M is singular in M q (C(z)) then there is a non-trivial linear relation with coefficients in C(z) between the rk(M) + 1 first columns of M; this provides a differential operator L of order µ = rk(M) to which Theorem 5 applies, in contradiction with Eq. (1.2) since τ ≤ nc 1 . Indeed, for any solution Y of the differential system Y ′ = AY we have

t Y M = R(Y ) R(Y ) ′ . . . R(Y ) (q-1) .
Step 2: Determination of det M(z) up to factors of bounded degree.

Let S denote the set of finite singularities of the differential system Y ′ = AY , i.e. poles of coefficients of A. For any s ∈ S, let N s denote the maximal order of s as a pole of a coefficient of A; let N s = 0 for s ∈ C \ S. Then Eq. (1.1) shows that (zs) (k-1)Ns P k,i (z) is holomorphic at z = s for any k ≥ 1 and any i ∈ {1, . . . , q}. Therefore det M(z) • s∈S (zs) q(q-1)Ns has no pole: is it a polynomial. Now let σ ∈ Σ, and denote by T σ ∈ M #Jσ,q (H) the matrix with rows t Y j , j ∈ J σ . The vector-valued functions Y j , j ∈ J σ , are linearly independent over C because the functions R(Y j ) are; therefore they are the #J σ first elements of a basis of solutions B of the differential system Y ′ = AY . The wronskian determinant of B may vanish at σ if σ is a singularity, but even in this case it cannot have generalized order ≥ c 0 (σ) at σ (with the terminology of §3.1) where c 0 (σ) is a constant depending only on A and σ (not on B). On the other hand, all components of all elements of B have generalized order ≥ r σ at σ (as in §3.1). Therefore there exists a subset I σ of {1, . . . , q}, with #I σ = q -#J σ , such that the determinant of the submatrix of T σ corresponding to the columns indexed by {1, . . . , q}\I σ cannot have generalized order ≥ c(σ) at σ, where c(σ) = c 0 (σ)r σ #I σ depends only on A and σ.

Let P σ ∈ M q (H) denote the matrix of which the #J σ first rows are that of T σ , and the other rows are the t e i , i ∈ I σ , where (e 1 , . . . , e q ) is the canonical basis of M q,1 (C). Then P σ M has its first rows equal to R(Y j ) R(Y j ) ′ . . . R(Y j ) (q-1) with j ∈ J σ , and its last rows equal to P 1,i . . . P q,i with i ∈ I σ . Therefore all coefficients in the row corresponding to j ∈ J σ vanish at σ with order at least ord σ R(Y j )q + 1, and (if σ = ∞) all coefficients in the row corresponding to i ∈ I σ are either holomorphic at σ, or have a pole of order at most (q -1)N σ is σ ∈ S. Since N σ = 0 if σ ∈ S, we have for any σ ∈ Σ \ {∞}:

ord σ det(P σ M) ≥ j∈Jσ ord σ R(Y j ) -(q -1)#J σ -(q -1)N σ (q -#J σ ).
Since det P σ cannot have generalized order ≥ c(σ) at σ, we obtain

ord σ det(M) ≥ j∈Jσ ord σ R(Y j ) -c(σ). Now let Q 2 (z) = s∈S (z -s) q(q-1)Ns • σ∈Σ\{∞} (z -σ) c(σ)
so that Q 2 (z) det M(z) is a polynomial and vanishes at any σ ∈ Σ \ {∞} with order at least j∈Jσ ord σ R(Y j ). To bound from above the degree of this polynomial, we define P ∞ as above if ∞ ∈ Σ, and let P ∞ denote the identity matrix (and

J ∞ = ∅) otherwise. Then we have R(Y j ) (k-1) = O(z -ord∞R(Y j )
) as |z| → ∞ for any j ∈ J ∞ and any k ≥ 1, and P k,i (z) = O(z n+(q-1)d ) for any i ∈ I ∞ and any k ∈ {1, . . . , q} (where d is greater than or equal to the degree of all coefficients of A). Therefore we have det

M(z) = O(z u ) as |z| → ∞, with u = (q -#J ∞ )(n + (q -1)d) - j∈J∞ ord ∞ R(Y j ), so that deg(Q 2 (z) det M(z)) ≤ u + deg Q 2 ≤ σ∈Σ\{∞} j∈Jσ ord σ R(Y j ) + τ + c 1 using Eq. (1.
2), where c 1 depends only on A and Σ (since 0 ≤ #J σ ≤ q for any σ). To sum up, we have found a polynomial

Q 1 of degree at most τ + c 1 such that det M(z) = Q 1 (z) Q 2 (z) σ∈Σ\{∞} (z -σ) j∈Jσ ord σ R(Y j ) .
Step 3: Evaluation at α.

Let q α = #J α and q ′ α = qq α , where J α = ∅ if α ∈ Σ; for simplicity we assume that J α = {1, . . . , q α }. Since the solutions Y 1 , . . . , Y qα of the differential system Y ′ = AY are linearly independent over C, there exist solutions Y qα+1 , . . . , Y q such that (Y 1 , . . . , Y q ) is a local basis of solutions at α. Let Y ∈ M q (L α ) be the matrix with columns Y 1 , . . . , Y q , where L

α = C[log(z -α)][[z -α]]. Then t YM is the matrix [R(Y i ) (k-1) ] 1≤i,k≤q .
For any subset E of {1, . . . , q} of cardinality q ′ α = qq α , we denote by ∆ E the determinant of the submatrix of [R(Y i ) (k-1) ] obtained by considering only the rows with index i ≥ q α + 1 and the columns with index k ∈ E, and by ∆ E the one obtained by removing these rows and columns. Then Laplace expansion by complementary minors yields

det Y(z) • det M(z) = E⊂{1,...,q} #E=q ′ α ε E ∆ E (z) ∆ E (z) (3.3) 
with ε E ∈ {-1, 1}. Now det Y is the wronskian of Y 1 , . . . , Y q : it is a solution of the first order differential equation w ′ (z) = w(z)trace(A(z)).

(3.4)

Moreover it is non-zero, and belongs to L α . Therefore we have det Y(z) ∼ γ 1 (zα) ̟ 1 as z → α, for some γ 1 ∈ C * and ̟ 1 ∈ N. On the other hand we have det M(z) ∼ γ 2 (zα) ̟ 2 with γ 2 ∈ C * and ̟ 2 ∈ N using Step 1 and the assumption that all entries of M(z) are holomorphic at α. Now for f ∈ L α \{0} let ord α f denote its generalized order at α, namely the maximal integer N such that f ∈ (zα) N L α . Then Eq. (3.3) shows that, for some subset E,

̟ 3 := ord α ∆ E (z) ≤ ̟ 1 + ̟ 2 -ord α ∆ E (z) and ∆ E (z) ∼ γ 3 (z -α) ̟ 3 with γ 3 ∈ C * . (3.5) Now letting ω α = j∈Jα ord α R(Y j ) if α ∈ Σ and ω α = 0 otherwise, Step 2 shows that ̟ 2 ≤ ω α + τ + c 1 .
Moreover the order of vanishing at α of any non-zero solution of Eq. (3.4), and in particular ̟ 1 , can be bounded from above in terms of A only. At last, for any i ∈ J α = {1, . . . , q α } and any k ∈ {1, . . . , q} the function R(Y i ) (k-1) vanishes at α with order at least ord α R(Y i ) -(q -1) so that ord α ∆ E (z) ≥ ω αq α (q -1). Therefore Eq. (3.5) yields ̟ 3 ≤ τ + c 3 for some constant c 3 depending only on A and Σ. Now let us consider the ̟ 3 -th derivative ∆ (̟ 3 ) E

(z): it has a finite non-zero limit (equal to γ 3 ̟ 3 !) as z → α. Moreover this derivative is a Z-linear combination of determinants of matrices of the form

N k 1 ,...,k q ′ α = [R(Y qα+i ) (k j -1) ] 1≤i,j≤q ′ α with 1 ≤ k 1 < . . . < k q ′ α ≤ q + ̟ 3 ≤ τ + c 2 ;
this constant c 2 (which depends only on A and Σ) is the one in the statement of assertion (ii) of Theorem 2. Now P k,i is assumed to be holomorphic at α for any i and any

k ≤ τ + c 2 , so that R(Y i ) (k-1) ∈ L α since Y i ∈ M q,1 (L α ). Therefore det N k 1 ,...,k q ′ α ∈ L α ; since ∆ (̟ 3 ) A
(z) has a finite non-zero limit as z → α, there exists at least one term det N k 1 ,...,k q ′ α in the above-mentioned Z-linear combination which also has a finite non-zero limit as z → α. For this tuple we consider the equality t Y M = N k 1 ,...,k q ′ α , where Y ∈ M q,q ′ α (L α ) is the matrix with columns Y qα+1 , . . . , Y q , and M = [P k j ,i ] 1≤i≤q,1≤j≤q ′ α . The Cauchy-Binet formula yields

det N k 1 ,...,k q ′ α = B⊂{1,...,q} #B=q ′ α det t Y B • det M B (3.6)
where Y B (resp. M B ) is the square matrix consisting in the rows of Y (resp. of M ) corresponding to indices in B.

Let ev α : L α → C denote regularized evaluation at α, defined by ev α (f ) = c 0,0 for any f = i,j c i,j (zα) i (log(zα)) j . The important point is that ev α is a C-algebra homomorphism, and that ev α (f ) is equal to the limit of f (z) as z → α whenever this limit exists. Extending ev α coefficientwise to matrices, Eq. (3.6) yields

ev α det N k 1 ,...,k q ′ α = B⊂{1,...,q} #B=q ′ α ev α det t Y B • ev α det M B .
Now the left hand side is non-zero, so that ev α (det M B ) = 0 for some B. Since all coefficients P k,i are holomorphic at α, so is det M B and therefore det( M B (α)) = ev α (det M B ) = 0. We have found an invertible submatrix of M(α) of size q ′ α , so that rkM(α) ≥ q ′ α : this concludes the proof of Theorem 2.

Diophantine part of the proof

In this section we prove Theorem 4 stated in the introduction, and give in details new proofs of the Ball-Rivoal theorem and Nishimoto's Theorem 3. To provide a unified treatment, we state a general result (namely Theorem 6) and deduce these results from it in §4.1. In order to help the reader, we first sketch the proof of Theorem 6 in §4.2, then construct the linear forms ( §4.3), apply the zero estimate (namely Theorem 2) to obtain in invertible matrx ( §4.4), and study the arithmetic and asymptotic properties ( §4.5). At last we state and prove Siegel's linear independence criterion in §4.6.

Statement of the main theorem and consequences

Theorem 6. Let N ≥ 1, and f : N → C be such that f (n + N) = f (n) for any n. Let p ∈ {0, 1}, a ≥ 2, and z 0 ∈ {1, e iπ/N }; put

ξ j = ∞ n=1 f (n)z n 0 n j
for any j ∈ {1, . . . , a},

except that ξ 1 = 0 if z 0 = 1. Then as a → ∞, dim Q Span Q ({ξ j , 1 ≤ j ≤ a, j ≡ p mod 2}) ≥ 1 + o(1) N + log 2 log a.
We refer to §2 for the special case of the Ball-Rivoal theorem.

Let us deduce Theorems 3 and 4 stated in the introduction from this result. Let χ be a Dirichlet character mod d. Its conductor is the smallest divisor e of d for which there exists a character χ ′ mod e such that χ(n) = χ ′ (n) for any n coprime to d. Comparing the L-functions of χ and χ ′ (see for instance [11, § §3.2 and 3.3]) yields

L(χ, s) = L(χ ′ , s) p|d p |e (1 -χ ′ (p)p -s )
so that δ χ,p,a = δ χ ′ ,p,a for any p, a (with the notation of Theorem 3). Therefore we may assume that e = d, i.e. χ is primitive. Then Theorem 3 follows from Theorem 6 by letting z 0 = 1 and f = χ.

To prove Theorem 4, we first prove that for any primitive Dirichlet character χ modulo a multiple e of 4,

χ(n + e 2 ) = -χ(n) for any n ∈ Z. (4.1)
Indeed we have n( e 2 + 1) ≡ n + e 2 mod e if n is odd, so that χ(n + e 2 ) = χ(n)χ( e 2 + 1) for any n ∈ Z (since both sides vanish if n is even). Moreover (χ( e 2 + 1)) 2 = 1 since ( e 2 + 1) 2 ≡ 1 mod e, and χ( e 2 + 1) = 1 because χ is primitive (so that χ(n + e 2 ) = χ(n) for some n). Therefore χ( e 2 + 1) = -1: this concludes the proof of (4.1). Now let N = e/2 and define f : N → C by f (r) = χ(r)z -r 0 for any r ∈ {1, . . . , N}, where z 0 = e iπ/N . Then Eq. (4.1) yields

∞ n=1 f (n)z n 0 n j = N r=1 f (r)z r 0 n≥1 n≡r mod 2N 1 n j - 1 (n + N) j = ∞ n=1 χ(n) n j = L(χ, j)
so that Theorem 6 implies Theorem 4.

Sketch of the proof

To prove Theorem 6, we let r, n ≥ 1 be such that r < a 2N and N divides n. We define ξ ′ 1 , . . . , ξ ′ a+N as follows:

   ξ ′ j = 2 
(-1) p ξ j for j ∈ {1, . . . , a} such that j ≡ p mod 2 ξ ′ j = 0 for j ∈ {1, . . . , a} such that j ≡ p mod 2 ξ ′ a+1+λ = z λ 0 f (λ) for any λ ∈ {0, . . . , N -1}.

(4.2)

We also let

δ n = (Nd n ) a N an/N ,
and define i 0 to be equal to 1 if z 0 = e iπ/N , and equal to 2 otherwise (i.e., if z 0 = 1). In §4.3 (see (4.16)) we shall construct integers s k,i , i 0 ≤ i ≤ a + N, such that as n → +∞:

max i 0 ≤i≤a+N |s k,i | ≤ β n(1+o(1)) and a+N i=i 0 s k,i ξ ′ i ≤ α n(1+o(1)) (4.3)
where α = e a 4 a/N -r (N + 1) 2r+2 r -a/N +4r+2 and β = (2e N ) a/N (rN + 1) 2r+2 .

Then Lemma 1 (that will be stated and proved in §4.4 using Theorem 2) provides a positive constant c 2 (which depends only on a and N) and integers 1 

≤ k i 0 < k i 0 +1 < . . . < k a+N ≤ c 2 (

Construction of the linear forms

Let a, r, N be positive integers such that 1 ≤ r < a 2N . For any integer multiple n of N we let

F (t) = (n/N)! a-2rN (t -rn) rn (t + n + 1) rn n/N h=0 (t + Nh) a .
Then F is a rational function, and its degree -d 0 satisfies

d 0 := a( n N + 1) -2rn = -deg F ≥ n + a ≥ 2. (4.4)
Its partial fraction expansion reads

F (t) = n/N h=0 a j=1
p j,h (t + Nh) j with rational coefficients p j,h . Let

P j (z) = n/N h=0 p j,h z N h ∈ Q[z]
≤n for any j ∈ {1, . . . , a}, and also

S 0 (z) = ∞ t=n+1 F (-t)z t , S ∞ (z) = ∞ t=1 F (t)z -t . (4.5)
As in [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF] we have

S ∞ (z) = V (z) + a j=1 P j (z)Li j (1/z)
where

V (z) = - n-1 t=0 z t a j=1 n/N h=⌈(t+1)/N ⌉ p j,h (Nh -t) j ∈ Q[z] ≤n .
In the same way (see [START_REF] Fischler | Approximants de Padé et séries hypergéométriques équilibrées[END_REF]) we have

S 0 (z) = U(z) + a j=1 P j (z)(-1) j Li j (z)
with the same polynomials P 1 , . . . , P a , and

U(z) = - n t=1 z t a j=1 ⌊(t-1)/N ⌋ h=0 p j,h (t -Nh) j ∈ Q[z] ≤n .
Now let P 1,j = P j for any j ∈ {1, . . . , a}, and define inductively P k,j ∈ Q(z) by

P k,j (z) = P ′ k-1,j (z) - 1 z P k-1,j+1 (z) 
for any k ≥ 2 and any j ∈ {1, . . . , a}, (

where P k-1,a+1 = 0 for any k; we shall check in §4.4 below that this notation P k,j is consistent with the one used in the introduction. We let also

U 1 = U, V 1 = V , and define U k , V k for any k ≥ 2 by the recurrence relations U k (z) = U ′ k-1 (z) - 1 1 -z P k-1,1 (z), (4.7) 
V k (z) = V ′ k-1 (z) + 1 z(1 -z) P k-1,1 (z). (4.8) 
Then for any k ≥ 1 we have

S (k-1) 0 (z) = U k (z) + a j=1 P k,j (z)(-1) j Li j (z) (4.9) 
and S (k-1)

∞ (z) = V k (z) + a j=1 P k,j (z)Li j (1/z). (4.10) 
Moreover Eqns. (4.6), (4.7) and (4.8) show that the rational functions P k,j with 1 ≤ j ≤ a (resp. U k and V k ) have only 0 (resp. only 0 and 1) as possible finite poles. Now we have

S (k-1) 0 (z) = ∞ t=n+1 F (-t)(t -k + 2) k-1 z t-k+1 for |z| < 1 and S (k-1) ∞ (z) = ∞ t=1 F (t)(-1) k-1 (t) k-1 z -t-k+1 for |z| > 1.
Let us assume that k -1 ≤ d 0 -2, where d 0 =deg F is defined by Eq. (4.4); then these formulas hold also when |z| = 1 and we may let z tend to 1 in Eqns. (4.9) and (4.10). Since P k,j is holomorphic at z = 1 for any k ≥ 1 and any j, a possible divergence may come only from poles of U k or V k at z = 1, or from the logarithmic term involving Li 1 (z) or Li 1 (1/z). Since a pole and a logarithmic term cannot cancel each other out, and S (k-1) 0 (z) and S (k-1) ∞ (z) have finite limits as z → 1, we obtain:

For any k ≤ d 0 -1, P k,1 (1) 
= 0 and U k , V k do not have a pole at z = 1. (

Now let k ≤ d 0 -1, and z ∈ C be such that |z| = 1. Then Eqns. (4.9) and (4.10) hold, upon agreeing that the sums start at j = 2 if z = 1; the same remark applies in what follows. Since P j (z) ∈ Q[z N ] for any j ∈ {1, . . . , a}, Eq. (4.6) yields P k,j ∈ z 1-k Q[z N ] (see the proof of Proposition 1 in §4.5 for details). On the other hand, since

U k , V k ∈ Q[z, z -1 ] for any k ≤ d 0 -1, we can write z k-1 U k (z) = N -1 λ=0 z λ U k,λ (z) and z k-1 V k (z) = N -1 λ=0 z λ V k,λ (z) (4.12) with U k,λ , V k,λ ∈ Q[z N , z -N ].
Then Eqns. (4.9) and (4.10) yield

z k-1 S (k-1) 0 (z) = N -1 λ=0 z λ U k,λ (z) + a j=1 z k-1 P k,j (z)(-1) j Li j (z) (4.13) and z k-1 S (k-1) ∞ (z) = N -1 λ=0 z λ V k,λ (z) + a j=1 z k-1 P k,j (z)Li j (1/z). (4.14) 
The point now is that U k,λ (z), V k,λ (z), and z k-1 P k,j (z) depend only on z N . For any ℓ ∈ {1, . . . , N} we consider

µ ℓ = 1 N N λ=1 f (λ)ω -ℓλ . (4.15) 
Let z 0 ∈ {1, e iπ/N } and p ∈ {0, 1} be as in Theorem 6, and recall that ω = e 2iπ/N . For any k ≤ d 0 -1 we let

Λ k = N ℓ=1 µ ℓ (ω ℓ z 0 ) k-1 S (k-1) 0 (ω ℓ z 0 ) + (-1) p (ω ℓ z 0 ) 1-k S (k-1) ∞ ( 1 ω ℓ z 0
) .

Then Eqns. (4.13) and (4.14) yield, since U k,λ (z), V k,λ (z), and z k-1 P k,j (z) depend only on z N and (ω ℓ z 0

) N = (ω ℓ z 0 ) -N = z N 0 : Λ k = N -1 λ=0 N ℓ=1 µ ℓ (ω ℓ z 0 ) λ U k,λ (z 0 ) + (-1) p N ℓ=1 µ ℓ (ω ℓ z 0 ) -λ V k,λ (z 0 ) + a j=1 z k-1 0 P k,j (z 0 ) N ℓ=1 µ ℓ Li j (ω ℓ z 0 )((-1) j + (-1) p ). Now Eq. (4.15) yields N ℓ=1 µ ℓ ω nℓ = f (n) for any n ∈ Z, so that N ℓ=1 µ ℓ Li j (ω ℓ z 0 ) = ∞ n=1 f (n)z n 0 n j = ξ j for any j ≤ a.
Letting V k,N = V k,0 we obtain:

Λ k = 2(-1) p 1≤j≤a j≡p mod 2 z k-1 0 P k,j (z 0 )ξ j + N -1 λ=0 (U k,λ (z 0 ) + (-1) p V k,N -λ (z 0 ))z λ 0 f (λ).
As announced in §4.2 we now define the coefficients s k,i :

s k,i = δ n z k-1 0 P k,i (z 0 ) for 1 ≤ i ≤ a, s k,a+1+λ = δ n (U k,λ (z 0 ) + (-1) p V k,N -λ (z 0 )) for 0 ≤ λ ≤ N -1, (4.16) 
where δ n = (Nd n ) a N an/N , so that

δ n Λ k = a+N i=i 0 s k,i ξ ′ i since ξ ′ 1 = 0 if z 0 = 1 (recall from §4.
2 that i 0 = 2 in this case, and i 0 = 1 otherwise, i.e. if z 0 = e iπ/N ; ξ ′ i is defined in Eq. (4.2)). Since z N 0 ∈ {-1, 1} and z k-1 P k,j (z), U k,λ (z) and V k,N -λ (z) are polynomials in z N with rational coefficients, the numbers s k,1 , . . . , s k,a+N are rational. We shall prove in Proposition 1 ( §4.5) that they are integers, thanks to the factor δ n .

Application of the zero estimate

In this section we deduce from Theorem 2 the following lemma, used at the end of §4.2. It provides an invertible matrix which enables us to apply Siegel's linear independance criterion (see §4.6).

Lemma 1. In the setting of §4.2, let i 0 = 1 if z 0 = e iπ/N and i 0 = 2 if z 0 = 1; let s k,i be defined by Eq. (4.16). Then there exist a positive constant c 2 (which depends only on a and N) and integers 1 ≤ k i 0 < k i 0 +1 < . . . < k a+N ≤ c 2 (which depend on a, N, r, and n) such that the matrix [s k j ,i ] i 0 ≤i,j≤a+N is invertible.

To begin with, let us recall from §4.2 that ω = e 2iπ/N , a, r, N, n are positive integers such that 1 ≤ r < a 2N , n is a multiple of N, and

F (t) = (n/N)! a-2rN (t -rn) rn (t + n + 1) rn n/N h=0 (t + Nh) a .
We have

S 0 (z) = ∞ t=n+1 F (-t)z t = U(z) + a j=1 P j (z)(-1) j Li j (z) and S ∞ (z) = ∞ t=1 F (t)z -t = V (z) + a j=1 P j (z)Li j (1/z).
Since P j ∈ C[z N ] for any j ∈ {1, . . . , a}, we have P j (ω ℓ z) = P j (z) for any ℓ ∈ Z. Therefore letting R 0,ℓ (z) = S 0 (ω ℓ z), R ∞,ℓ (z) = S ∞ (ω ℓ z), P 0,ℓ (z) = U(ω ℓ z), P ∞,ℓ (z) = V (ω ℓ z) (4.17) for any ℓ ∈ {1, . . . , N}, we have R 0,ℓ (z) = P 0,ℓ (z) + a j=1 P j (z)(-1) j Li j (ω ℓ z) = O(z (r+1)n+1 ), z → 0, (4.18) and R ∞,ℓ (z) = P ∞,ℓ (z) +

a j=1 P j (z)Li j ( 1 ω ℓ z ) = O(z -rn-1 ), z → ∞. (4.19) 
Moreover, recall that d 0 =deg F = a( n N + 1) -2rn; Lemma 3 of [START_REF] Fischler | Approximants de Padé et séries hypergéométriques équilibrées[END_REF] shows that

a j=1 P j (z)(-1) j-1 (log z) j-1 (j -1)! = O((z -1) d 0 -1 ), z → 1.
Using again the fact that P j (ω -ℓ z) = P j (z), we obtain for any ℓ ∈ {1, . . . , N}:

R ω ℓ (z) := Théorème 1], which has a unique solution up to proportionality. Whenever N ≥ 2 we have Na(N -1) < 0: the problem we have solved has more equations than unknowns. This is due to the fact that we always assume n to be an integer multiple of N. Anyway to complete the proof, it is sufficient to bound from above the difference between the number of unknowns and the number of equations by a constant independent from n; we do not need to study whether the Padé approximation problem has a unique solution or not.

a j=1 P j (z)(-1) j-1 (log(ω -ℓ z) j-1 (j -1)! = O((z -ω ℓ ) d 0 -1 ), z → ω ℓ . ( 4 
Let q = a + 2N, and A ∈ M q (C(z)) be the matrix of which the coefficients A i,j are given by:

   A i,i-1 (z) = -1 z for any i ∈ {2, . . . , a} A 1,a+ℓ (z) = ω ℓ ω ℓ z-1 for any ℓ ∈ {1, . . . , N} A 1,a+N +ℓ (z) = 1 z(1-ω ℓ z)
for any ℓ ∈ {1, . . . , N} and all other coefficients are zero. We consider the following solutions of the differential system Y ′ = AY , with 1 ≤ ℓ ≤ N: Y 0,ℓ (z) = t -Li 1 (ω ℓ z), Li 2 (ω ℓ z), . . . , (-1) a Li a (ω ℓ z), 0, . . . , 0, 1, 0, . . . , 0 ,

Y ∞,ℓ (z) = t Li 1 ( 1 ω ℓ z ), Li 2 ( 1 ω ℓ z ), . . . , Li a ( 1 ω ℓ z ), 0, . . . , 0, 1, 0, . . . , 0 , Y ω ℓ (z) = t 1, -log(ω -ℓ z), (log(ω -ℓ z)) 2 2! , . . . , (-1) a-1 (log(ω -ℓ z)) a-1 (a -1)! , 0, . . . , 0 where the coefficient 1 in Y 0,ℓ (z) (resp. Y ∞,ℓ (z)) is in position a + ℓ (resp. a + N + ℓ).
We let J 0 = {(0, 1), (0, 2), . . . , (0, N)}, J ∞ = {(∞, 1), (∞, 2), . . . , (∞, N)}, J ω ℓ = {ω ℓ } for 1 ≤ ℓ ≤ N, and Σ = {0, ∞} ∪ {ω ℓ , 1 ≤ ℓ ≤ N}. We also let P a+ℓ (z) = P 0,ℓ (z) = U(ω ℓ z) and P a+N +ℓ = P ∞,ℓ (z) = V (ω ℓ z) for any ℓ ∈ {1, . . . , N}. Then with the notation of the introduction we have R(Y 0,ℓ ) = R 0,ℓ (z), R(Y ∞,ℓ ) = R ∞,ℓ (z), and R(Y ω ℓ ) = R ω ℓ (z) for any ℓ ∈ {1, . . . , N}.

Since P a is not the zero polynomial, we have R ω ℓ (z) = 0 for any ℓ; the C-linear independence of R 0,1 (z), . . . , R 0,N (z) (resp. of R ∞,1 (z), . . . , R ∞,N (z)) follows directly (resp. up to changing z to 1/z) from the following lemma, which is not difficult to prove using monodromy (see [START_REF] Wechsung | Functional equations of hyperlogarithms[END_REF]).

Lemma 2. The functions 1 and Li j (ω ℓ z), for j ≥ 1 and 1 ≤ ℓ ≤ N, are linearly independent over C(z).

Eqns. (4.18), (4.19), and (4.20) yield ord 0 (R 0,ℓ (z)) ≥ (r + 1)n + 1, ord ∞ (R ∞,ℓ (z)) ≥ rn + 1, and ord ω ℓ (R ω ℓ (z)) ≥ d 0 -1 for any ℓ ∈ {1, . . . , N}, so that σ∈Σ j∈Jσ ord σ R j (z) ≥ (2r + 1)Nn + N(d 0 + 1) = (n + 1)q -nNτ with τ = Na(N -1); here q = a + 2N, and we recall that d 0 =deg F = a( n N + 1) -2rn. This number τ is exactly the difference between the number of unknowns and the number of equations computed after Eq. (4.20). Now for any k ≥ 1 and any ℓ ∈ {1, . . . , N} we let

P k,0,ℓ = ω ℓ(k-1) U k (ω ℓ z) and P k,∞,ℓ = ω ℓ(k-1) V k (ω ℓ z), (4.21) 
and P k = t P k,1 , P k,2 , . . . , P k,a , P k,0,1 , . . . , P k,0,N , P k,∞,1 , . . . , P k,∞,N ∈ M q,1 (C(z)), so that P 1 = t (P 1 , . . . , P a+2N ). Then it is not difficult to check that

P k = d dz + t A k-1 P 1 .
To illustrate this equality, we notice that Eq. (4.17) yields

R (k-1) 0,ℓ = P k,0,ℓ (z) + a j=1 P k,j (z)(-1) j Li j (ω ℓ z) and R (k-1) ∞,ℓ = P k,∞,ℓ (z) + a j=1 P k,j (z)Li j ( 1 ω ℓ z ) since (as in [22, Chapter 3, §4]) S (k-1) 0 = U k (z) + a j=1 P k,j (z)(-1) j Li j (z)
and

S (k-1) ∞ = V k (z) + a j=1 P k,j (z)Li j (1/z).
Provided n is large enough, we have checked all assumptions of Theorem 2 (using, among others, Eq. (4.11)). We apply this result with α = z 0 ; recall that z 0 ∈ {1, e iπ/N }. In the case z 0 = 1, we obtain positive integers k 2 < . . . < k q ≤ c 2 such that the matrix

Arithmetic and Asymptotic Properties

In this section we prove the following result, used in the proof of Theorem 6; see §4.2 for the notation. Proposition 1. Let α = e a 4 a/N -r (N + 1) 2r+2 r -a/N +4r+2 and β = (2e N ) a/N (rN + 1) 2r+2 .

(4.24)

Then we have s k,i ∈ Z for any i ∈ {1, . . . , a + N} and any k ≤ d 0 -1, and as n → ∞: )) .

a+N i=i 0 s k,i ξ ′ i ≤ α n(1+o(1)) , max 1≤i≤a+N |s k,i | ≤ β n(1+o( 1 
In this proposition and throughout this section, we denote by o(1) any sequence that tends to 0 as n → ∞; it usually depends also on a, r, N, and k. When Proposition 1 is applied in the proof of Theorem 6 (see §4.2), this dependence is not a problem since a, r, N are fixed parameters and k is bounded from above by c 2 . At last we recall that d n is the least common multiple of 1, 2, . . . , n, and that

δ n = (Nd n ) a N an/N .
Let us start with a lemma, in which (as in §4.3) where o( 1) is a sequence that tends to 0 as n → ∞ and may depend also on N, a, and r.

F (t) = (n/N)! a-2rN
Proof of Lemma 3: We follow the approach of [START_REF] Habsieger | Introduction to diophantine approximation[END_REF] and [START_REF] Colmez | Arithmétique de la fonction zêta[END_REF] by letting

F 0 (t) = (n/N )! n/N h=0 (t+N h) = n/N h=0 (-1) h N -n/N n/N h t + Nh , G i (t) = (t-in/N ) n/N n/N h=0 (t+N h) = n/N h=0 (-1) h+n/N N -n/N n/N h Nh + in/N n/N t + Nh for 1 ≤ i ≤ rN, H i (t) = (t+1+in/N ) n/N n/N h=0 (t+N h) = n/N h=0 (-1) h N -n/N n/N h -Nh + (i + 1)n/N n/N t + Nh for N ≤ i ≤ (r + 1)N -1.
Then the partial fraction expansion of F = F a-2rN 0 G 1 . . . G rN H N . . . H (r+1)N -1 can be obtained my multiplying those of F 0 , G i and H i using repeatedly the formula

1 (t + Nh)(t + Nh ′ ) ℓ = 1 N ℓ (h ′ -h) ℓ (t + Nh) - ℓ i=1 1 N ℓ+1-i (h ′ -h) ℓ+1-i (t + Nh ′ ) i (4.27)
with h = h ′ . The denominator of p j,h comes both from this formula (and this contribution divides (Nd n/N ) a-j ) and from the denominators of the coefficients in the partial fraction expansions of F 0 , G i , H i (which belong to N -n/N Z, so that N an/N accounts for this contribution). This concludes the proof of (4.25).

On the other hand, bounding from above the coefficients of the partial fraction expansions of F 0 , G i , H i yields

|p j,h | ≤ n O(1) N -an/N 2 an/N rN i=1 (n + in/N)! (n/N)!(n + (i -1)n/N)! (r+1)N -1 i=N ((i + 1)n/N)! (n/N)!(in/N)!
where O(1) is a constant depending only on a, r, N which can be made explicit (see [START_REF] Colmez | Arithmétique de la fonction zêta[END_REF] for details). Simplifying the products and using the bound

m! m 1 !...mc! ≤ c m valid when m 1 + . . . + m c = m, one obtains |p j,h | ≤ n O(1) (2/N) an/N ((r + 1)n)! n!(n/N)! rN 2 ≤ n O(1) (2/N) an/N (rN + 1) (2(r+1)n .
This concludes the proof of Lemma 3.

Proof of Proposition 1: Let H(P ) denote the exponential height of a polynomial P ∈ C[X], that is the maximum modulus of a coefficient of P . Recall that

P j (z) = n/N h=0 p j,h z N h , U(z) = -n t=1 z t a j=1 ⌊(t-1)/N ⌋ h=0 p j,h
(t-N h) j and V (z) = -n-1 t=0 z t a j=1 n/N h=⌈(t+1)/N ⌉ p j,h

(N h-t) j . Using Lemma 3 we see that these polynomials have coefficients in δ -1 n Z and height less than H n for some H n ≤ (2/N) a/N (rN + 1) 2r+2 n(1+o(1))

. Now let P k,j = z k-1 P k,j for any k, j. Then the recurrence relation (4.6) yields P k,j = z P ′ k-1,j -(k -2) P k-1,j -P k-1,j+1

where P k-1,j+1 = 0 if j = a, so that P k,j is a polynomial of degree at most n, with coefficients in δ -1 n Z and height H( P k,j ) ≤ (n + 1) k-1 H n , by induction on k. In the same way, letting U k = z k-1 U k , Eq. (4.7) yields

U k = z U ′ k-1 -(k -2) U k-1 -zQ k-1
where Q k-1 = 1 1-z P k-1,1 . Provided k ≤ d 0 -1, Eq. (4.11) asserts that P k-1,1 (1) = 0 so that Q k-1 is a polynomial and H(Q k-1 ) ≤ nH(P k-1,1 ) ≤ (n) k-1 H n . By induction on k ≤ d 0 -1, we deduce that U k is a polynomial of degree at most n, with coefficients in δ -1 n Z and height H( U k ) ≤ k(n) k-1 H n . Now Eq. (4.12) reads U k (z) = N λ=1 z λ-1 U k,λ (z) with U k,λ ∈ Q[z N , z -N ]. If k ≤ d 0 -1 then U k,λ belongs to Q[z N ], has degree at most n (as a polynomial in z), coefficients in δ -1 n Z and height H(U k,λ ) ≤ k(n) k-1 H n . Proceeding in the same way, it is not difficult to prove that the same properties hold for V k,λ . Assertion (i) follows at once, since d n = e n(1+o(1)) .

To prove (ii), we recall that d 0 =deg F and write, as |t| → ∞: and d 0 = a(n/N + 1) -2rn, we obtain |δ n S (k-1) (1)| ≤ α n(1+o (1) for any z ∈ C such that |z| = 1, and any k ≤ d 0 -1; here the constant implied in o(1) may depend on k (but not on n). This concludes the proof of Proposition 1.

F (t) =

Siegel's linear independence criterion

The proofs of all linear independence results in this paper rely on the following criterion, which is based on Siegel's ideas (see for instance [8, p. 81-82 and 215-216], [13, §3] or [START_REF] Marcovecchio | Linear independence of linear forms in polylogarithms[END_REF]Proposition 4.1]). Proposition 2. Let θ 1 , . . . , θ p be real numbers, not all zero. Let τ > 0, and (Q n ) be a sequence of real numbers with limit +∞. Let N be an infinite subset of N, and for any n ∈ N let L (n) = [ℓ (n) i,j ] 1≤i,j≤p be a matrix with integer coefficients and non-zero determinant, such that as n → ∞ with n ∈ N : In the proof of Theorem 6 we apply this proposition with Q n = β n and τ = -log α log β (so that Q -τ n = α n ), where α and β are defined in §4.2; N is the set of integer multiples of N.

Eventhough it is a classical result, let us recall the proof of Proposition 2. Let d = dim Q Span Q (θ 1 , . . . , θ p ), and F be a subspace of R p defined over Q, of dimension d, which contains the point (θ 1 , . . . , θ p ). Let n ∈ N be sufficiently large, and denote by L 

( i )

 i The differential system Y ′ = AY has a basis of local solutions at α in C[log(zα)][[zα]].

Lemma 3 .

 3 (trn) rn (t + n + 1) For any j ∈ {1, . . . , a} and any h ∈ {0, . . . , n/N} we have(Nd n/N ) a-j N an/N p j,h ∈ Z (4.25)and |p j,h | ≤ (2/N) a/N (rN + 1) 2r+2 n(1+o(1)) (4.26)

F

  ) d-j d -1 dj p j,h since (t + Nh) -j = ∞ ℓ=0 ℓ + j -1 ℓ (-Nh) ℓ t -j-ℓ (see [9, p. 1378]). Lemma 3 provides a positive real number A n ≤ (2/N) a/N (rN + 1) 2r+2 n(1+o(1)) such that |A d | ≤ (2n) d A n for any d ≥ d 0 . Then we have for any t ∈ Z such that |t| ≥ 2n + 1:|F (t)| ≤ A n ∞ d=d 0 (2n/t) d ≤ (2n + 1)A n (2n/t) d 0 .(4.28)For any z ∈ C such that |z| ≤ 1, and any k ≤ d 0 -1, we obtain|S (-t)(tk + 2) k-1 z t-k+1 | ≤ (2n + 1)A n (2n) d 0 ∞ t=(r+1)n+1 t k-1-d 0 ≤ (2n + 1)A n (2n) d 0 ∞ (r+1)n t k-1-d 0 dt ≤ (2n + 1)A n 2 d 0 n k r k-d 0 .Moreover the same upper bound holds for S∞ (z) = ∞ t=rn+1 F (t)z -t provided |z| ≥ 1. Since S(z) = N ℓ=1ω ℓ µ ℓ S 0 (ω ℓ z) + ω ℓ ν N -ℓ S ∞ (ω ℓ z).

  max

.

  θ 1 + . . . + ℓ (n) p,j θ p | ≤ Q -τ +o(1) n Then we have dim Q Span Q (θ 1 , . . . , θ p ) ≥ τ + 1.

d

  X 1 + . . .+ ℓ (n)p,j X p on R p . Up to reordering L to F to be linearly independent linear forms on F . Denoting by (u 1 , . . . , u d ) an R-basis of F consisting in vectors of Z p , the matrix [L (n) j (u t )] 1≤j,t≤d has a non-zero integer determinant. Now (θ 1 , . . . , θ p ) is a linear combination of u 1 , . . . , u d ; the same linear combination of the columns has coefficients less than Q -τ +o(1) n in absolute value. Therefore Q d-1-τ +o(1) n is an upper bound on this non-zero integer determinant: this concludes the proof of Proposition 2.

  .20) Combining Eqns.(4.18),(4.19), and (4.20) with 1 ≤ ℓ ≤ N, we have solved a simultaneous Padé approximation problem. The (n + 1)(a + 2N) unknowns are the coefficients of P 1 , . . . , P a , P 0,1 , . . . , P 0,N , P ∞,1 , . . . , P ∞,N , which are polynomials of degree less than or equal to n. ∞,ℓ (z) = O(z n ) as z → ∞. The difference between the number of unknowns and the number of equations is equal to Na(N -1). If N = 1 this is equal to 1: the Padé approximation problem is exactly (2.2), i.e. the one of[9, 

	There are
	2N((r + 1)n + 1) + N(d 0 -1) = n(a + 2N) + (a + 1)N
	linear equations, since a priori we have R

with columns P k 2 (1), . . . , P kq (1) has rank q -1. Now P k,1 (1) = 0 for any k ≤ c 2 (using Eq. (4.11) since n is large enough) so that the first row of this matrix is identically zero. Removing this row yields the following invertible matrix (with z 0 = 1 and i 0 = 2):

If z 0 = e iπ/N ∈ Σ then Theorem 2 provides directly k 1 < . . . < k q ≤ c 2 such that the matrix (4.22) with i 0 = 1 is invertible. Now Eq. (4.12) with z = ω ℓ z 0 yields, since

Therefore we have for any λ ∈ {0, . . . , N -1}:

using Eq. (4.21). Moreover the same relation holds with V k,λ and P k,∞,ℓ for λ ∈ {0, . . . , N -1}. We recall that s k,i was defined in Eq. (4.16) ( §4.3) by

For any λ ∈ {0, . . . , N -1} we deduce that

where